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Endoplasmic reticulum (ER) stress is a cellular process in response to stress stimuli in
protecting functional activities. However, sustained hyperactive ER stress influences
tumor growth and development. Hepatocytes are enriched with ER and highly
susceptible to ER perturbations and stress, which contribute to immunosuppression
and the development of aggressive and drug-resistant hepatocellular carcinoma (HCC).
ER stress-induced inflammation and tumor-derived chemokines influence the immune cell
composition at the tumor site. Consequently, a decrease in the CCL23 chemokine in
hepatic tumors is associated with poor survival of HCC patients and could be a
mechanism hepatic tumor cells use to evade the immune system. This article describes
the prospective role of CCL23 in alleviating ER stress and its impact on the HCC tumor
microenvironment in promoting antitumor immunity. Moreover, approaches to reactivate
CCL23 combined with immune checkpoint blockade or chemotherapy drugs may provide
novel opportunities to target hepatocellular carcinoma.

Keywords: tumor microenvironment, endoplasmic reticulum, hepatocellular carcinoma, antitumor immunity,
chemokine ligand CCL23
INTRODUCTION

Hepatocellular carcinoma (HCC) is a basic form of liver malignancy and is the leading cause of liver
cancer deaths worldwide. In 2021, approximately 43 000 new cases will be diagnosed, with an
estimated 30 000 deaths in the United States (1). Like with any other cancer type, HCC development
is a multistep process involving hepatic cell injury, chronic infection, fibrosis, cirrhosis, and finally,
liver cancer. Understanding this process has helped identify new genetic/molecular drivers and
develop treatment approaches. Thus far, the five-year survival expectancy rate for liver cancer is
only ~18% and is further reduced to ~15% in black patients (1). Treatment with chemotherapy
drugs has low efficacy due to the emergence of drug-resistance disease. For advanced HCC, systemic
therapy with sorafenib, lenvatinib, or regorafenib delivers limited survival benefits (2, 3).
Unfortunately, liver cancer incidence has increased rapidly (2 to 3% annually) in the United
States, with a ~43% increase in HCC-related mortality over the past two decades. Besides, a
projected surge in death rates of ~57.6% (6.6 to 10.4) from 2015 to 2035 is very alarming (2).
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Thus, understanding the biological process of HCC will help to
create new and effective treatment opportunities.

As a vital organ, the liver tissue engages in essential
physiological activities, adding new challenges to understanding
liver oncogenesis. However, based on evolutionary history and the
process of HCC development, the most common genetic and
epigenetic alterations include mutations in the TERT promoter,
TP53, b-catenin, AXIN1, ARID1A, ARID2, CDKN2A, and
CCND1 genes (4–6). Here, we describe a novel perspective of a
CC-chemokine ligand (CCL23) in context with HCC tumor
development and its potential in mitigating the ER stress
leading to remodeling the HCC tumor microenvironment in
favor of enhanced antitumor immunity.
FUNCTIONAL ANALYSIS OF CCL23 IN
CANCER AND NON-CANCEROUS
DISEASES

In general, chemokines contribute to a miscellany of biological
activities during the process of HCC development, helping
tumor cells evade the immune system and tumor angiogenesis,
invasion, and metastasis (7). CCL23, also known as myeloid
progenitor inhibitory factor-1, suppresses the production and
release of polymorphonuclear leukocytes and hematopoietic
progenitor cells from the bone marrow (8, 9). CCL23 is
considered a relatively new chemokine, and its role in tumor
cell progression, metastasis, and other disease conditions is not
well characterized, instead primarily limited to correlated
expression analysis. Several disease types – including acute
myeloid leukemia, ischemic strokes, coronary atherosclerosis,
chronic kidney disease, and systemic mastocytosis – have
indicated expression of CCL23 correlated with disease
progression (10–14). A few studies on cancer types have
primarily demonstrated CCL23 gene expression in tissues
without much attention to biological or molecular functions.
For example, a high throughput genomic data analysis in ovarian
cancer revealed CCL23 as one of the candidate genes associated
with ovarian cancer (15). Colorectal studies displayed somewhat
ambiguous observations. A protein-based array of 507 targets in
six samples of colorectal patients revealed an upregulation of
CCL23 in rectal cancer compared to non-rectal cancer (16).
Conversely, inflammatory gene expression analysis in colorectal
patients showed a reduced level of CCL23 in adenoma and
adenocarcinoma than in normal mucosa (17). Furthermore, a
meta-analysis of 1577 breast cancer patients from the Oncomine
datasets revealed a negative correlation of CCL23 and its receptor
CCR1 with metastasis-free survival. However, this association
was limited to HER2+ breast cancer patients and did not persist
in HER2- patients or other subtypes (18).

The mechanistic and functional studies on CCL23 are
hampered because, as such, there is no defined murine CCL23.
However, genomic analysis of CC chemokines suggested that the
chemokine ligand CCL6 is the mouse homolog of the human
CCL23 (19). Studies in a BCR-ABL-induced leukemia murine
model showed that CCL6 was required for an interferon
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consensus sequence-binding protein (ICSBP)-induced, vaccine-
like immunoprotective effect. Normal cells expressed high levels of
CCL6 compared to leukemic cells, but IFN-a treatment could
reactivate the expression of CCL6 in leukemic cells. In this mouse
model, shRNA-directed CCL6 knockdown in mouse tumor
cells abrogated the anti-leukemic survival response generated
by ICSBP, suggesting the role of CCL6 as a potential
immunomodulatory chemokine (20). Clinical extension of
these studies revealed that chronic myeloid leukemia (CML)
patients who responded to IFN-a treatment showed higher
levels of CCL23 compared to non-responders. Similarly,
increased CCL23 was observed in patients with multiple
myeloma, melanoma, and renal cell carcinoma after exposure to
IFN-a (20).

Mechanistic studies in mouse models further demonstrated
that CCL6 promotes innate immunity via immune cell activation
and serves as a chemoattractant for CD11b+, IFN-producing
dendritic cells, NK cells, and CD4+ T cells (20, 21). Therefore,
decreasing CCL23 expression in leukemic cells could be a
mechanism for CML cells to escape from the immune system.
In addition, an in vitro study on freshly prepared eosinophils
from human PBMCs showed a slight increase in CCL23 mRNA
following 6 hours of IFN-a treatment (22).

In a breast cancer mouse model, a protein array analysis in the
lungs of 4T1 tumor-bearing mice showed a higher level of CCL6
along with IL-33, CCL12, CCL17, and MMP-9 than in normal
mice. Treatment with Cordyceps sinensis (a Chinese herb)
reduced 4T1 tumor cell metastasis to the lungs associated with
a decrease in IL-33, CCL17, and MMP-9 (23). However, the level
of CCL6 chemokine remains unaltered and warrant further
investigation for its role in the anti-metastatic activity of
cancer cells.
CCL23 IN HEPATOCELLULAR
CARCINOMA

The Cancer Genome Atlas (TCGA) data sets have significantly
helped in mining the genomic landscape of human diseases and
in elucidating the role of the tumor microenvironment (TME)
both from the perception of tumor cells and molecular subtyping
of tumor-infiltrating lymphocytes (24). Nonetheless, TCGA data
sets continue to offer many opportunities in identifying new
molecular drivers, mutational analyses, gene signaling pathways,
and diagnostic/prognostic biomarkers for various cancer types.
We extracted the mRNA expression profile from a TCGA data
set (TCGA Liver Cancer) for normal tissues and primary tumors
to elucidate the potential role of CCL23 in association with the
immunobiology of hepatocellular carcinoma (25). Analysis of the
data set from the cohort TCGA Liver Cancer showed a
significantly lower (p = 0.0001) expression of the CCL23
transcript in HCC compared to normal liver tissue
(Figure 1A). Extension of this analysis to the Oncomine data
set also revealed significant downregulation (-2.15 fold; p =
0.0004) of CCL23 in HCC compared to the normal liver
(Figure 1B) (26). In support of these observations, we
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examined the Human Protein Atlas resources for CCL23
protein expression (v20.proteinatlas.org/ENSG00000274736-
CCL23/pathology/liver+cancer). The immunohistochemistry
(IHC) data revealed a low CCL23 protein level in HCC
compared to the normal liver (Figure 1C). This data set
comprises 12 HCC samples; CCL23 protein was not detectable
in eight (8/12), showed low expression levels in three (3/12),
and displayed a moderate level of CCL23 protein expression
in one (1/12). In these small numbers of samples from the
protein atlas data set, we also noticed that CCL23 protein
expression in the normal liver of females was comparatively
higher than males. These observations suggest a lower level of
CCL23 in HCC at both the mRNA and protein levels than
normal liver tissue.

We further selected mRNA (RNA-seq) liver cancer data sets
from Kaplan Meier (KM) Plotter for the pan-cancer and
examined the correlation between CCL23 mRNA and the
survival probability (27). The analysis includes all stages,
grades, both sex and race, and risk factors. The cutoff values
used in the analysis are based on auto best cutoff values. KM
Plotter analysis revealed a significantly poor (p = 6.4x10-10)
prognosis in HCC patients having low levels of CCL23, with a
median survival of 27.57 months vs. 82.87 months (Figure 2A).
However, the expression of CCL23 receptor CCR1 revealed an
opposite trend – high CCR1 expression was associated with
shorter survival in HCC patients (Figure 2B). This seemingly
conflicting observation for CCR1 is not surprising in light of the
ambiguity regarding the functional activities of chemokine
receptors. CCR1 serves as a receptor for multiple chemokines
Frontiers in Oncology | www.frontiersin.org 3
and may not necessarily follow a similar functional correlation
as CCL23.

To understand the clinical significance between the low level of
CCL23 and the infiltrated immune cells, we further examined the
immune cell composition within the HCC tissues and its impact
on overall survival. Surprisingly, in association with low levels of
CCL23, enrichment of the human HCC tissues with type 1 T-
helper (Th1) cells revealed significantly shorter (p = 1.3x10-10)
median survival of 9.3 months vs. 56.17 months in HCC patients
(Figure 2C). Enrichment with type 2 T-helper (Th2) cells also
showed significantly reduced (p = 6.8x10-5) overall survival with
low levels of CCL23, but the median survival was better than the
Th1 cell enrichment (17.83 months vs. 61.73 months; Figure 2D).
Furthermore, mechanistic studies on the role of T-helper cells
showed that liver Th1 cells might drive the infiltration of myeloid-
derived suppressor cells (MDSCs) in the inflamed TGF-b1
knockout mouse liver, leading to diminished survival (28).

On the other hand, Th2 cytokines IL-4 and IL-13 regulate
CCL23 expression in CD14+ monocytes (29). Human neutrophils,
which do not produce CCL23 in response to Th2 cytokines,
express and release CCL23 upon stimulation with toll-like
receptor agonists (Resiquimod and LPS) or TNF-a, suggesting
the role of CCL23 in driving the recruitment of immune cells at
the inflamed site in favor of a controlled immune response (30).
Although the infiltration of Th1 immune cells in the HCC TME is
linked with a favorable clinical response (31), in the absence of
CCL23, Th1 cells may not exert cytolytic function. Also, the
operational support of Th1 cells may be outweighed due to an
anergic or exhausted cytotoxic immune cells ecosystem within the
A B

C

FIGURE 1 | Box and Whisker plots of CCL23 transcript expression levels from two different data sets (A: TCGA liver cancer and B: Oncomine) and (C) the
expression of CCL23 protein by immunohistochemistry data sets from the Human Protein Atlas (proteinatlas.org) in the normal liver and hepatocellular carcinoma
(HCC). The expression level of CCL23 is significantly lower in HCC as compared to the normal liver.
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HCC tumor microenvironment due to a low level of CCL23.
However, additional studies are essential to validate the infiltration
of Th1 and Th2 immune cells in HCC tissue, predicting the
survival benefit associated with the loss of CCL23.

Lu et al. performed bioinformatics analysis of CCL23 in
human HCC tissues from multiple online databases (GEPIA,
HCCDB, MetaScape, TIMER, TISIBD, and KM Plotter) and
revealed low expression of CCL23 in all stages of HCC in
association with poor prognosis (32). The gene ontology
function and Kyoto gene and genome encyclopedia pathway of
CCL23 co-expressed gene in HCC were enriched in immune cells
and mainly associated with CD8+ T cells and macrophage
activation (32). Jia-Jie et al. analyzed CCL23 expression in liver
cancer and adjacent normal liver tissues from 196 cases of radical
hepatectomy by real-time fluorescence quantitative-PCR and 82
HCC tissues with matched cancer and adjacent normal tissues by
IHC. The multivariate Cox regression analysis revealed a
significantly lower expression of CCL23 in liver cancer tissues
compared to adjacent normal. The liver cancer patients with
higher CCL23 expression showed better survival than those with
low CCL23 (33).

Collectively, these observations suggest a critical role of
CCL23 in HCC. The presence of CCL23 may help create a
tumor-suppressive environment by recruiting leukocytes to the
tumor site and postulate that the loss of CCL23 serves as a driver
in the oncogenesis of hepatic tumor cells. Therefore, determining
Frontiers in Oncology | www.frontiersin.org 4
the onco-immunologic function of CCL23 may help to
understand the process of HCC development better.
ER STRESS AND IMMUNE
SUPPRESSION IN HCC

The endoplasmic reticulum is a vital cell organelle engaging in
multiple physiological functions, including protein folding and
transport of the synthesized proteins. During the process of
tumor development, ER stress leads to the activation of the
unfolded protein response (UPR), distressing cellular metabolic
activities regulating various intracellular functions, including
protein folding, calcium homeostasis, lipid metabolism, cell
differentiation, and protein translocation (34, 35). UPR is an
adaptive cellular mechanism to counteract the accumulated
protein misfolding stress, ultimately evolving anti-apoptotic
and drug-resistance machinery of tumor cells. In the absence
of stress, ER chaperone glucose‐regulated protein 78 (GRP78)
binds to UPR and sequesters the UPR sensors protein kinase R-
like ER kinase (PERK), inositol‐requiring enzyme 1a (IRE1a),
and transcription factor 6 (ATF6).

Various studies document that ER stress and UPR signaling
pathways contribute to nearly all forms of acute and chronic liver
diseases and promote HCC cell survival, proliferation, and
angiogenesis (36–38). The expression levels of UPR signaling
A B
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FIGURE 2 | Clinical association of (A) CCL23; (B) CCR1; (C) Th1 cell enrichment; and (D) Th2 cell enrichment in human HCC tissues with overall survival. (Data
source: Kaplan-Meier Plotter, Pan-cancer RNA-seq).
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proteins IRE1a, XBP1s, PERK/ATF4, CHOP, and ATF6 are
increased in HCC model systems and are associated with HCC
growth and development (39–41). Interestingly, UPR kinetic
studies in HCC revealed that IRE1a is activated during tumor
initiation and the PERK pathway during tumor progression,
while ATF6 is only moderately activated in developed tumors
(39). HCC biopsies from human patients showed elevated XBP1
expression levels, whereas cancer cells deficient in XBP1 are less
prone to developing solid tumors in nude mice (42). In an
orthotopic mouse model of HCC, the PERK inhibitor
significantly reduces the tumor burden by killing ER-stressed
HCC cells (39). Similarly, liver-specific knockout IRE1amice fed
with a regular diet showed low diethylnitrosamine-induced HCC
and suppressed HCC progression in mice fed with a high-fat diet.
The tumor growth inhibition was associated with decreased
hepatocyte proliferation, STAT3 activation, and reduced
tumor-promoting inflammatory cytokines TNF-a and IL-6 (40).

An increased in GRP78 expression level is reported as a pro-
survival factor for cells undergoing ER stress. In HCC tumors
from patients treated with sorafenib, 73% showed high GRP78
expression, which was associated with the shortest progression-
free survival (41). Elevated GRP78 is also proposed as a
predictive biomarker in HCC patients treated with sorafenib
(43). Moreover, GRP78 is linked with activation of the Wnt/
catenin pathway in HCC (44). Higher GRP78 is positively
correlated with Golgi protein 73 (GP73) and a high density of
tumor-associated macrophages displaying CD206 expression
leading to poor prognosis in HCC patients (45). The increased
expression level of CD147 in HCC also serves as a UPR inducer,
promoting ER stress and HCC cell survival, decreasing the
efficacy of the chemotherapy drug adriamycin in animal
studies (37, 46). Indeed, chemotherapy drug-induced cellular
stress in cancer cells leading to adaptation, and drug-resistant
cancer cells occur frequently in HCC.

Hepatocellular carcinoma is inflammation-associated cancer
and usually progresses on the pretext of inflammation in the liver
(47). The chronically inflamed tumor microenvironment is
characterized by a high degree of ER stress, activating UPR
signaling, and immune suppression within tumors (48, 49). Any
of the UPR sensors can trigger NF-kB-inducing, tumor-
promoting, pro-inflammatory cascade implicated in
macrophage activation and TNF-a, IL-6, IL-1b, and IL-8
cytokines production (50–52). Similarly, vitamin D receptor
deficiency leads to persistent UPR activation, promotes hepatic
macrophage infiltration, and produces pro-inflammatory
cytokines (53). In addition, inflammatory mediators can
maintain and augment ER stress in the inflamed tissues,
providing a feedback mechanism, attributing to the plasticity
of macrophage polarization at the tumor site. Altogether, UPR is
known to associate with cancer initiation, tumor cell quiescence
and aggressiveness, EMT, angiogenesis, autophagy, and a
metabolic switch in cancer cells to adapt to the challenging,
stressful TME and supporting immunosuppression (37, 49, 54).

The degree of tumor-infiltrating lymphocytes in HCC is
closely associated with tumor recurrence. High levels of
MDSCs and T-regulatory cells in patients are reportedly
Frontiers in Oncology | www.frontiersin.org 5
related to aggressive HCC and low survival rates (55–57).
Patients infected with the hepatitis-C or hepatitis-B virus
accumulate T-regulatory cells in HCC tumor tissues involving
TGF-b signaling (58). There are multiple mechanisms linked to
the increased association of immune suppressor cells in HCC.
However, emerging evidence suggests that ER stress promotes
the escape of tumor cells from immune surveillance and hampers
an t i t umor immun i t y t h rou gh th e r e gu l a t i on o f
immunosuppression (54, 59–61). UPR and the increased level
of inflammatory cytokines by tumor cells could be transmitted
into bone marrow-derived dendritic cells – such distressed DCs
exhibit impaired antigen presentation and cross-priming CD8+ T
cell, supporting enhanced tumor growth in mice (62). Increased
ER stress-related proteins were also correlated with M2
macrophage recruitment and PD‐L1 expression in HCC tissues
(63). Targeting MDSCs has been shown to enhance the
therapeutic efficacy of sorafenib and immune checkpoint
inhibitors in HCC murine models. Reversing the pro-tumor
effects of MDSCs could be achieved by depleting MDSCs,
blocking MDSC trafficking into TME (64, 65). CCL23
functionally contributes to the modulation of the immune
response by promoting leucocyte trafficking as well as directing
the migration of monocytes, macrophages, dendritic cells, and T
lymphocytes to the sites of injury or infection (66, 67). Therefore,
manipulation with CCL23 may help reprogram the HCC TME
by targeting myeloid checkpoints to harness the power of
antitumor immunity with immune checkpoint inhibitors or
other forms of immunotherapy approaches.
CCL23-DIRECTED ER STRESS
MITIGATION

A high level of ER stress is closely linked to immune responses
and activates pro-inflammatory cytokines/chemokines. For
example, increased CXCL10 (IP10) following liver graft injury
leads to ER stress-associated cisplatin-resistant HCC, and the
neutralization of CXCL10 sensitizes cisplatin treatment, which
suppresses tumor growth (68). A study in type 2 diabetic mouse
model showed that inhibiting chemokine receptor 2 (receptor for
CCL2) improves hepatic steatosis by reducing ER stress and
inflammation (69). Additionally, visfatin-induced hepatic
inflammation in a mouse model of methionine-choline-
deficient diet showed increased CXCL2, CXCL8, and MCP-1
associated with ER stress upregulation (70). On the other hand,
in a breast cancer study, tunicamycin-activated ER stress
increases the endogenous level of CCL5 mRNA and protein
and prevents MCF-7 cells migration (71). This study supports
our observations that approaches to reactivate endogenous
CCL23 may help repress hepatic tumor cell growth associated
with reduced ER stress.

A bovine endometrial cell model showed that tunicamycin
(an antibiotic)-induced ER stress inhibits epithelial cell
proliferation (72). Addition of CCL23 rescued cell proliferation
by activating PI3K/AKT and MAPK signaling while
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simultaneously reducing the expression levels of UPR-signaling
proteins, including PERK, IRE1a, and ATF6. Moreover, CCL23
inhibited the expression of LPS-induced, pro-inflammatory
cytokines TNF-a, IL-6, and IL-8 and restored intracellular
Ca2+ levels required for optimal ER functioning. This
observation corroborates with the HCC growth inhibition in
liver-specific knockout IRE1a mice. In addition, CCL23
treatment restored the basal level of tunicamycin-induced
downstream molecules (eIF2a and CHOP) and the ER
chaperone protein (GRP78). A similar phenomenon of CCL23-
induced ER stress alleviation was observed in porcine
endometrial luminal epithelial cells (73). Thus, the CCL23
chemokine likely has a significant potential to alleviate ER
stress by rescuing the UPR-sensors and reducing the pro-
i nfl amma to r y c y t ok i n e p r ofi l e , d im in i s h i n g t h e
immunosuppressive HCC tumor microenvironment and
enhancing antitumor immunity.
CONCLUSIONS AND FUTURE
PERSPECTIVES

ER stress is known to impair the immune cell function,
promote MDSCs, T-regulatory cells, and M2 macrophages
Frontiers in Oncology | www.frontiersin.org 6
with an overall impact on immune evasion. Even though
HCC is a deeply enriched site of immune cell engagement,
the commonly used immune checkpoint inhibitor-based
therapies showed limited success. ER stress or viral infection
is associated with increased PD-L1 expression in HCC tissues,
yet the PD-1 inhibitor nivolumab showed a ~15% response
rate in HCC while the CTLA4 blockade showed a relatively
lesser objective response (74–76).

This review accentuates the observations that low
expression of CCL23 in HCC tissues is associated with the
poor prognosis of HCC patients. Therefore, to understand the
significance of CCL23 in HCC oncogenesis, we hypothesize
two potential scenarios: 1) CCL23 might play a vital role in
reducing ER stress and help recruit macrophages and dendritic
cells, augmenting antitumor immunity; and 2) expression of
CCL23 may serve as a tumor suppressor by inhibiting the
invasive features (such as hepatic tumor cell invasion and
migration). These molecular events will ultimately influence
the TME and may rejuvenate immune cell functions by
reducing the function and frequency of immune suppressor
cells (Figure 3). Following CCL23-directed reprogramming of
the TME, HCC may be amenable to immune-based therapies,
including checkpoint blockade inhibitors to enhance the
therapeutic efficacy. For example, since IFN-a induces
A B

FIGURE 3 | Schematic presentation of CCL23 functions for the modulation of the HCC tumor microenvironment. (A) Targeting cellular signaling cascade inhibiting
HCC cell progression, and (B) Mitigating of ER stress. Both events lead to immunomodulation with a potential to enhance antitumor immunity.
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antitumor immunity via CCL23 reactivation in humans, a
combinatorial approach of IFN-a and checkpoint blockade
inhibitors may provide a novel opportunity targeting
hepatocellular carcinoma (Figure 3). These observations may
inspire a new direction of research investigating the cross-talk
between ER stress and immunomodulation in the HCC tumor
microenvironment using CCL23 as a molecular target.
Preclinical validations of this potential concept may provide
much-needed information to improve clinical management of
hepatocellular carcinoma.
Frontiers in Oncology | www.frontiersin.org 7
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