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Abstract

A novel five year Test and Vaccinate or Remove (TVR) wildlife research intervention project
in badgers (Meles meles) commenced in 2014 in a 100km? area of Northern Ireland. It
aimed to increase the evidence base around badgers and bovine TB and help create well-
informed and evidence-based strategies to address the issue of cattle-to-cattle spread and
spread between cattle and badgers. It involved real-time trap-side testing of captured bad-
gers and vaccinating those that tested negative for bTB (BadgerBCG—BCG Danish 1331)
and removal of those that tested bTB positive using the Dual-Path Platform VetTB test
(DPP) for cervids (Chembio Diagnostic Systems, Medford, NY USA). Four diagnostic tests
were utilised within the study interferon gamma release assay (IGRA), culture (clinical
samples and post mortem), DPP using both whole blood and DPP using serum. BCG Sofia
(SL222) was used in the final two years because of supply issues with BadgerBCG. Objec-
tives for this study were to evaluate the performance of the DPP in field conditions and
whether any trend was apparent in infection prevalence over the study period. A Bayesian
latent class model of diagnostic test evaluation in the absence of a gold standard was
applied to the data. Temporal variation in the sensitivity of DPP and interferon gamma
release assay (IGRA) due to the impact of control measures was investigated using logistic
regression and individual variability was assessed. Bayesian latent class analysis estimated
DPP with serum to have a sensitivity of 0.58 (95% Crl: 0.40—0.76) and specificity of 0.97
(95% Crl: 0.95-0.98). The DPP with whole blood showed a higher sensitivity (0.69 (95%
Crl: 0.48-0.88)) but similar specificity (0.98 (95% Crl: 0.96-0.99)). The change from BCG
Danish to BCG Sofia significantly impacted on DPP serum test characteristics. In addition,
there was weak evidence of increasing sensitivity of IGRA over time and differences in DPP
test sensitivity between adults and cubs. An exponential decline model was an appropriate
representation of the infection prevalence over the 5 years, with a starting prevalence of
14% (95% Crl: 0.10-0.20), and an annual reduction of 39.1% (95% Crl: 26.5-50.9). The
resulting estimate of infection prevalence in year 5 of the study was 1.9% (95% Crl: 0.8—
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3.8). These results provide field evidence of a statistically significant reduction in badger TB
prevalence supporting a TVR approach to badger intervention. They give confidence in the
reliability and reproducibility in the DPP Whole Blood as a real time trap-side diagnostic test
for badgers, and describe the effect of vaccination and reduced infection prevalence on test
characteristics.

Introduction

Bovine tuberculosis (bTB) remains an economically important bacterial infection of cattle in
the United Kingdom and Ireland [1-4]. The intransigence of bTB to eradication is partially
due to the European badger (Meles meles) acting as a reservoir host of the causal agent, Myco-
bacterium bovis [5-7]. Arguably, bTB eradication from cattle will require parallel effective con-
trol of the infection within wildlife.

bTB control in badgers is complicated by the limitations of established ante mortem diag-
nostic tests for M. bovis [8]. Bacteriological culture of swab samples from live animals has a
high specificity and comparatively low sensitivity. However it requires sedation of the individ-
ual and there is also long interval between sampling and results (~8 weeks) [8]. Blood samples
from badgers can be processed using cell mediated tests (e.g. interferon gamma release assay
(IGRA)) and serological tests (Dual-Path Platform VetTB test- DPP). IGRA has an estimated
sensitivity and specificity of approximately 80.9% and 93.6% using post mortem culture as a
gold standard [8, 9]. However this test requires specialised laboratory equipment and testing
needs to be carried out within 8 hours of the sample being taken. The DPP VetTB test is based
on detection of a serological response to MPB83 or ESAT-6/CFP-10 proteins. The test has
been shown to have comparable diagnostic capability as other more established diagnostic
tests [10, 11]. Advantages include the possibility of use in the field allowing for real time pre-
sumptive diagnosis of infection. Disadvantages include the requirement to be carried out the
test at a temperature of between 18°C and 30°C and the DPP has never been validated for use
in the field.

Caution is needed in estimating the M. bovis population prevalence from the proportion of
captures testing positive. The likelihood of a positive test is influenced by the characteristics of
badgers captured. Male and older badgers are more likely to test positive for M. bovis [12, 13].
In addition, M. bovis diseased animals have been hypothesized to be more easily trapped [14].
Difference in trappability have been described with variation attributed to season, age, area
and year [15]. A recent study [16] demonstrated how climatic variables alter trappability and
found, for example, that drizzle, rain and heavy weather conditions tended to increase trapp-
ability, as did minimum temperatures in the range 3-8°C.

To date, bTB control in badgers has mainly involved non-selective culling interventions in
England and Ireland [2, 17-20]. Badger vaccination studies have been carried out [21-24] and
Ireland is now switching to a vaccination strategy after several years of non-selective culling
[25]. A considerable amount of resource is needed to capture badgers, so any intervention ide-
ally requires real time decision making on the fate of each badger at first capture thus negating
the need for recapture.

Badger vaccination combined with selective culling presents as an alternative bTB control
option. However, there is a current lack of a validated field test that can be utilised at the bad-
ger capture site. The availability of such a test would facilitate removal of test positive badgers
whilst test negative badgers could be vaccinated and released. This combination of decreasing
the burden of infection and enhancing the herd immunity to M. bovis infection, in theory,
could accelerate reduction of the M. bovis prevalence in a badger population within the area
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[26]. Moreover, such an approach could dramatically reduce the number of badgers removed
compared to the more established proactive culling approach [26].

Tuberculosis vaccines are based on Bacille Calmette-Guérin (BCG) strains of M. bovis with
BadgerBCG being a UK licensed product for use in badgers (Market Authorisation Number
03326/4021) [27]. Unlike natural M. bovis infection, vaccination with BadgerBCG stimulates
very low levels of antibody response to MPB83, CFP10 and ESAT6, which are the main immu-
nodominant antigens found with bTB infection in badgers [28-30]. This difference theoreti-
cally enables badgers vaccinated with BadgerBCG to be differentiated from badgers that are
naturally infected by a test that detects antibodies to these antigens. The Dual Platform VetTB
test (DPP‘ﬁ ; Chembio Diagnostic Systems Inc., Medford, NY 11763 USA) is such a test, which
contains two recombinant antigen (MPB83 and CFP10/ESAT fusion) proteins on an immune-
chromatographic strip presented as two separate bands (line 1 and line 2, respectively).

A 5-year field research study investigating a test and vaccination or remove (TVR) regime
in badgers was carried out in Northern Ireland with the aim of looking at the feasibility of such
an intervention for bTB [31, 32]. This was the first such field study aimed at assessing the via-
bility of using a TVR approach as a future intervention option. Due to market withdrawal of
the validated bTB test for badgers, the BrockTB Stat-Pack test (Chembio Diagnostic Systems
Inc., Medford, New York, USA), the unvalidated DPP was selected as the field diagnostic test
for the project.

During the study, diagnostic samples were obtained from captured badgers for testing by
interferon gamma release assay (IGRA) and bacteriological culture as well as DPP testing [32].
This enabled assessment of the annual badger bTB prevalence through Bayesian latent class
analysis [33]. This statistical approach also facilitated calculation of the test characteristics of
these three diagnostic tests within this population. Additionally, such analyses can also be
adapted to measure any changes in test characteristics over the five years of intervention.

The main goal of the analysis presented in this paper was to evaluate the test characteristics
of the DPP test (using whole blood as a substrate) and to assess if its performance was adversely
affected by carrying out the DPP test under field conditions (compared to a laboratory environ-
ment). These results would underpin whether TVR was a practical option for badger interven-
tion in future bTB eradication strategies. A further objective was to use the diagnostic test results
obtained over the five years of this study to indicate if there was any statistically significant
downward trend in the annual badger bTB prevalence. Furthermore, it was also hypothesized
that removal of DPP Field positive badgers would remove a higher proportion of advanced TB
cases so the badger population during later years (2016-2018) would have a higher proportion
of earlier stage TB infection which may impact on the test results. Therefore, the possibility that
sensitivity varied over time due to the impact of the intervention was investigated. The results
presented in this paper details the performance of these diagnostic tests over the 5-year study
and estimates the annual badger bTB prevalence trend in the area over this time period.

Materials and methods
Field work overview

A 5-year (2014-2018) badger intervention study using a selective removal and vaccination
regime was undertaken in a 100 km® area of County Down, Northern Ireland. Modelling out-
puts had suggested that such a time period would be required to enable an effect on badger M.
bovis prevalence to be observed [34]. The TVR Research Project operated under the Animals
(Scientific Procedures) Act 1986 (as amended); ASPA Licence Number 2767. Licences were
also obtained from Northern Ireland Environment Agency (NIEA) to allow the capture, sam-
pling, and removal of badgers. Each calendar year, badgers were trapped and DPP tested in the
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field using whole blood (10pl of heparinised blood; DPP Field). The use of whole blood facili-
tated real time decision making on the fate of each badger. Badgers were removed if they tested
DPP Field positive (line 1 and/or line 2 positive) or vaccinated and released if DPP Field nega-
tive (both lines negative). This excluded the first year of the study where all badgers were DPP
Field tested, vaccinated and released. Badgers were only sampled (under anaesthesia) on first
time capture each year, which involved obtaining blood samples and clinical swabs (tracheal
aspirate, oropharyngeal swab and from any observed wound swabs) for diagnostic testing.
Samples from each badger were also submitted to a laboratory for further DPP and IGRA anal-
ysis and for bacteriological culture (swabs and aspirates). A more detailed description of this
study is available [31, 32].

Badgers that were found DPP Field negative at each field test were vaccinated by intramus-
cular injection of BadgerBCG for years 1-3. Due to a global shortage of BCG vaccines, a BCG
Sofia strain (Intervax Ltd, Canada) was administered to such badgers during years 4-5.

DPP. For laboratory testing, whole blood (10l of heparinised blood; DPP Whole Blood)
and serum (30pl of serum harvested from clotted blood samples; DPP Serum) were indepen-
dently analysed using a standard DPP protocol (Chembio Diagnostics Systems Inc., 10-6123-0
Rev 1 November 2012). The result for line 1 and line 2 were separately recorded following
visual interpretation with the presence of a visible pink/purple line indicating a positive result
(Fig 1). Restricted supplies of DPP test kits limited the number of whole blood samples that
were tested during years 1, 4 and 5 (as whole blood samples can only be stored for short inter-
vals; Year 1: 19 badgers (7%), Year 4: 173 badgers(60%), Year 5: 106 badgers (31%)).

IGRA. The IGRA enables laboratory testing of heparinised blood samples for cell mediated
immune responses to bTB infection through lymphocyte stimulation and subsequent detection
of gamma-interferon by ELISA. The protocol used for badger samples was as detailed in [9].

Culture. Swabs and tracheal aspirates with individually cultured using standard prepara-
tion methods and incubated in liquid BACTEC mycobacterium growth indicator tubes
(MGIT) using a Bactec MGIT 960 system (BD Diagnostics, USA) for 56 days (OIE, 2016). Spo-
ligotyping was carried out of any positive cultures to confirm the presence of M. bovis [35, 36].

Statistical model

A Bayesian latent class model of diagnostic test evaluation in the absence of a gold standard
was applied to the data (See S1 Appendix). For each sample, IGRA, culture and DPP were
applied in parallel, either solely DPP Serum (leading to 3 tests applied) or both DPP Serum
and DPP Whole Blood (leading to 4 tests). Where both DPP Serum and DPP Whole Blood
were included in the model, conditional dependence between these tests was modelled as
described in [37]. Given the possibility of interaction with the DPP, badgers that had been
previously vaccinated with BCG Sofia (Year 5), were analyzed separately (DPP Whole Blood
(BCG Sofia) & DPP Serum (BCG Sofia)).

The initial analysis was focused on the visual interpretation of DPP, and comparison was
made between the use of line 1 only, line 2 only or both line 1 and line 2 (badger positive if
positive for either line), with the best performing of these used for all subsequent analyses.
Comparison was also made between DPP Whole Blood based on laboratory results compared
to DPP carried out in the field using whole blood (DPP Field)-see [11].

Informative priors were given for culture specificity (Table 1) but all other priors (covering
diagnostic test sensitivity/specificity and infection prevalence each year) were given by beta dis-
tributions with both parameters equal to 1 (equivalent to uniform distribution between 0 and 1).

Infection prevalence was estimated in the model using two approaches: (i) a different param-
eter for each year of the study, given an uninformative prior (beta (1,1)), and (ii) representing
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Fig 1. Photograph of DPP test positive at line 1.

https://doi.org/10.1371/journal.pone.0246141.9001

the prevalence with a declining exponential trend, so that prevalence in year t was given by
Aexp(-Bt), where A and B were parameters to be determined. In this trend model, A represented
the infection prevalence at the start of the study and B represented the trend, that is, proportion-
ate annual reduction in badger infection prevalence. A was given a uniform prior in the range
0-0.5, a range which was expected to more than cover the possible infection prevalence at the
start of the study, and B was given a gamma prior with both parameters set to 0.01 (non-

Table 1. Prior distributions used for a Bayesian model to estimate the sensitivity and specificity of four diagnostic tests for bovine TB infection in live badgers.

Test Parameter Source of prior Beta prior distribution Median (2.5"- 97.5" percentiles)
Interferon Gamma Sensitivity (Se;) Non-informative (1,1)
Specificity (Sp;) Non-informative (1,1)
DPP Whole Blood Sensitivity (Se,) Non-informative (1,1)
Specificity (Sp,) Non-informative (1,1)
DPP Serum Sensitivity (Se;) Non-informative (1,1)
Specificity (Sps) Non-informative (1,1)
Culture Sensitivity (Sey) Non-informative (1,1)
Specificity (Sp.) [38] (1050.8,3.1) 0.997 (0.993-0.999)

https://doi.org/10.1371/journal.pone.0246141.t001
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informative). These models were compared using the Deviance Information Criterion (DIC)
[39], a Bayesian measure of model fit, with the model having the lowest value to be preferred.

All calculations were performed in WinBUGS 3.1, using a burn-in of 5,000 iterations fol-
lowed by 10,000 iterations of the model. Inspection of the history of each parameter was used
to check convergence of individual model runs, and the robustness of the results to different
starting values of the parameters was tested by running multiple chains with different starting
values and the use of the Gelman-Rubin statistic [40].

Model fit was checked through use of the Bayesian p-value, which is a Bayesian equivalent
of a chi square test [41], and compared the observed data with that simulated from the model,
using the multinomial cell probabilities with prevalence and test performance based on the pos-
terior densities. This tested whether there was any significant difference between them, with
the outcome being a p-value. For the present study, we considered that a p-value of less than
0.05 would indicate that the model was not adequately able to represent the observed data.

It was hypothesized that the intervention may impact on the sensitivity of DPP and IGRA
through the disproportionate removal of badgers with more advanced M. bovis infection. This
would mean that a model that allowed the sensitivity of these tests to vary over the course of
the study could possibly provide a better fit to the data and a more robust estimate of the infec-
tion prevalence. Therefore, the possibility that the sensitivity of DPP and IGRA have varied
over time due to the impact of control measures was investigated. This was investigated by
allowing the sensitivity of the tests to vary over time, so rather than having a fixed sensitivity
for DPP (Whole Blood and Serum) and IGRA over time (in the formula in S1 Appendix), each
sensitivity was given the form: logit(Se) = a+b*year, where a determines the sensitivity at the
start of the study (specifically exp(a+b)/(1+exp(a+b)) gives the sensitivity in the first year of the
study) and b determines the yearly rate of change. The parameter b was of particular impor-
tance as it indicated whether there was a significant time-dependent trend. This analysis was
carried out with non-informative priors for g, b, each with normally distributed priors with
mean 0 and variance of 100.

Results
Summary of diagnostic tests results

The data consisted of 1,519 sets of test results where either 3 or 4 tests were completed in paral-
lel (Table 2). In total, 431 badgers were tested once, 217 twice, 88 three times, 50 four times
and 38 five times i.e. in each year of the study; in total there were test results from 824 individ-
ual badgers (badgers were tested no more than once per year).

The relative performance of IGRA compared to DPP was not totally consistent between
years, with IGRA having a greater proportion of tests positive than DPP (both Whole Blood
(Laboratory and Field interpretations) and Serum) in year 3, but a lower proportion in other
years (Table 2). DPP Whole Blood did consistently have a higher proportion of positives than
DPP Serum across the four years. Conversely during Year 5, DPP Serum (BCG Sofia) disclosed
a higher proportion of positives compared to DPP Whole Blood (BCG Sofia) (Table 2). Over-
all, there was a similar proportion of animals positive for DPP Whole Blood between the labo-
ratory and field interpretations, with the field interpretation having a slightly higher
proportion of samples positive across years 2-5 of the study.

Visual interpretation of DPP

A preliminary analysis was carried out between the relative performance of DPP (laboratory
visual interpretation) using only line 1, only line 2, and both in parallel (positive if either
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Table 2. Summary of the annual number of individual badgers tested for TB and the number that were positive for each test for a test vaccinate remove study data
in Northern Ireland for the five years of the study (DPP results were from visual interpretation using line 1 only).

Diagnostic Test Year
1 (%) 2 (%) 3 (%) 4 (%) 5 (%)
IGRA 26/272 (9.6) 22/341 (6.5) 25/271 (9.2) 9/287 (3.1) 4/339 (1.2)
DPP Whole Blood N/A 32/341 (9.4) 13/271 (4.8) 6/132 (4.5) 1/113 (0.9)
DPP Field N/A 39/341 (11.4) 9/271 (3.3) 14/287 (4.9) 3/162 (1.9)
DPP Serum 28/272 (10.3) 24/341 (7.0) 11/271 (4.1) 9/287 (3.1) 15/162 (9.3)
DPP Whole Blood (BCG Sofia) N/A N/A N/A N/A 71122 (5.7)
DPP Field (BCG Sofia) N/A N/A N/A N/A 13/179 (7.3)
DPP Serum (BCG Sofia) N/A N/A N/A N/A 38/179 (21.2)
Culture 11/272 (4.0) 7/341 (2.1) 9/271 (3.3) 2/287(0.7) 4/339 (1.2)

N/A = not applicable
https://doi.org/10.1371/journal.pone.0246141.t1002

positive for line 1 or line 2) (see Table A in S2 Appendix) for summary data). This indicated
that using line 1 only produced the best overall performance of DPP using visual interpreta-
tion. Use of line 2 only resulted in very low sensitivity (~14%, Table B in S2 Appendix) and use
of both line 1 and line 2 in parallel resulted in very low specificity for DPP Whole Blood
(~94%, Table B in S2 Appendix). Subsequently therefore, the results presented in this paper
relate only to visual interpretation of DPP line 1 only.

Estimates of test performance were similar between IGRA and DPP Serum (Table 3, Fig 2a
and 2b), with DPP Serum having slightly higher sensitivity (medians 55% cf. 58%, respectively)
and similar specificity (medians 97% cf. 98%, respectively). DPP Whole Blood (laboratory
interpretation) was found to higher sensitivity than DPP Serum (medians 69% cf. 58%, respec-
tively) but similar specificity (medians 97% cf. 98%, respectively). Vaccination with BCG Sofia
had a significant impact on the estimated sensitivity and specificity of DPP Serum (Fig 2c and
2d), resulting in a higher sensitivity (83%) but a lower specificity (81%) than was observed for
DPP Serum from animals not vaccinated with BCG Sofia. However, vaccination with BCG
Sofia had comparatively little impact on the performance of DPP Whole Blood. Culture had
very high specificity (99.8%) but relatively low sensitivity (34%) compared to the other diag-
nostic tests used in the study.

Table 3. Posterior distributions from a Bayesian model to estimate diagnostic test sensitivity and specificity for bovine TB infection in live badgers (DPP results
were from visual interpretation using line 1 only).

Diagnostic Test Sensitivity Specificity

Median 95% Crl Median 95% Crl
IGRA 0.55 (0.4,0.71) 0.97 (0.96, 0.99)
DPP Whole Blood 0.69 (0.48, 0.88) 0.98 (0.96, 0.99)
DPP Field 0.70 (0.47, 0.89) 0.97 (0.95, 0.98)
DPP Serum 0.58 (0.4,0.76) 0.97 (0.95, 0.98)
DPP Whole Blood (BCG Sofia) 0.78 (0.31, 0.99) 0.96 (0.92,0.99)
DPP Field (BCG Sofia) 0.43 (0.11, 0.85) 0.93 (0.88, 0.96)
DPP serum (BCG Sofia) 0.83 (0.41, 0.99) 0.81 (0.74, 0.86)
Culture 0.34 (0.21, 0.5) 0.998 (0.995, 1)

CrI = credibility interval

https://doi.org/10.1371/journal.pone.0246141.t003
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Fig 2. Probability density plots of the performance of 4 tests to detect bovine TB in badgers for a) sensitivity and b) specificity, where DPP was
evaluated excluding badgers vaccinated with BCG Sofia and for c) sensitivity and d) specificity, where DPP was evaluated only including badgers
vaccinated with BCG Sofia.

https://doi.org/10.1371/journal.pone.0246141.9002

Conditional dependence was found between DPP Whole Blood and DPP Serum, with the
sensitivity covariance (see ps, in S1 Appendix) given by (plus 95% credible intervals) 0.009
(0.0006, 0.02) and specificity correlation (see ps, in S1 Appendix) by 0.14 (0.04, 0.21).

Estimates of the sensitivity and specificity of DPP Field, showed very similar estimates of
sensitivity and specificity to DPP Whole Blood (Table 3), with a small (~1% increase in sensi-
tivity for the field test compared to the laboratory result (Table 3), accompanied by a 1%
decrease in specificity). For BCG Sofia vaccinated animals, the difference between DPP Field
and DPP Whole Blood was much larger, where there was a decrease of both sensitivity and
specificity for DPP Field compared to DPP Whole Blood. However, due to there being only
one year of data to estimate the sensitivity and specificity of the field interpretation for BCG
Sofia vaccinated animals, the credible interval for the sensitivity was very wide for the test
applied to these animals, and measures of the difference were not statistically significant (cred-
ible interval of the difference included 0 for both sensitivity and specificity).

Comparison of the DIC between the model where a separate parameter was estimated for
infection prevalence each year and that where an exponential model was fitted, showed a
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lower DIC (difference of 4) for the exponential model, Aexp(-Bt) (A = 0.14 (95% CrI: 0.10-
0.20), B =0.50 (95% Crl: 0.31-0.71)). This suggested an exponential decline model was an
appropriate representation of the infection prevalence over the 5 years, with an annual reduc-
tion of 39.1% (95% Crl: 26.5-50.9), and an infection prevalence estimate in year 5 of the study
0f 1.9% (95% Crl: 0.8-3.8). Comparison between the exponential and independently estimated
prevalence each year indicated close agreement between the two except for year 3 of the study,
where the exponential model had lower prevalence (Fig 3).

Model fit

Use of the Bayesian p-value, showed no evidence of a lack of model fit, with all values >0.05
for the fit of the model to each data set (grouped by year, whether 3 tests applied or 4, and
BCG Sofia vaccination status, (Table C in S2 Appendix)).

Varying test sensitivity of DPP and IGRA over time. Models allowing the sensitivity of
DPP and IGRA to vary over time did show changes in sensitivity for each of test, with DPP
Whole Blood reducing in sensitivity through the study (from 91.9% in year 1 to 36.5% in year
5), and DPP Serum and IGRA increasing (DPP Serum from 57.1% in year 1 to 86.4% in year 5,

N _

T —

2014 2015 2016 2017 2018
Year

Fig 3. Estimates of bovine TB infection prevalence for badgers in Northern Ireland using a Bayesian model applied to data from 3
diagnostic tests, using independent parameters for the prevalence each year (bars, with vertical lines giving the 95% credible interval of
each annual prevalence estimate) and fitting an exponentially declining trend for the prevalence each year (blue line).

https://doi.org/10.1371/journal.pone.0246141.9003
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and IGRA from 46.0% in year 1 to 71.7% in year 5) (Table D in S2 Appendix). However, none
of the estimates for parameter b were statistically significant for any of the tests (as the 95%
credible interval included 0 for each, Table 4), so final results were produced assuming con-
stant test sensitivity (see Table D in S2 Appendix) for the results of varying test sensitivity each
year of the study).

Discussion

Use of Bayesian latent class analysis has become a standard methodology for determining test
characteristics of diagnostic assays where there is no gold standard comparator and it also pro-
vides an effective method for estimating infection prevalence [33]. In the present study, it has
enabled the integration of data from different tests to provide a single estimate of infection
prevalence rather than a collection of apparent prevalence figures from the different tests. This
is particularly valuable in the area of TB testing, where none of the tests have very high
sensitivity.

The DPP is a second generation product that replaced its predecessor, the BrockTB Stat-
Pak test (Chembio Diagnostic Systems Inc., Medford, New York, USA). Within the DPP, the
antigens are presented in two test strips/lines rather than in one line as with the BrockTB Stat-
Pak test. This separation (along with the different independent delivery of the test sample and
reagent), may account for the increased DPP test performance over its predecessor both in
terms of sensitivity and specificity (BrockTB Stat-Pak test sensitivity estimates 49-58%; speci-
ficity estimates 93-97%) [38, 42, 43]. Indeed, these analyses confirm the poor performance of
DPP line 2, particularly in relation to specificity, and that only DPP line 1 provided a useful
interpretation for bovine TB diagnosis in badgers [11, 44].

The results confirmed the very high specificity of culture of clinical samples. The higher
sensitivity observed compared to other studies [38, 43] reported here may be due to the parallel
testing of two respiratory clinical samples (tracheal aspirate, oropharyngeal swab) per badger
along with wound swabs and/or because of regional factors.

Opverall, the DPP performed better than the IGRA, particularly in relation to test sensitivity
while the DPP Whole Blood also showed a slightly higher sensitivity than DPP Serum
(although there was cross-over between 95% credibility intervals for all these tests). This is
consistent with [43] who observed the BrockTB Stat-Pak test to have a slightly higher sensitiv-
ity than the IGRA, although their findings differed from previous estimates using the Wood-
chester Park (WP) badger population [38, 45]. The difference between DDP Whole Blood and
DPP Serum results lacks any obvious biological explanation and requires further investigation.
Similarly, there was no obvious logistical or badger demography reason why IGRA perfor-
mance should have been different in Year 3.

The DPP detects serological responses to bovine TB infection, which are thought to occur
in animals with more advanced/generalized infection while IGRA detects the earlier cell medi-
ated immune response to mycobacterial infection [46, 47]. At the start of an intervention, one

Table 4. Posterior distributions of parameters determining dependence of diagnostic test sensitivity over time,
for a 5 year study of badgers in Northern Ireland, where diagnostic test sensitivity is given by logit(Se) = a+b*year.

Diagnostic test Parameters of logit sensitivity (95% CrI)

a b
DPP Whole Blood 3.84 (0.28, 9.35) -0.92 (-2.48,0.44)
DPP Serum -0.11 (-0.22, 1.14) 0.39 (-0.22, 1.14)
IGRA 0.4 (-1.84, 1.01) 0.33 (-0.24, 1.24)

https://doi.org/10.1371/journal.pone.0246141.1004
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might have expected relatively superior DPP performance as there would be a higher propor-
tion of advanced bTB cases, which would decrease with each annual intervention. The con-
verse would be true for IGRA (Table D in S2 Appendix) and the results would provide some
support for this hypothesis although not for DPP Serum estimates. However, caution is
required in such interpretations given the wide 95% credibility intervals indicating the study
was underpowered to statistically demonstrate any such temporal change.

This difference in reactivity of DPP Whole Blood and DPP Serum was further exacer-
bated by vaccination of badgers with BCG Sofia, which greatly increased the number of
DPP Serum test positives while the number was relatively constant for DPP Whole Blood
(and IGRA) in Year 5. Increased DPP reactivity following BCG Sofia vaccination may have
been anticipated as it is known to be a relatively high producer of MPB70 (and hence
MPB83), which is also the main antigen produced in badger through natural M. bovis infec-
tion and the antigen used in DPP line 1 for antibody detection [29, 30, 48, 49]. The mecha-
nism for DPP Serum being responsive to BCG Sofia vaccination in badgers while it was not
observed by DPP Whole Blood requires further investigation. However, this observation
suggests that caution is required if BCG Sofia vaccination is to be used in conjunction with
DPP selective culling, particularly given the observed reduction in DPP Whole Blood sensi-
tivity in this study.

None of the diagnostic tests appeared to show increased reactivity post-vaccination with
BadgerBCG, which is comparable with other findings [11]. Increased attenuation through
further genetic deletion has enabled BCG Danish strains to evolve as low producers of
MPB70/MPB83 [48]. This adaption facilitates use of DPP as a diagnostic test that differenti-
ates between vaccinated and infected animals (a DIVA test), for which this study and other
analyses [11] provide supporting evidence. This would extend to use of the DPP in the field
given the favourable DPP Field and DPP Whole Blood comparative results (Table D in 52
Appendix; [11]).

The initial badger TB prevalence (14%) was surprisingly low given that the national badger
TB prevalence was estimated to be similar (15.3%; [50]). However, the prevalence is similar to
that observed in badgers during the randomized badger culling trial [51]. Nevertheless, even
from a relatively low starting prevalence, the model outputs indicated a consistent significant
(39%) reduction in badger TB prevalence over the intervention period with a final year esti-
mate of 2% (Fig 2). While it is difficult to apportion this reduction between vaccination and
selective culling, other modelling studies would suggest that it is difficult to attribute such ben-
efit from vaccination alone [26]. It is speculated that synergistic effects between both compo-
nents (selective culling and vaccination) enable results that are comparable to those achieved
by proactive culling [26, 34]. Indeed, as with the BrockTB Stat-Pack test, the DPP will tend to
remove the more advanced TB cases, which are arguably more infectious [42, 45] while BCG
vaccination will protect a proportion of the naive badgers left behind in the area; with vaccine
efficacy improving over time at the population level [52, 53]. Badger characteristics such as age
and sex have previously been found to influence test positivity [42] through variability in infec-
tion prevalence and/or test sensitivity. This may influence the precise estimates of prevalence
but is unlikely to amend the main findings of this study. Inclusion of age and sex into the
model would adversely affect the statistical power and furthermore, would have no practical
application with respect to field implementation of the intervention.

These findings complement those already reported on the field application of the DPP
Whole Blood [11] and provide test performance characteristics based on a Northern Ireland
badger population. It has validated the use of DPP within the field as a real time diagnostic
tool for badgers as well as demonstrating the effectiveness of a test and remove or vaccinate
intervention approach in reducing badger TB prevalence.
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Conclusions

This study has provided further validation of the use of DPP Whole Blood as a real time trap-
side diagnostic test for badgers, and provides further validation of the use of the DPP Whole
Blood, particularly under field conditions. It has also demonstrated that a test and vaccinate or
remove approach can significantly reduce badger M. bovis prevalence (40% per annum), sug-
gesting this option could be considered in future TB control strategies.
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