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ABSTRACT

Gene expression regulation is highly dependent on
binding of RNA-binding proteins (RBPs) to their RNA
targets. Growing evidence supports the notion that
both RNA primary sequence and its local secondary
structure play a role in specific Protein-RNA recog-
nition and binding. Despite the great advance in
high-throughput experimental methods for identify-
ing sequence targets of RBPs, predicting the spe-
cific sequence and structure binding preferences
of RBPs remains a major challenge. We present a
novel webserver, SMARTIV, designed for discovering
and visualizing combined RNA sequence and struc-
ture motifs from high-throughput RNA-binding data,
generated from in-vivo experiments. The unique-
ness of SMARTIV is that it predicts motifs from en-
riched k-mers that combine information from ranked
RNA sequences and their predicted secondary struc-
ture, obtained using various folding methods. Con-
sequently, SMARTIV generates Position Weight Ma-
trices (PWMs) in a combined sequence and structure
alphabet with assigned P-values. SMARTIV concisely
represents the sequence and structure motif content
as a single graphical logo, which is informative and
easy for visual perception. SMARTIV was examined
extensively on a variety of high-throughput binding
experiments for RBPs from different families, gen-
erated from different technologies, showing consis-
tent and accurate results. Finally, SMARTIV is a user-
friendly webserver, highly efficient in run-time and
freely accessible via http://smartiv.technion.ac.il/.

INTRODUCTION

RNA binding proteins (RBPs) are involved in regulating the
different steps of the gene expression pathway by binding

to coding and non-coding RNAs. Most regulatory RBPs
bind their RNA target in a specific manner. Accumulat-
ing data support that the RNA recognition requires iden-
tification of both the sequence and the local structure at-
tributes of the binding sites (1). In the last decade, differ-
ent high-throughput RNA binding technologies have been
developed to study the binding of RBPs, providing infor-
mation on the binding preferences of hundreds of diverse
RBPs. To determine the binding preferences of RBPs in-
vitro Ray et al. introduced RNAcompete and applied it
to a large cohort of RBPs from human and Drosophila
melanogaster (2,3). More recently, Cook et al. introduced
RNAcompete-S, which combines a single-step in-vitro se-
lection methodology with a dedicated computational pipe-
line to extract the intrinsic sequence and structural speci-
ficity of RBPs (4). A different method, named RNA Bind-
n-Seq (RBNS), was developed for quantitative mapping of
RNA binding specificity in-vitro and was applied to study
the binding specificities of several splicing factors, such as
RBFOX2, CELF1/CUGBP1 and MBNL1 (5). In parallel,
high-throughput methods to identify endogenous protein–
RNA interactions were developed. The first in-vivo based
methods (such as RIP (6), RIP-chip (7), RIP-seq (8)) relied
solely on RNA immunoprecipitation. Later, higher resolu-
tion methodologies, combining crosslinking and immuno-
precipitation (CLIP), have been developed to study RBP
specificities in-vivo and identify the specific interaction sites
of the protein on the RNA target. Over the years, many
different variants of the CLIP method have been intro-
duced, including HITS-CLIP (9), PAR-CLIP (10), iCLIP
(11), eCLIP (12), irCLIP (13) and others. For recent re-
view on CLIP advances see Lee and Ule (14). In accordance
with the growing number of experimental high-throughput
RNA binding data, many different algorithms have been
developed to extract the RNA preferences of RBPs. The
binding preferences of RBPs can be retrieved from sev-
eral databases, such as RBPDB (15), CISBP-RNA (3), AT-
tRACT (16).
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Despite the accumulating data generated from the large
variety of in-vivo and in-vitro experimental methods, deci-
phering the binding preferences of RBPs at both the se-
quence and the structural level is still a great challenge.
To address this, during the last decade several different
algorithms have been developed. Based on the assump-
tion that most RBPs preferably bind in RNA accessible re-
gions, Hiller et al. developed MEMERIS, that implements
the Expectations Minimization motif discovery algorithm
(MEME) to specifically search for RNA binding motifs
in single-stranded RNA regions (17). A decade later the
GraphProt machine learning based algorithm was intro-
duced by the same group for learning the binding prefer-
ences of RBPs at the sequence and structural levels from ex-
perimental high-throughput binding data, without consid-
ering any prior knowledge on the structural preferences of
the RBPs (18). The GraphProt model considers the generic
shape of the RNA substructures, learned from RNA shape
predictions (19). A different algorithm to models the se-
quence and structural preferences of RBPs is the RNA-
context algorithm (20). RNAcontext takes into account
the probability of the sequences to be in different types
of RNA secondary structure (paired, hairpin loop, bulges
etc.), predicted by the RNA folding algorithm RNAplfold
(21) with no prior assumptions on the RBP binding prefer-
ences. RNAcontext was implemented in the RBPmotif web-
server that can be applied to both in-vitro and in-vivo bind-
ing data (22). RBPmotif webserver takes as an input a set
of bound and unbound sequences and outputs the results of
the RBP binding preferences at the sequence and structural
levels, presenting the sequence preferences in a standard
motif logo representation with additional information on
the probabilities of the secondary structure of the motif as
modeled for the entire binding site. The RCK k-mer based
motif discovery algorithm (23) was developed for extracting
the sequence and structural binding preferences specifically
from RNAcompete data (2,3) and more recently imple-
mented to predict the binding preferences of RBPs from a
large set of in-vitro and in-vivo data (24). The TEISER (Tool
for Eliciting Informative Structural Elements in RNA) al-
gorithm employs a different computational approach for
extracting enriched sequence and structural motifs for high-
throughput data (25). TESIER uses context-free grammars
(CFGs) (26) to model the RNA secondary structure prefer-
ences of the RBPs and was originally designed for discover-
ing enriched sequence and structure motifs of RBPs asso-
ciated with RNA stability, learning from whole genome ex-
pression data. TIESER was employed for extracting the se-
quence and structural preferences of RBPs from CLIP data
(27). Recently, we have introduced the SMARTIV algo-
rithm, which is a highly efficient algorithm for discovering
combined sequence and structure motifs (28). The unique-
ness of SMARTIV algorithm is that it combines the RNA
sequence and secondary structure information in a single
representation. The combined information is then used to
extract enriched k-mers that are further clustered to gen-
erate Position Weight Matrices (PWMs), representing the
joint sequence and structural preferences of the protein. By
this approach SMARTIV algorithm selects in a one-step
manner the overrepresented combined sequence and struc-
ture motifs as opposed to adding structural information to

the enriched sequence motifs. Moreover, SMARTIV pro-
vides a variety of models for RNA secondary structure pre-
diction, including free energy minimization, ensemble and
abstract shape models. Finally, SMARTIV uses a novel ap-
proach, employing the minimum-minimum Hyper Geomet-
ric (mmHG) statistics (29,30) to extract enriched motifs in
ranked data and assigns an occurrence score and P-values
to PWMs based on the correspondence between the input
data (sorted by the experimental information) and the out-
put list (sorted by the assigned PWM score). Later, Heller
et al. (31) developed ssHMM to identify combined sequence
and structure motifs from RBP-bound sequences based on
Hidden Markov Models and Gibbs sampling. Similar to
SMARTIV, ssHMM uses a combined sequence a structure
alphabet for extracting enriched motifs, which are visual-
ized in a graph representation.

Here, we describe a new webserver we name SMARTIV,
a Sequence and Structure Motif enrichment Analysis tool
for Ranked RNA daTa generated from In-Vivo binding ex-
periments, that employs our recently developed SMARTIV
algorithm for discovering combined RNA sequence and
structure motifs from in-vivo data (28). The input for
SMARTIV is a list of sequences generated from a high-
throughput binding experiment, specifically CLIP-based
experiment. SMARTIV outputs the best combined se-
quence and structure motif generated from a given input
dataset in a unified graphical logo representation and as
a PWM with an assigned P-value. For motif representa-
tion SMARTIV uses an eight-letter alphabet that represents
the sequence and structure preferences per each nucleotide.
The occurrences of the enriched sequence and structure mo-
tifs in the original data are also provided in both html and
text formats. SMARTIV is freely available via the website
http://smartiv.technion.ac.il/.

SMARTIV METHODOLOGY

SMARTIV webserver is based on our previously developed
algorithm for discovering combined sequence and struc-
ture motifs in RNA (28). A workflow summarizing the
main steps of SMARTIV algorithm is given in Figure 1.
Briefly, SMARTIV uses as an input a list of ranked RNA
sequences from any type of CLIP experiment (PAR-CLIP,
iCLIP, eCLIP etc.) that were processed by the appropriate
peak calling algorithm and ranked according to a calculated
sequence score/value in a descending order. As a first step,
we employ RNA secondary structure predictions to the se-
quences, defining each nucleotide in the sequence as either
paired or unpaired and integrate the sequence and struc-
tural information to a new eight-letter alphabet (A,G,C,U
for unpaired nucleotides and a,g,c,u for paired nucleotides).
In SMARTIV webserver, we implemented different RNA
secondary structure prediction approaches: the Minimum
Free Energy (MFE) (21), the Maximum Expected Accu-
racy (MEA) and centroid structures calculated from par-
tition function, all three generated by the RNAfold method
(21). In addition we employed a probability approach to re-
trieve the MFE structures from most probable shapes, using
RNAshapes (32,33). Following the folding step, SMARTIV
extracts k-mers, over the eight-letter alphabet, that are sig-
nificantly enriched at the top of the ranked list compared to

http://smartiv.technion.ac.il/
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Figure 1. A visualized summary of SMARTIV methodology. (A) The input for SMARTIV is a list of sequences ranked in a descending order according to
the sequence binding scores. As a first step, we employ secondary structure predictions, defining each nucleotide in the sequence as either paired or unpaired
and integrate the sequence and structural information to a new eight-letter alphabet (A,G,C,U for unpaired nucleotides and a,g,c,u for paired nucleotides).
(B) We extract k-mers that are significantly enriched at the top of the ranked list compared to the bottom of the list, using the mHG statistics. (C) We
cluster and align the k-mers. Consequently, we build a Position Weight Matrix (PWM) for each cluster, assigning it a P-value based on its correspondence
to the original ranking of the sequences, based on the experimental binding scores, using the mmHG statistics.

the bottom of the list, using the minimum Hyper Geometric
(mHG) statistics that has been implemented in our previous
DRIMUST algorithm (34). Consequently, we cluster and
align the k-mers, build a Position Weight Matrix (PWM)
for each cluster, select motifs (28,35), and assign P-values
to PWMs (29,30). A detailed description of the algorithm
is given in Polishchuk et al. (28).

Input

SMARTIV server is designed for discovering combined se-
quence and structure binding motifs for RBPs from in-
vivo high-throughput experiments. The data uploaded by
the user can be generated from any type of CLIP exper-
iment, either from an in-house experiment, data down-
loaded from GEO (36), ENCODE (37) or from dedicated
CLIP databases, as for example, DoRiNA (38), or CLIPdb
(39). An input list of the RBP-target sequences can be pro-
vided as coordinates in BED format or as sequences in
FASTA format. Data in BED format must contain chro-
mosome coordinates and strand information. The user must
specify the species and a genome assembly information for
the uploaded dataset (current version supports human hg18,

hg19, hg38 and mouse mm9 and mm10 genomes assem-
blies). When the sequences are provided in FASTA format
(with no coordinate information) SMARTIV employs the
BLAT alignment tool (40) to map sequences to the genome
and extend the sequences for the folding prediction step.
A list of input sequences must contain at least 2000 se-
quences, each comprising of at least 20 nucleotides. Given
that SMARTIV employs a ranked-based algorithm to ex-
tract enriched motifs, it is suitable only for ranked lists,
sorted by any given sequence score. Sequence scores are
usually generated by the dedicated peak-calling algorithms
that process the raw binding data generated by the differ-
ent CLIP experiments (such as Piranha (41) that can be
applied to all available CLIP-based methods or PARalyser
(42) that is dedicated to PAR-CLIP experiments). Input
sequences should be uploaded as pre-sorted lists accord-
ing to sequence score in a descending order (higher bind-
ing signal/noise ratio sequences at the top). Alternatively,
for sequences provided in common formats (current ver-
sion supports the two most common BED formats, BED
6-column and ENCODE narrowPeak and FASTA format)
SMARTIV will sort the input data automatically.
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As aforementioned in the methodology section, as a
first step SMARTIV assigns the RNA secondary struc-
ture prediction (paired or unpaired) to each nucleotide in
the sequence within the input list. As a default SMARTIV
uses the free energy minimization approach for predicting
whether the nucleotide is in a paired or unpaired confor-
mation, using RNAfold (21). The webserver provides the
option to predict RNA secondary structure using a variety
of models: (a) MFE structure predicted by RNAfold (21)
(default), (b) centroid structure based on partition func-
tion predicted by RNAfold (21), (c) MEA structure based
on partition function predicted by RNAfold (21), (d) most
probable shape structure predicted by RNAshapes (32). Ad-
ditionally, users can choose to upload directly to the web-
server sequences to which they have assigned a secondary
structure predicted by any other method of their choice or
obtained from experimental data. By default, SMARTIV
searches for combined sequence-structure motif (presented
in an eight-letter alphabet). However, the user can request
to search for sequence motifs too (in standard four-letter
alphabet). SMARTIV employs a k-mer-based algorithm to
search for enriched motifs and provides the user the abil-
ity to define the k-mers length range or specific length.
SMARTIV default k-mer length range is 5–7 (suitable for
most of the cases). Finally, SMARTIV assigns a unique
name to each job. The user is also given the option to choose
a desired name for their job and to provide an e-mail address
to which the result will be sent.

Output

SMARTIV outputs the most significant combined sequence
and structure (or sequence only) motifs in a graphical pre-
sentation together with their corresponding P-values (See
Figure 2). SMARTIV presents the most significant motif
(below the defined P-value cutoff), generated per each k-
mer length within the range chosen by the user. In addition,
SMARTIV presents the most representative motifs grouped
by similarity (35). For easier perception of SMARTIV
unique eight-letter alphabet logo, the color scheme is pro-
vided in the result page at the top right corner. Each motif
predicted by SMARTIV can be downloaded as a graphi-
cal logo in JPG or PDF formats or as a probability matrix
(PWM) in text format. In addition, the output contains ex-
tensive information for further analysis of the results, in-
cluding input parameter values, aligned list of the motif oc-
currences mapped to the input sequences, k-mers that were
used to build the PWM along with detailed mHG statistics
information. SMARTIV provides the user also with inter-
mediate files, such as the combined sequence and structure
eight-letter alphabet FASTA sequences. All data is available
for viewing and downloading as text files by clicking the
relevant links. For convenience, the results of all different
runs per an individual session are saved on the server dur-
ing the entire session and can be retrieved by the active user
by clicking the ‘Results’ tab in the home page.

RESULTS

We have developed a new method to extract enriched se-
quence and structure motifs of RBPs from in-vivo high-

throughput binding experiments (28), which we have im-
plemented to a user friendly webserver named SMARTIV.
We tested SMARTIV webserver on 52 sets of RNA binding
data for 33 different RBPs, generated from different types of
CLIP technologies, including CLIP-seq (43), HITS-CLIP
(44), PAR-CLIP (10,45,46), iCLIP (47,48) and eCLIP (12).
Results for the three most significant motifs (when avail-
able) from the 52 datasets are provided in Supplementary
Table S1. Along with SMARTIV results we provide the
known sequence motifs identified in-vitro (2,3) as well as
the structural information when available from experimen-
tal data (4).

As shown, in the majority of cases the best motifs gen-
erated by SMARTIV are highly consistent between each
other, e.g. hnRNPL, KHSRP, PCBP2, PTB1, QKI, SRSF1,
TARDB and others (Supplementary Table S1). However, in
some cases, whereas the significant motifs all show highly
similar sequence preferences, some motifs differ in their sec-
ondary structure preferences, as for example in the case of
EIF4G2. While the differences at the secondary structure
level between the two most significant motifs of EIF4G2
could result from variability in the folding predictions, it
could also suggest that the protein preferably binds to a
specific RNA sequences in either single stranded or dou-
ble stranded conformation, with no structural preference.
To our knowledge the binding motif of EIF4G2 has not
been identified by in-vitro assays and its binding motif has
not been reported in the literature and thus EIF4G2 predic-
tions could not be validated. Nevertheless, EIF4G2 is one
of the few proteins for which the GUG codon serves as the
exclusive translation initiation codon for its own mRNA
translation (49). The motifs predicted by SMARTIV, gen-
erated from eCLIP data obtained from K562 cell, suggest
that GUG stretches may be the preferred binding sites of
EIF4G2 on its RNA targets, possibly in either paired or un-
paired conformation.

Among the 33 RBPs we have tested, 26 had a known mo-
tif that was extracted by in-vitro assays (from RNA SELEX,
RNAcompete, or EMSA experiments). Overall, for 21
RBPs (ELAV1, hnRNPA1, hnRNPC, hnRNPL, IGF2BP2,
IGF2BP3, KHDRBS1, KHSRP, PCBP2, PTBP1, PUM2,
QKI, RBFOX2, SLBP, SRSF1, SRSF2, SRSF9, TARDBP,
TIA1, TRA2A, USAF2) the sequence preferences, revealed
by the best motifs predicted by SMARTIV from differ-
ent datasets (generated from different CLIP methodologies
and/or different human and mouse cell lines), were gener-
ally consistent with the in-vitro identified motifs. For five
RBPSs (FMR1, FUS, hnRNPK, IGF2BP1 and SRSF7) the
SMARTIV predicted motifs did not fully agree with the in-
vitro known motifs (see Supplementary Table S1). Note that
is some cases, the motifs predicted by SMARTIV were in
higher agreement with the known motifs extracted from the
same in-vivo experiments by other motif finding algorithms,
such as GraphProt (see for example SRSF7 in Supplemen-
tary Table S2).

Consistent with the knowledge that RBPs prefer binding
to single strand regions, for the majority of the RBPs tested
(27/33) the most significant motifs predicted by SMARTIV
indicate a strong preference of the nucleotides to be in an
unpaired conformation (presented in upper case letters).
Among them, for four RBPs (ELAV1, PTBP1, QKI, SLBP
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Figure 2. SMARTIV results for extracting the combined sequence and structure motifs for SLBP. Rank list sequences from eCLIP experiment conducted
for human SLBP in K562 cell were provided an input to SMARTIV webserver. Parameters were set to k-mer range: 6–9, and folding method: MFE
RNAfold. Shown are the four most significant motifs in an eight-letter alphabet. On the right is a cartoon representing the secondary structure of the
known SLBP binding motifs, which was solved by X-ray crystallography in complex with the SLBP protein. As shown, all four most significant motifs
predicted by SMARTIV fit exactly to the known stem–loop binding site of SLBP on the histone mRNA, at both the sequence and structural level. For
illustration, SMARTIV motif is mapped to the known stem–loop structure, using SMARTIV standard color-coding.

and SRSF1) the combined sequence and structure motifs
predicted by SMARTIV (using the default MFE-based al-
gorithm for folding) matched exactly the sequence-structure
preferences identified by RNAcompete-S(4). While in many
cases it is assumed that the RBP binds to an MFE struc-
ture of the RNA, given the highly dynamic nature of the
RNA it is possible that RBPs could bind the RNA in dif-
ferent structural contexts. To this end SMARTIV provides
an option to the user for folding the input RNA sequences
using different models for secondary structure prediction
(as described in the input section above). As exemplified
in Supplementary Table S3, when running SMARTIV on
RNA sequences from CLIP datasets that were folded us-
ing four different folding algorithms in some cases the most
significant motif extracted by SMARTIV gave highly con-
sistent results, independent of the method used for folding
(see results for RBFOX and SLBP in Supplementary Table
S3). Nevertheless, in other cases (as for example EIF4G2,
PUM2) the preferred sequence and structure motifs did
differ when employing different folding prediction meth-
ods, possibly indicating the dynamic nature of the protein–
RNA interactions. Among the proteins in our test set for
which the structural information was available is SLBP
(stem–loop Binding Protein). SLBP is a regulator of his-
tone mRNA metabolism that binds to a highly conserved
stem loop structure at the 3′ end of the histone mRNAs
that is further trimmed by a 3′ hEXO endonuclease (50).
The crystal structure of the human SLBP in complex with
the RNA and the endonuclease was solved by Tan et al. (51).
We ran SMARTIV on SLBP eCLIP data from human K562
downloaded from ENCODE. As shown in Figure 2, all four
best motifs predicted by SMARTIV for human SLBP fit

exactly the sequence and structure of the conserved his-
tone mRNA stem loop bound by SLBP in the solved X-
ray crystallography structure (51). As mentioned above, in
the case of SLBP, the predicted sequence and structure mo-
tif was highly consistent when using all four folding pre-
diction methods (Supplementary Table S3). Strikingly, by
using a wider k-mer range (length 6–9) SMARTIV could
capture the entire stem loop AAAggcucuUUUC (upper-
case letters representing single stranded RNA and lower-
case letters representing double strand RNA) bound by
SLBP, both at the sequence and the structural levels. As
mentioned above, SMARTIV results are also in high accor-
dance to the in-vitro results of RNAcompete-S generated
for the Drosophila SLBP RBP(4). It is worth noting that in
RNAcompete-S, extraction of the full SLBP motif required
a multi-step motif extraction process, while we identified the
full stem loop motif of SLBP using SMARTIV webserver
with default parameters.

Overall, running SMARTIV on different datasets for the
same RBPs, generated from different CLIP methodologies
and/or from different cell lines, in the majority of cases pro-
duced highly consistent results both at the sequence and the
structural levels (Supplementary Table S1). As for example,
the preference for the major part of the PUM2 motif to be
in paired conformation was predicted by SMARTIV when
extracted from either PARCLIP (HEK293 cells) or eCLIP
(K562) data. These results are also consistent with predic-
tions obtained by other sequence-structure algorithms (24).
However, in a few cases, such as in the case of EWSR1,
TAF15 RBPs from the FET protein family (52), SMARTIV
produced different significant motifs (consistent for all k-
mers tested) when running it on PARCLIP input data from
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HEK293 cells or with eCLIP data from K562 or HepG2
cells. The latter could likely result from differences in the
binding preferences of the RBPs in different cells or from
different biases related to the CLIP technology. Such dif-
ferences have been previously reported using other RNA
motif prediction algorithms (18). We further compared
SMARTIV best predicted motifs for 16 RBPs to motifs pre-
dicted by the only available webserver for predicting com-
bined sequence and structure motifs in RNA, RBPmotif
(22), and to the state-of-the-art GraphProt algorithm (18),
which we ran locally on our computers. The three predic-
tors were tested on the same datasets generated from in-vivo
CLIP data (detailed information on the datasets are given in
Supplementary Table S2). Overall, as shown in Supplemen-
tary Table S2, the combined sequence and structure mo-
tifs predicted by SMARTIV are usually in agreement with
the motifs predicted by RBPmotif webserver (22) and by
GraphProt algorithm (18).

Finally, we compared the runtime of SMARTIV web-
server to the time required to obtain motifs using RBPmo-
tif webserver using default parameters. As shown in Supple-
mentary Figure S1, SMARTIV run times ranges from ∼30 s
to ∼2 min for different datasets. The running time for RBP-
motif was between 2- and 12-fold longer for these datasets.

DISCUSSION

Accumulating data resulting from high-throughput RNA
binding experiments have provided highly valuable in-
sights on the principles of protein–RNA recognition (9–
13). Taken together, the results from in-vitro and in-vivo
high-throughput binding experiments have broadened our
knowledge on binding preferences of a large variety of
RBPs. As aforementioned, a major limitation of most high-
throughput RNA binding experiments is that they do not
capture the RNA structural context of the RBP binding
sites. In recent years, several computational approaches
have been developed to predict the binding preferences
of RBPs from high-throughput binding data, consider-
ing both the sequence and the structural binding prefer-
ences of the proteins (17,18,20,23,25,53). RBPmotif (22),
which implements the RNAcontext algorithm for learning
the sequence and structural binding preference of RBPs
(20), is currently the only webserver available for extract-
ing sequence and structure motifs from high throughput
RNA binding experiments. Here we present a new web-
server, named SMARTIV, for extracting combined motifs
from CLIP data. We show that SMARTIV results, gen-
erated from many different RNA binding datasets, are in
good agreement with results from other tools for discover-
ing combined sequence and structural motifs, with a great
advantage of presenting the sequence and structural prefer-
ences in one unified motif representation. Nevertheless, it is
important to note that since SMARTIV uses the reported
sequence binding score from the CLIP peak calling algo-
rithm as the basis for ranking the input sequences, results
could be strongly influenced by the specific algorithm used
to extract the binding scores. Therefore, it is recommended
that users choose carefully the most appropriate peak call-
ing algorithm for generating their input data or alternatively
chose the most suitable data from CLIP databases.

Similar to all other algorithms for predicting sequence
and structure motifs, SMARTIV results depend on the ac-
curacy of the RNA folding algorithm, used for predicting
the RNA secondary structure of the sequences identified in
the binding experiment. To overcome this SMARTIV em-
ploys a ranked-based enrichment algorithm, selecting only
the subset of k-mers, that are consistently found in the same
RNA conformation, to generate the combined sequence
and structure PWM. Furthermore, SMARTIV provides the
user the option for folding the RNA using different meth-
ods, which are based on different secondary structure pre-
diction models (MFE structures, Centroid structures, MEA
structures and Shapes probabilities). This additional feature
of SMARTIV can allow the user to both capture the dynam-
ics in the system as well as identify motifs that are highly
consistent using the different folding approaches. More-
over, users can upload sequences folded by any alternative
method of interest or even obtained from known RNA sec-
ondary structures if available.

In conclusion, SMARTIV provides an easy, user friendly
tool available via the web for inferring accurate sequence
and structure motifs of RBPs from high-throughput in-
vivo RNA binding data. To our knowledge SMARTIV
is currently the most efficient algorithm of its kind, pro-
cessing a standard CLIP dataset in 1–2 min on average.
SMARTIV is designed to process very large datasets that
are expected to be generated from current and future high-
throughput RNA binding technologies. Finally, SMARTIV
motif-presentation is highly intuitive, providing the com-
bined motifs in both graphical representation and as a
PWMs with an assigned P-values.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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