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Respiratory diseases impose a tremendous global health burden on large patient populations. In this study, we aimed to develop
DeepMRD™®, a deep learning-based medical image interpretation system for the diagnosis of major respiratory diseases based on the
automated identification of a wide range of radiological abnormalities through computed tomography (CT) and chest X-ray (CXR)
from real-world, large-scale datasets. DeepMRD™® comprises four networks (two CT-Nets and two CXR-Nets) that exploit contrastive
learning to generate pre-training parameters that are fine-tuned on the retrospective dataset collected from a single institution. The
performance of DeepMRD'® was evaluated for abnormality identification and disease diagnosis on data from two different institutions:
one was an internal testing dataset from the same institution as the training data and the second was collected from an external
institution to evaluate the model generalizability and robustness to an unrelated population dataset. In such a difficult multi-class
diagnosis task, our system achieved the average area under the receiver operating characteristic curve (AUC) of 0.856 (95% confidence
interval (C1):0.843-0.868) and 0.841 (95%Cl:0.832-0.887) for abnormality identification, and 0.900 (95%Cl:0.872-0.958) and 0.866 (95%
Cl:0.832-0.887) for major respiratory diseases’ diagnosis on CT and CXR datasets, respectively. Furthermore, to achieve a clinically
actionable diagnosis, we deployed a preliminary version of DeepMRD™ into the clinical workflow, which was performed on par with
senior experts in disease diagnosis, with an AUC of 0.890 and a Cohen'’s k of 0.746-0.877 at a reasonable timescale; these findings
demonstrate the potential to accelerate the medical workflow to facilitate early diagnosis as a triage tool for respiratory diseases which

supports improved clinical diagnoses and decision-making.

npj Digital Medicine (2022)5:124; https://doi.org/10.1038/s41746-022-00648-z

INTRODUCTION

Respiratory diseases are among the leading causes of morbidity
and mortality, posing a significant burden worldwide'. Globally,
chronic respiratory diseases impacted a large patient group
accounting for 7.4% of the world’s population and led to 7.0% of
total all-cause deaths?. Lower respiratory infections kill millions of
people annually?, and for example, the COVID-19 pneumonia
pandemic alone caused more than two million deaths during the
1st year since the outbreak®. Lung cancer is the leading cause of
cancer-related mortality, with the 5- year survival rate of 10-20% in
most countries®. Tuberculosis (TB) is the most common lethal
infectious disease, ranking above the human immunodeficiency
virus/acquired immunodeficiency syndrome since 2007°. These
mentioned above are considered the most important lung
diseases worldwide from a prevalence standpoint, according to
the Forum of International Respiratory Societies'. Respiratory
diseases, which impose an immense and persistent burden on the
health care system worldwide, are intrinsically difficult to
diagnose, mainly due to the unavailability of necessary and
important diagnostic equipment in remote areas or resource-
constrained settings. It is an urgent need to develop a new tool to
accelerate  homogenization of the diagnosis of respiratory
diseases, particularly in areas where medical resources are
unevenly distributed or scarce in China.

Radiology plays an indispensable role in the screening, triaging,
and diagnosis of various respiratory diseases. Chest radiography,
often known as chest X-ray (CXR), is the most commonly used

first-line investigative technique for disease evaluation’. Com-
puted tomography (CT), which can generate three-dimensional
(3D) volumes and offer more precise information on pathologies
than CXR images, is also a mainstay of medical imaging strategies
for thoracic disease diagnosis®. Although these techniques can
capture digital texture invisible to human eyes, the accurate
diagnosis is still challenging owing to the lack of interobserver
agreement in radiological evaluation®. There are many chest
abnormalities; the co-occurrence of multiple abnormalities is
frequently observed in the same imaging modality, and the same
pathology may disperse in various sites in one scan®. A wide
variety of chest abnormalities pose a huge challenge to the
accurate diagnosis and treatment of respiratory diseases. There-
fore, improving the use of bulk radiological images has been of
paramount importance and enormous value.

Recent exciting developments in artificial intelligence (Al) have
opened up a new chapter in medical image analysis'®'°. Prior
studies have demonstrated the general applicability of deep
learning methods in classifying age-related macular degeneration
and diabetic macular edema, grading diabetic retinopathy,
identifying skin cancer subtypes, detecting breast cancer metas-
tasis, and triaging critical findings in head CT abnormalities'®-2°.
Deep learning algorithms have also been trained and developed
to identify thoracic abnormalities or diseases based on either CXR
or CT images®?'. Previously, we developed deep learning-based
medical image interpretation systems for the early diagnosis of
COVID-19 pneumonia and the identification of malignant lung
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nodules, which demonstrated the promising applicability in both
acute and non-acute respiratory disease care settings?? 2%,
However, such established Al systems simply focus on one
disease differential diagnosis or single disease binary diagnosis,
limiting their clinical applicability and generalizability in the real-
world routine practice with a variety of respiratory conditions.
There have been several prior studies on thoracic disease
diagnosis and abnormality detection systems®2'-2>, Hwang et al.?'
developed a deep learning-based algorithm that could classify
four major thoracic diseases, including pulmonary malignant
tumors, active TB, pneumonia, and pneumothorax, based on chest
radiographs. In that system, the algorithm covered only four
categories of thoracic diseases, which in fact only took a small
proportion of clinically relevant diseases. Another drawback was
that the datasets performed for validation were experimentally
designed, and only represented one single target disease, hence
were distinct from real-world conditions. Our team previously
developed an Al system for the diagnosis of common lung
diseases using CXR images®3. However, the approach did not
distinguish between thoracic diseases and chest abnormalities.
Furthermore, CXR is limited in distinguishing multiple target
diseases in real-world situations because of the inferior presenta-
tion of less-well-defined tissue structures and lack of three-
dimensional information; thus, the adoption of CT scans is
necessary for the diagnosis of several specific diseases. Recent
CT-based approaches for detecting abnormalities could extract
features on slices and then fuse them into volume levels, which
raised the demand for more contextual information on 3D
extraction®. Although different models have been proposed for
the detection of lung disorders, a fully automatic analysis pipeline
that is robust in diverse CT/CXR imaging conditions and satisfies
the requirements needed for real-world clinical deployment is still
lacking. There are three main challenges of the large-scale multi-
label classification of two- and three-dimensional images:
difficulties to obtain substantial high-quality labels, obstacles to
accurately identify multiple abnormalities, and challenges of
developing large-scale multi-label multi-task diagnostic models.
In the context of precision medicine, we aimed at generating an
Al-based automatic analysis pipeline to empower precise

abnormality identification and accurate disease diagnosis in the
respiratory field. Here, we developed the DeepMRD™® model
based on the deep-learning algorithms to address the aforemen-
tioned realistic clinical application and technological issues
through real-world large-scale CT scans and CXR images. To verify
the generalizability and robustness of the DeepMRD'" system, we
validated the system in an external dataset collected from another
institution. We compared the performance of Al system on CT and
CXR images to enable actual deployment in the scenario where CT
devices are less available. Further we deployed a preliminary
version of the Al system into the clinical workflow to demonstrate
the feasibility of incorporating our Al system into real-life clinical
workflows in a human + Al fashion with advantages on time
consumption and prediction accuracy. Therefore, our model will
hopefully aid junior physicians in developing their competence,
and senior physicians in improving their efficiency.

RESULTS
Data sources and patient characteristics

We constructed a large chest scan dataset from two primary
subsets: (1) one from West China Hospital (WCH) for training and
internal testing and (2) the other from Chengdu ShanglJin Nanfu
Hospital (CSJH) for external validation to evaluate the model’s
generalizability and robustness to an unrelated population. We
hypothesized that training the system with image input might
only be associated with disease textures that manifested at
different time points after hospital admission. We used the initial
examination from each hospital admission that had not received
treatment for this condition. The CT dataset from the two hospitals
comprised 228,563 CT volumes (n=52,200), including 191,333
(n=43,966) CT volumes chosen at random for developing and
internal testing (WCH) the Al system, and the other 37,230
(n=8234) for external validation (CSJH). The CXR dataset
contained 129,319 images (n = 67,611) for the same tasks, among
which 125,599 CXR images (n = 64,451) were used for training and
internal testing and an additional 3720 images (n =3160) were
used for external validation. Patient demographics and character-
istics of each critical finding from scans of the training, testing and

Table 1.

Summary of training, internal testing and external validation datasets.

Demographics CT dataset (n = 52,200)

CXR dataset (n =67,611)

Training cohort
(n=34,533)

Internal testing
cohort (n =9433)

External validation
cohort (n =8234)

External validation
cohort (n =3160)

Training cohort
(n = 45,466)

Internal testing
cohort (n =18,985)

Age (years) 56.702 £ 15.946 54.465 +15.833

49.653 + 14.484

Sex (male) 19,338 (56.0%) 5207 (55.2%) 4399 (53.4%)
In-hospital 147,754 43,579 37,230
Diseases

50.465 + 19.863
10,783 (56.8%)

47.965 +21.461
1709 (54.1%)

51.270+ 18.613
26,675 (58.7%)

Bronchiectasis
COPD

ILD

Lung cancer
Pleural effusion
Pneumonia
Pneumothorax
TB

Other diseases

10,319 (7.0%)
24,918 (16.9%)
8829 (6.0%)
16,184 (11.0%)
41,600 (28.2%)
92,004 (62.3%)
4795 (3.2%)
17,051 (11.5%)
15,442 (10.5%)

2820 (6.5%)
6591 (15.1%)
3068 (7.0%)
4860 (11.2%)
10,686 (24.5%)
27,334 (62.7%)
1513 (3.5%)
3988 (9.2%)
5987 (13.7%)

1216 (3.3%)
5105 (13.7%)
325 (0.9%)
3130 (8.4%)
5846 (15.7%)
8756 (23.5%)
853 (2.3%)
592 (1.6%)
8657 (23.3%)

86,647 38,952 3720
1414 (1.6%) 769 (2.0%) 26 (0.7%)
8724 (10.1%) 2903 (7.5%) 82 (2.2%)
670 (0.8%) 740 (1.9%) 8 (0.2%)

17,419 (20.1%
27,107 (31.3%
35,769 (41.3%
10,135 (11.7%
1698 (2.0%)

12,285 (14.2%)

9001 (23.1%)
12,910 (33.1%)
20,476 (52.6%)
4021 (10.3%)
479 (1.2%)
7324 (18.8%)

887 (23.8%)
790 (21.2%)
373 (10.0%)
736 (19.8%)
29 (0.8%)

913 (24.5%)

different center.

Data are presented as n (%) unless otherwise indicated. The mean age was reported as the mean + standard deviation. Training cohort: cohort selected as the
training set (before 1 Jan, 2018) to develop the algorithm. Internal testing cohort: cohort used to evaluate the performance of multi-disease diagnosis and
radiology abnormality identification (after 1 Jan, 2018). External validation cohort: cohort used to evaluate the model generalizability and robustness in a

COPD chronic obstructive pulmonary disease, ILD interstitial lung disease, TB tuberculosis.

npj Digital Medicine (2022) 124

Published in partnership with Seoul National University Bundang Hospital



C. Wang et al.

Preumonia —
b Male Female (o] d
;o tang corcer|
= % = " —
—000: -8~ Bronchiectasis coPD
— 800 mmm Pleural effusion
—— 50-54  — 30000 [ ]
— 757 — -4 COPD s
Croup  — 5 = LD Bronchiectasis| [l
W o 5550  mm— 20000 - Lung cancer | Il
N 50-54 P
cr — 4540  — = Pleural effusion neumonia. .
o — g = . Lung cancer] |
— — neumonia
] 10000 * copp I|
5 m — Pneumothorax Bronchiectasis|
20-24 In
B s Pleuratfusion| | -
=% R 0 Preumathorax| |
" 04 m 8 ‘
3000020000 10600 o 10000 20600 30600 5 L

Preparing multi-modal data

434,735 accessions

Raw DICOMs

Collect CT & CXR images
with the corresponding
abnormality and disease

399,138 CT volumes
333,860 CXR images

Input images  Original radiology reports

A nodule was seen in the axillary
subsegment of the right upper lobe
near the pleura...

(I

Clinical
metadata Part of the bronchi in the posterior

basal segment of the left lower lobe
was slightly dilated and the wall was

slightly thickened...

Discharge records

Nodules in both
lungs: metastatic
tumors...

Mixed bacterial
and fungal
infection...

Abnormality detection Disease identification

o
3 oicosr- [ 7o "o [ 72
E
o
g consotcaion [ 770 “ooeer [l 224
I patchy shadow- | I 75.0» Preumothorax [ 17.0%
g
g 1- I
o 05 10 0 05 10

Ol

Internal validation
from Institution 1

Pre/post CT&CXR

ooling

Training

(43,579 CT& 38,952 CXR)

Testing

DA

Training cohort from Institution 1
(147,754 CT& 86,647 CXR)

TRy

Implementation
evaluation

Alvs doctors

Model validation

Based CT& CXR

Lesion Model

External validation
from Institution 2

Deep Learning Model

Fig. 1

(37,230 CT& 3,720 CXR)

Overview of the framework for developing deep learning models. a Initial cohort consists of an EHR dataset and radiograph dataset

to develop an NLP algorithm and the deep learning-based algorithm. b Patients’ sex and age distribution. ¢ The annual occurrence rates of
eight major respiratory diseases. d Patients’ disease distribution from the two distinct hospitals. e Strategy for data collection. f NLP model that
automatically extracted labels from free-text radiology reports and discharge diagnosis records. g Development and validation of a deep
learning system to predict 8 major respiratory diseases and 20 radiological abnormalities based on CT/CXR dataset. COPD chronic obstructive

pulmonary disease, ILD interstitial lung disease, TB tuberculosis.

validation datasets are summarized in Table 1, and the flow of
study design is shown in Supplementary Fig. 1.

Ethics and information governance

The current study was performed in compliance with the tenets of
the Declaration of Helsinki®® and was approved by the Institutional
Review Board (IRB)/Ethics Committee of West China Hospital of
Sichuan University and Chengdu Shangjin Nanfu Hospital. The
requirement for written informed consent was waived because
the retrospective data used for system development were de-
identified by removing personal information. We applied the
updated 30-item Standards for Reporting Diagnostic Accuracy
Studies (STARD) 2015 guidelines to our study?®’.

Evaluation metrics

The DeepMRD™ system aimed to solve multi-label classification
problems. A high mean macro area under the receiver operating
characteristic curve (AUCQ) indicated good classification perfor-
mance. When deployed in real-life scenarios, models that gave a
better AUC had a better classification accuracy under the best-
chosen cut-off or threshold (operating point). Two-sided x? tests
were used to calculate the p values and 95% confidence interval
(CI) for the differences in accuracy, sensitivity, specificity, and AUC,
which were derived using the DeLong technique across a range of
classification thresholds. The F1-score metric was used to assess
the automated annotation performance of each label, as well as
the overall performance of the natural language processing (NLP)
model?®, We also computed the interobserver agreement, which
was measured using Cohen’s k statistics, and the system
processing time in real-world scenarios to determine whether
the system could assist clinicians with diagnosis. Heatmaps
generated from gradient-weighted class activation mapping
(Grad-CAM)?°, which were created by gradients flowing into the

Published in partnership with Seoul National University Bundang Hospital

model’s final convolutional layer before the fully connected layers,
were used to evaluate the attentional ability of abnormal regions
visually.

A deep-learning pipeline for the study workflow

The proposed DeepMRD' system comprehensively simulated the
diagnostic thinking of clinical experts. Patient demographics and
characteristics of each critical finding from scans are summarized
in Fig. 1a—d. The NLP approach for annotating abnormalities and
diseases was evaluated in 6274 reports and yielded relatively
excellent accuracy (Fig. 1e, f and Supplementary Fig. 2 and
Supplementary Tables 1 and 2). For chest abnormalities, the
established NLP model achieved an average F1-score of 0.93, a
precision of 0.94, and a recall of 0.95. For classifying respiratory
disease pathologies, with the discharge diagnosis records as the
clinical final decision to make a comparison, the proposed
approach achieved an average F1-score of 0.97, with a precision
of 0.99, and a recall of 0.94. The above results suggest that the
automatically extracted labels were of high quality and could
potentially serve as our ground-truth labels for developing
DeepMRD™. The DeepMRD™ system consists of four key parts
(Fig. 1g and Supplementary Figs. 3 and 4): (1) the CT and CXR
standardization module to supply normalized inputs for training
and validation; (2) the single-branch chest abnormality identifica-
tion module; (3) the two-stream major thoracic diseases diagnosis
module enhanced by the identification of abnormalities; and (4)
the evaluation and visualization module to assess the Al
performance and explain the features of the focus region.

Construction of the DeepMRD™® system

We developed the DeepMRD™ system, which consists of four
networks (two CT-Nets and two CXR-Nets) that take either CT or
CXR images as input and output for the identification of
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Fig.2 Model performance of the Al system. a—d ROC curves of Al system in identifying abnormalities based on internal testing CT and CXR
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pulmonary disease, ILD interstitial lung disease, TB tuberculosis.

radiological abnormalities and further prediction of major
respiratory disease diagnoses. Simultaneously, we anticipate that
the diagnosis results of the Al system can be quantitatively
described in the original images using Grad-CAM?°, alleviating the
black box critique of deep neural networks. For the deep-learning-
based CT-Nets, two modified 3D-ResNet-18 networks>° (Supple-
mentary Fig. 3) were designed for the identification of radiological
abnormalities and the diagnosis of major respiratory diseases in
3D CT volumes. The abnormality prediction model generated a
total of 20 probability scores, each representing one of the
radiological abnormalities investigated. The disease diagnostic
model provides a probability score for each of the eight major
respiratory diseases based partially on the identified abnormality
features. Similarly, the other two modified CXR-Nets based on
ResNet-50 (Supplementary Fig. 4) were trained for abnormality
description and disease diagnosis on CXR images>'. To mimic the
diagnostic routine of thoracic clinicians, we modified the diagnosis
task networks (mentioned above) to design a two-stream disease
diagnosis network architecture to perform image feature extrac-
tion using the trained backbone of abnormality prediction.
Additionally, we fused the extracted feature with another
learnable diagnosis pathway using an asymmetric non-local fusion
module3233, For both CT/CXR-Nets, we exploited new contrastive
learning techniques to improve the efficiency of transfer learning.

Model performance in identifying multiple abnormalities

For the development of the DeepMRD™ system, CT volumes and
CXR images from WCH acquired before January 1st, 2018 were
assigned to the training set, and those images acquired afterwards
were assigned to the internal testing set (4:1 ratio; Supplementary
Fig. 1). The CT-Net model could identify 20 chest abnormalities
and achieved an average of a multi-way AUC of 0.856 (95%
confidence interval (Cl):0.843-0.868), with a sensitivity of 0.785
(95%CI:0.764-0.804), and specificity of 0.790 (95%Cl:0.785-0.794)
for the identification of abnormalities on CT images in our study.
The receiver operating characteristic (ROC) curves showed an AUC
of 0.930 (95%Cl:0.927-0.933) for atelectasis, 0.909 (95%
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Cl:0.906-0.913) for emphysema, 0.919 (95%Cl:0.913-0.925) for
mass, and 0.976 (95%CI:0.972-0.981) for pneumoperitoneum, and
other results at the operating points are shown in Fig. 2a, b and
Supplementary Table 3. For the CXR-Net model, bronchial lesion
and lymphadenopathy were not identified in CXR images. The
CXR-Net model achieved a mean AUC of 0.841 (95%
C1:0.832-0.887) in the 18-way classification task, which was lower
than that of the CT-Net model. Indicated by the AUC results, the
model specialized in abnormalities including 0.904 (95%
Cl:0.897-0.912) for emphysema, 0.915 (95%Cl:0.892-0.932) for
honeycombing, 0.947 (95%Cl:0.944-0.951) for pneumoperito-
neum, and 0.937 (95%Cl:0.933-0.942) for pneumothorax. The
results in identifying patchy shadow and stripe shadow were less
satisfactory, with an AUC of 0.749 (95%Cl:0.743-0.755) and 0.736
(95%Cl:0.728-0.745), respectively (Fig. 2c, d and Supplementary
Table 3).

Model performance in diagnosing multiple diseases

Two diagnostic classifiers were trained to categorize CT/CXR
images into eight common respiratory diseases based on the
identification of abnormalities using diagnostic labels automati-
cally generated from discharge diagnosis records. All eight labels
for common lung pathologies were derived from real-world
clinical reports, and the trained Al system was evaluated on an
internal testing dataset. The Al algorithm was performed with an
AUC of 0.900 (95%Cl:0.872-0.958), a sensitivity of 0.808 (95%
Cl:0.797-0.821), and a specificity of 0.848 (95%Cl:0.845-0.852) for
the discrimination of respiratory illnesses on CT images. It
achieved an AUC of 0.885 (95%Cl:0.878-0.891) for bronchiectasis,
0.938 (95%Cl:0.935-0.941) for COPD, 0.952 (95%Cl:0.947-0.956) for
ILD, 0.952 (95%Cl:0.949-0.955) for lung cancer, 0.916 (95%Cl:0.914-
0.919) for pleural effusion, 0.807 (95%Cl:0.803-0.810) for pneumo-
nia, 0.973 (95%Cl:0.970-0.978) pneumothorax, 0.890 (95%Cl:0.885-
0.896) for TB, respectively (Fig. 2e and Supplementary Table 4). For
the internal CXR data, the Al system also showed satisfactory
performance with an AUC of 0.866 (95%Cl:0.832-0.887), sensitivity
of 0.805 (95%Cl:0.785-0.824), and a specificity of 0.786 (95%
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Cl:0.783-0.790) for the overall classification of chest respiratory
diseases. It achieved an AUC of 0.814 (95%Cl:0.797-0.835) for
bronchiectasis, 0.917 (95%Cl:0.913-0.921) for COPD, 0.898 (95%
C1:0.882-0.913) for ILD, 0.952 (95%Cl:0.950-0.953) for lung cancer,
0.854 (95%Cl:0.851-0.857) for pleural effusion, 0.859 (95%Cl:0.855-
0.863) for pneumonia, 0.913 (95%Cl:0.908-0.917) pneumothorax,
0.812 (95%Cl:0.790-0.830) for TB, respectively (Fig. 2g and
Supplementary Table 4).

Robustness of the Al system in various conditions

As the trained deep learning model could be deployed in different
hospitals where the population, scanning conditions, and patient
disease severity may differ from those in the training data, the Al
system was also evaluated in terms of its robustness in a different
hospital (CSJH) with different resource levels, screening machines,
and scanning periods (Table 1 and Supplementary Fig. 1). The data
processing procedures were consistent with those used in the
training and internal testing cohorts. For the external CT cohort
(Fig. 2f and Supplementary Table 5), the Al system achieved a
mean AUC of 0.882 (95%Cl:0.825-0.908), a sensitivity of 0.807 (95%
Cl:0.786-0.826) and a specificity of 0.804 (95%Cl:0.800-0.807) in the
diagnosis of major respiratory diseases. With regard to the
external CXR cohort (Fig. 2h and Supplementary Table 5), the Al
system demonstrated a mean AUC of 0.841 (95%Cl:0.801-0.884), a
sensitivity of 0.811 (95%Cl:0.733-0.869) and a specificity of 0.761
(95%Cl:0.748-0.733) in the discrimination of major thoracic
diseases based on chest radiographs. The multi-label abnormality
results of the external cohort are provided in Supplementary Fig.
5. With relatively poor image quality from another hospital, the
model still has relatively good performance, suggesting that the
model can still obtain a stably favorable result and can be applied
in resource-restrained health settings.

Moreover, it is common for deep-learning or machine-learning-
based models to perform relatively worse on unseen datasets
owing to differences in data distribution and possible overfitting
on the training data. Normally, such a problem can be alleviated
by collecting more data or training deep models using data
augmentation. As demonstrated in Supplementary Fig. 6, models
trained with full-scale data outperformed those trained with part
of the data, exhibiting improved generalization ability. With more
training data, the performance improved steadily until it was
saturated at 80% of the full-scale dataset.

Relative performance on CT and CXR images

To better understand the relative efficacy of CT and CXR images in
diagnosing major respiratory diseases, we devised both CT-based
and CXR-based techniques and tested them using previously
unseen paired data (same patients with both CT and CXR
examination during the same time period). By comparing the
relative performance of the CT-based Al system and CXR-based Al
system, we can determine the diseases on which the diagnostic
accuracy of human + Al using CXR images can reach that of
human alone using CT images, and get clues on which diseases
are not suitable for CXR screening even in the presence of an Al
assistant. In this paired cohort, the ROC curve (Fig. 3a) showed that
the macro-mean AUC of the eight categories was 0.889 for the CT
cohort and 0.866 for the CXR cohort. In practice, clinical experts
are also asked to make diagnoses on the CT & CXR cohorts with
and without the assistance of the Al system. It turns out clinical
experts alone observe fewer lesion regions on CXR images than
with the assistance of the Al system. Figure 3b, ¢ shows two
examples of senior readers as well as the Al-corrected diagnosis
on CT and CXR images. Most readers initially were not able to
detect lesions on the CXR images that were precisely diagnosed
by the Al system on both CT and CXR images. With the assistance
of the Al system, those lesions could be correctly identified on the
CXR images by most tested readers.
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5
Comparison between the DeepMRD™® system and practicing
radiologists and thoracic clinicians

Consistent with previous studies, we compared the Al system and
licenced medical workers in the same cohort regarding the
abnormality detection task and disease diagnosis task. Eight
clinical specialists from WCH or CSJH with a wide variety of
expertise-junior readers (with less than 7 years of clinical
experience) and senior readers (with more than 7 years of clinical
experience). They were enrolled from different departments
(respiratory and radiology) and were blinded to the case review.
We compared the performance of DeepMRD™® to that of human
readers from electronic health records (EHRs) discharge diagnosis
records, extracted labels from which are defined as the golden
standard.

In a reader study involving eight experts and CT images, the Al
system achieved a performance equivalent to that of senior
human experts in the diagnosis of interstitial lung disease (ILD;
AUC=0.91) and pleural effusion (AUC=0.92). Senior thoracic
clinicians were better than the Al system in identifying
bronchiectasis, chronic obstructive pulmonary disease (COPD),
lung cancer, and pneumonia. For pneumothorax and TB, the Al
outperformed the readers, demonstrating AUCs of 0.95 and 0.85,
respectively. For human-DeepMRD™ comparison based on the
CXR cohort, the Al system yielded a similar performance to senior
experts in COPD, lung cancer, pleural effusion, and pneumothorax
diagnosis, with equivalent accuracy. The performance of the Al
system for bronchiectasis, ILD, and pneumonia diagnosis was
inferior to that of senior clinicians but superior to or on par with
that of junior experts. In consistent with the CT cohort, Al also
outperformed the readers for TB diagnosis in the CXR cohort
(Fig. 4).

Combining diagnoses from the DeepMRD™® system and
experts

To verify the feasibility of incorporating our Al system into real-life
clinical workflows in a human + Al fashion, we evaluated whether
the system could assist respiratory clinicians and radiologists with
their diagnoses while attempting to quantify the improvement.
First, we employed an assessment approach to investigate the
performance beyond AUC to establish the threshold selection by
considering the trade-off between sensitivity and specificity to
match different expert groups. Second, to assess the deep
learning system for clinical implementation, we compared the
time required to generate a clinically acceptable diagnosis, with
and without the assistance of the DeepMRD™® system.

We calculated the sensitivity and specificity of readers’ eight
different binary classifications, as well as the Al system’s threshold
score, to match readers’ sensitivity and specificity in Table 2. For
example, at the same sensitivity, the DeepMRD™ system
performed better in terms of specificity than the junior
radiologists (0.929 vs. 0.880). We also explored the potential
involvement of the system in increasing the diagnostic perfor-
mance of senior/junior clinicians and senior/junior radiologists in
the workflow. When using the majority vote and weighted error
over the predicted classes of multiple images for each patient, the
combined result achieved a sensitivity of 0.673 (95%
Cl:0.652-0.694) and specificity of 0.912 (95%Cl:0.890-0.918) for
junior radiologists, achieving a significant improvement compared
to that with the sensitivity of 0.569 (95%Cl:0.546-0.579) and
specificity of 0.880 (95%Cl:0.870-0.894) without the assistance of
the Al system (Table 2).

In terms of implementation in clinical workflow with the aid of
an Al assistant, the amount of time that human doctors spent on
making a diagnosis decreased slightly (145 s [interquartile range
(IQR), 129-182] vs. 144 s [IQR 128-175] for CT images; p = 0.0014;
and 104s [IQR 99-150] vs. 103 s [IQR 99-143] for CXR images;
p<0.001) compared to the original clinical workflow.
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Fig.3 The relative performance of Al system for the CT and CXR cohorts of the same patients for multi-disease diagnosis. a ROC curves of
Al system in making diagnoses of the included eight diseases based on the CT and CXR cohorts. b Patient with lung cancer who had a proper
diagnosis by all readers on the CT scan (red circle) but incorrect predictions on the CXR, whereas the Al system could precisely localize the
lesion location. ¢ A case with pneumonia where all readers correctly identified the infectious lesions (red arrows) on the CT scan but made
wrong diagnoses based on the CXR images. COPD chronic obstructive pulmonary disease, ILD interstitial lung disease, TB tuberculosis.

Simultaneously, the mean agreement (Cohen’s K) among the eight
doctors performing diagnosis increased significantly from a
median of 0.746 without Al assistance to 0.877 with Al assistance
for CT images, and from 0.600 to 0.865 for CXR images (p < 0.001).
Furthermore, no significant performance differences were found
among the Al approach (AUC = 0.890), original clinical workflow,
and Al-assisted approach (p < 0.001) (Fig. 5a—c).

For the failure analysis of incorrectly classified cases, we also
examined the diagnostic performance of human readers with
correct and incorrect Al advice in each case. As illustrated in Fig.
5d-f, Al pre-diagnosis advice based on CT images, whether
predicted correctly or incorrectly, would assist the doctor’s
diagnosis to a certain degree. Even when Al-based classification
is incorrect, there is a high possibility that abnormalities would
be found in the lesion area by doctors, which indicates that Al,
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to some extent, provides doctors with subtle indicators. In
contrast, as shown in Fig. 5g-i, for CXR images, the different
types of Al advice had large gaps in diagnostic accuracy. In
addition, Al advice was more advanced for junior doctors than
senior doctors.

Interpreting the DeepMRD™® systems

In the proposed system, to show some representative subjects for
visualization, we explored the channel’s attention in this network
to determine which channel map provides discriminating
information, how pathological abnormalities arise in the spatial
dimension, and which scale is an important aspect of the
diagnostic. As a commonly used method for interpreting this Al
diagnosis black box, the class activation map (CAM) may provide
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Fig.4 Model performance of the Al system in making multi-disease classification compared with experts on the CT and CXR cohorts. ROC
curves for diagnostic performance in the comparison between our Al system and four groups of experts (senior/junior thoracic clinicians and
senior/junior radiologists). COPD chronic obstructive pulmonary disease, ILD interstitial lung disease, TB tuberculosis.

Table 2. Comparison and combination of sensitivity and specificity between experts’ reading results and the proposed DeepMRD™® system.

Experts DeepMRD™® System Experts + Al

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Junior radiologists  0.569(0.546-0.579)  0.880(0.870-0.894) 0.570(0.527-0.608)  0.929(0.917-0.943) 0.673(0.652-0.694) 0.912(0.890-0.918)
Junior clinicians 0.617(0.556-0.678)  0.878(0.847-0.902) 0.618(0.578-0.654)  0.922(0.905-0.936)  0.665(0.642-0.696) 0.916(0.912-0.937)
Senior radiologists  0.608(0.582-0.616)  0.929(0.928-0.952) 0.608(0.568-0.643) 0.933(0.923-0.937) 0.683(0.675-0.688) 0.954(0.948-0.957)
Senior clinicians 0.748(0.732-0.759)  0.942(0.920-0.968) 0.750(0.713-0.788)  0.898(0.882-0.914) 0.762(0.759-0.781)  0.953(0.950-0.961)

participative focus regions for each unique prediction from the space (Supplementary Fig. 7). When CAM covers a broad range or
model, which is connected to the back end of the diagnostic provides partial coverage of diagnostic areas used by human
model. The results showed that our system extracted powerful experts, it can improve doctors’ sensitivity and confidence in their
features to distinguish between different categories in the latent diagnosis.
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Fig. 5 Comparison of human-only, human with Al, and Al-only diagnoses for clinical radiation implementation. a Time assessment of
diagnosis without and with the assistance of the deep learning system. b Agreement of eight experts in disease diagnosis without and with
the assistance of the deep learning system c displays the performance of the Al approach (Al only), the current clinical workflow (human only),
and the Al-assisted approach (human with Al). Each box represents the interquartile range (IQR, 25th and 75th percentiles) and the center line
represents the median of the results. The whiskers represent minimum and maximum data points, excluding outliers. Outliers are defined as
greater than the 75th percentile +1.5 x1QR and smaller than the 25th percentile —1.5x IQR and are denoted as nodes. d Mean diagnosis
performance among a diverse range of human readers with correct/incorrect Al advice based on CT images. e, f Diagnosis performance of
junior and senior readers with various Al advice based on CT images. g Mean diagnosis performance among a diverse range of human readers
with correct/incorrect Al advice based on CXR images. h, i Diagnosis performance of junior and senior readers with various Al advice based on
CXR images. BC bronchiectasis, COPD chronic obstructive pulmonary disease, ILD interstitial lung disease, LC lung cancer, PE pleural effusion,

PN pneumonia, PTX pneumothorax, TB tuberculosis.

DISCUSSION

In this study, we proposed an effective deep-learning-based
medical image interpretation system, which was trained on a
large-scale real-world dataset of CT/CXR images with automated
annotations extracted from free-text reports and discharge
diagnosis records via NLP techniques. Our deep learning
algorithms achieved promising accuracy in identifying about 20
types of radiological abnormalities and further classified eight
common respiratory diseases. For external validation, our model
also yielded perfect classification performance, demonstrating the
generalizability and applicability of the Al system under a limited
domain shift. Simultaneously, the comparison between perfor-
mances of human and DeepMRD™ indicated that junior clinicians
might reap more benefits or more substantial improvement than
senior clinicians from this system. Finally, the preliminary version
system was implemented within the workflow to estimate the
ability to contextualize to the clinical context (Supplementary Fig.
8). Such an Al system may be feasible to automate the triage
process by prioritizing scans with suspicious abnormalities
requiring earlier human assessment, which could shorten the
turnaround time of multidisciplinary diagnostic workflow,
decrease the waiting time of patients, lessen clinicians’ workload,
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and allow these doctors to respond more effectively in the
diagnosis of respiratory diseases.

The current study is innovative and distinguishable from other
studies in the field in the following respects. Generally, the greater
the amount of data, the higher generalization and robustness of
the model obtains. In this work, a heterogeneous quantity of
realistic datasets was collected to train, optimize and validate the
DeepMRD™ system, which was possibly the largest in the field of
abnormality description and thoracic disease identification
compared with previous studies, including the massive sample
size of 1,294,475 EHRs from 434,735 real-world patients, 228,563
CT volumes, and 129,319 CXR images, discharge diagnosis-derived
high-quality and reliable ground truth labels, were collected to
train, optimize, and validate the DeepMRD™® system, which
larger than the reported sample size in several previous
studies®2134-38 Second, on account of the multiple co-existent
diseases and imaging abnormalities, both of which were
essentially different. The DeepMRD™ system could strictly
distinguish abnormalities from diseases, simultaneously localize
the majority of chest abnormalities (n =20) and further identify
eight major thoracic diseases. Remarkably, the classifier for
bronchial lesions was firstly reported in our study. This study
disentangled abnormality findings and thoracic diseases into two
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separate models (this is the first attempt, to the best of our
knowledge), and could be more readily aligned to clinical
deployment. In real-life clinical scenarios, a patient might harbor
more than one major illness; thus, our model attempted to
account for common respiratory diseases rather than one specific
disorder. Previous studies have focused on only one disease?2-243”
or adopted a mixture of abnormality description and disease
diagnosis labels, which could not be properly deployed in clinical
practice. For example, the famous CheXpert and CheXNeXt3¢-37
include 14 classes such as consolidation, lung opacity, and
pneumonia. The former two classes are descriptions of chest
abnormalities, whereas pneumonia belongs to the classification of
thoracic diseases. However, it is confusing to include them in a
single model for prediction and implementation. Third, aside from
the advanced 3D ResNet architecture and contrastive learning
techniques, the final thorax disease prediction model comprehen-
sively simulated the diagnostic process of human experts by
incorporating abnormality description features into the prediction
pipeline. The DeepMRD™® system comprises three models,
including the NLP, CT-Net, and CXR-Net models, and is designed
to provide the final disease prediction as well as quantitative
possibilities of lesion characteristics. In comparison with other
work, the CAM heatmaps were provided to enhance model
interpretability which augmented the clinical utility3”°,

We developed and validated the DeepMRD™ system with the
aim to streamline the CT/CXR scan interpretation workflow. Our
model makes a diagnosis by simulating the reasoning process of
an expert clinical worker. The Al-assisted workflow in real-world
practice starts with installing “DeepMRD™" offline in the hospitals.
When a patient undergoes a radiological examination, our Al
system will automatically take CT volumes or CXR images as input,
subsequently, process the data, then analyze the suspicious
regions of interest, generate the CAMs, and output final
abnormality predictions and disease diagnosis nearly instanta-
neously. There might be several challenges including incompat-
ibility of such systems with local medical equipment, and
additional patient waiting time due to model inference to achieve
an “actionable” diagnosis, thus limiting the actual clinical
deployment. With regard to these issues, we have developed
easy-to-obtain docking between the DeepMRD™® system and
radiology picture archiving and communication system (PACS) or
image scanners to make the software available. Thus, the time to
achieve an “actionable” diagnosis by our system is negligible and
the overall diagnosis time could even be shortened, leading to
optimization of the established clinical workflow through the
integration of DeepMRD™® (Fig. 5).

The human-DeepMRD™® comparison revealed more obvious
performance improvements in early career physicians relative to
senior clinicians, indicating that our system could conduce to
upgrade the interpretation quality. Moreover, our model could
assist a rapidly increasing number of experts grown from less-
experienced clinicians, providing reliable advice without the limits
of time and space. This model could be generalized in diverse
clinical scenarios. For instance, in our other work, we employed
vehicle-mounted CT devices installed with a deep algorithm to
screen lung cancer®. Similarly, the “DeepMRD™” system will be
installed in these mobile CT devices and then rapid triage will be
provided in remote areas, where either experts or high-tech
facilities are scarce.

We developed the DeepMRD™ system to complement the
current clinical workflow, rather than subvert it, and to assist
human physicians, as opposed to replacing them. The clinical
value of Al systems might signify that, in the context of mounting
complicated cases, clinical workload, and medical documents,
healthcare workers could harness the best of Al to enable gains in
operational efficiency, and meanwhile the Al model could achieve
higher diagnostic accuracy and robustness via active learning
where feedback from physicians will be furnished to Al algorithms
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in the form of increasing training data*'. In the future, our model
would be expected to have crucial implications in clinical
community settings, alerting and containing early respiratory
diseases (i.e, COVID-19, or SARS), or longitudinally monitoring
individuals during the course of treatment to evaluate the efficacy
of interventions in the elementary healthcare institutions. Further
studies are warranted to determine the optimal workflow and
implementation of Al-based algorithms in healthcare settings.
However, some limitations merit consideration in our study,
hopefully, which we can resolve in the future. Given that the AUC
has been considered as a relatively effective performance metric
for disease prediction in academic research*?, the AUC was
utilized to evaluate our deep-learning model and to compare
human/DeepMRD™ performances. While the AUC alone has
limited practical utility, notably, it is still ongoing to select the
proper operating points adopted in clinical workflow, taking
account of outcomes and cost*. Second, the annotation biases
introduced by the large-scale image dataset could affect the
performance of abnormality detection and disease diagnosis and
should be taken with caution. The labels of the training images
were text mined from EHRs utilizing NLP, and a comparison of NLP
labels vs. manual ground-truth annotations would be intriguing
but unrealistic, owing to the inaccessibility of annotations from
clinical experts for such a large training set**. Third, our patients
were all Asians, which could potentially limit the generalizability of
our Al system to other international regions. Additional validation
across populations from American and European hospitals is
warranted to further validate the reported performance®. Fourth,
selection biases were resulted from choosing a subset of
radiological abnormalities for prediction would lead to selection
bias. Finally, the number of participating clinicians, coupled with
retrospective data vs. prospective validation, limited the action-
ability of the report. In the foreseeable future, the increased use of
DeepMRD™ will empower clinicians in routine clinical workflows.
Finally, this study demonstrated the value of an Al system in
distinguishing between a wide range of chest abnormalities and
various thoracic diseases using a deep learning platform with a
comparison against senior/junior doctors’ performance on a large-
scale dataset, offering clinical experts the potential of a fast
versatile triage tool that leverages deep learning to improve
operational efficiency and ultimately enhance clinical decision-
making. Future well-designed prospective studies and algorithm
performance improvements will expand its application and
feasibility for the diagnostic assessment of all lung disorders.

METHODS
Patient cohort and data collection

This study retrospectively collected CT/CXR data with accompanying EHRs
from inpatients enrolled between October 2008 and February 2021. We
selected eight common respiratory diseases, including bronchiectasis,
COPD, ILD, lung cancer, pleural effusion, pneumonia, pneumothorax, and
TB according to the International Guidelines for Diagnosis and Treatment
of Respiratory Diseases based on Murray and Nadel's textbook of
respiratory Medicine®®. We covered 20 radiological abnormalities, includ-
ing air bronchogram, atelectasis, bronchial lesion, calcification, cavity,
consolidation, emphysema, ground-glass opacity, honeycombing, lympha-
denopathy, mass, nodule, patchy shadow, pleural effusion, pleural
thickening, pneumoperitoneum, pneumothorax, pulmonary bulla, reticular,
and stripe shadow. The following inclusion criteria were used to screen
patients’ eligibility: (1) hospitalized inpatients diagnosed with major
respiratory diseases; (2) inspected with thoracic CT or CXR scans; and (3)
had access to EHRs, including at least discharge diagnosis records or
radiology reports. After screening, patients were further excluded based on
the following criteria: (1) having only postoperative images; (2) being
diagnosed with rare diseases other than the eight major respiratory
diseases we defined; (3) being under the age of 18; (4) radiological studies
with image reconstruction kernels unrelated to the lung and view positions
unrelated to the chest (e.g. only AP/PA were reserved), or having views
with motion artifacts.
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For the EHR data collection in our study, ideally, for a unique patient, his/
her EHR data should include at least two basic pieces of information, that
is, radiology reports and discharge diagnosis reports in line with
international standards (for example, ICD-10). Other information, such as
basic condition, disease course, prescription, and medical examination
documents issued by the doctor, could also be used. Sensitive information
contained in these EHR data should be desensitized in accordance with the
relevant requirements, regulations, and standards of the state and
competent departments of the medical and health industry for the
protection of user privacy data in these fields.

Ground-truth labels

In this study, radiological reports and multi-modal discharge diagnosis
records were used as the gold standards for abnormality detection and
disease diagnosis. To train the model, given that manually annotating the
classification of abnormalities/diseases according to the original records
can be too time-consuming, it is necessary to leverage automated label
extraction techniques to create a large-scale labeled dataset containing
CT/CXR data and linked abnormality/disease labels using the NLP method.
On the validation dataset, for a fair comparison, the performance of the
DeepMRD™ was compared to that of human readers using reviewed
diagnosis records from EHR as the gold standard.

During the development of these automated label extraction models, a
modest quantity of training data (n = 1000) was manually annotated by a
group of medical specialists. Patients were requested to mark the presence
or absence of abnormalities and diseases according to the original
radiology reports and discharge diagnosis records, respectively. At least
two human experts were involved in the annotation of each free text
report. Annotation results were compared to reach a consensus. In the
event of inconsistent annotations, an extra human expert was introduced
to make the final arbitration.

Radiology data standardization

We collected a radiology dataset using two modalities (CT and CXR). Both
CT and CXR data were collected by selecting scans obtained at hospitals
and dated from Oct, 2008. This study only included CT and CXR data
together with relevant EHRs. To create abnormality and disease labels, the
built NLP system was used to automatically assess the related radiological
reports and discharge diagnosis records. The CT images were standardized
to 64 x 256 X 256 to preserve as much detail as feasible in the axial axis
while reducing the computational expense. Furthermore, all CXR scans
were collected at a resolution greater than 886x886 pixels and
subsequently normalized to 1024x 1024 pixels. Other data pre-
processing methods also included data denoising, enhancement, and
rotation to increase the robustness of the network.

NLP model development

The description of the NLP model is shown in Supplementary Fig. 2. In
particular, the models took free-text radiology reports or discharge
diagnosis records as inputs and output a set of discrete binary labels for
multiple abnormalities and diseases, respectively. Patient records or
reports vary significantly in length and density of data points; therefore,
we vectorised the data into a form with multiple lines, each with a
specified length of 200, to facilitate further processing. If the sentence
length is less than the specified value, special symbols will be automatically
filled at the end by default. If the sentence length is greater than the
specified value, the first 200 will be retained by default, and the redundant
part will be truncated. Each comment becomes a uniform-length index
vector after data vectorization, and each index corresponds to a word
vector. The text classifier, which can be used for automatic label creation,
was created using supervised learning. Specifically, we fine-tuned a CNN-
based text classifier on the aforementioned labeled text-label pairs, whose
text features were extracted by BERT*.

CT-Net framework

Based on the learning targets, we developed two CT-Nets for abnormality
description and disease diagnosis. These two models followed distinct
model designs and were separately trained using different image/label
pairs. To efficiently extract representative features from the 3D volumetric
input, we used a modified ResNet-3D-18 backbone as a feature extractor.
The obtained features are combined with the input of the residual module
as the final output of the residual module. In particular, unlike the vanilla
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architecture, we neglected the first z-axis pooling operation to increase the
resolution of the final feature maps along the z-axis. A multiple binary
cross-entropy loss function was employed to supervise the multi-label
classification task.

Clinical experts first reviewed the CT volume for abnormal findings
before making a decision based on comprehensive reasoning about the
results. Inspired by this clinical routine, we created a two-stream
architecture for disease diagnosis that used the previously trained
abnormality description model for efficient feature representation of
abnormal CT volume data (Supplementary Fig. 3). Specifically, this
architecture uses an asymmetric nonlocal fusion module to fuse abnormal
features with a learnable diagnosis route. To achieve advanced transfer
learning efficiency, we adopted a variable-dimension transform-based
method to pre-train the 3D ResNet, whose parameters were used to
initialize the abnormality and diagnosis backbone?®,

CXR-Net framework

The CXR architecture design follows the concept described in the
aforementioned section for CT-Nets, where the abnormality model was a
single-pathway network and the diagnosis model adopted a dual-pathway
structure. We used a ResNet-50 backbone with 2D convolution blocks
instead of ResNet-3D-18 for feature extraction from the 2D CXR images. We
developed a mix-up-based contrastive learning strategy to pre-train
ResNet-50 utilized in CXR-Nets to assist effective transfer learning from
in-domain representations. Supplementary Fig. 4 depicts the contrastive
learning process in greater detail. The contrastive learning model learns
advanced transferrable CXR image representations from unannotated
images in an unsupervised manner. Specifically, it learns to distinguish
instances in a momentum-updating framework. As illustrated in the
“Feature Encoding” parts, parameters in the green network (bottom) were
updated using gradient backpropagation, while that in the gray network
(upper) were updated with momentum update as follows: netyey =
6 * Netgrey + (1 — B) * Netgreen. (P, 13), (FM, £, (fm, ") are positive feature
pairs that must be pulled closer to each other in the feature space. For
training, we employed an info Noise-Contrastive Estimation loss adapted
for the momentum update architecture, which drove the model to
separate different image instances and group similar images using data
augmentation or image and feature level mix-up. In this study, the
contrastive learning model was trained using large-scale public CXR
datasets such as ChestX-ray14>*, CheXpert*®, MIMIC-CXR*°, and MURA>° to
obtain a pre-trained backbone network, which was fine-tuned from the
learned pre-trained parameters using transfer learning to obtain advanced
prediction performances.

Network training strategy

For training and testing, we used the PyTorch®' deep-learning framework
on 8 x NVIDIA TITAN RTX GPUs. The Adam optimizer*' with a weight decay
of 0.0001 was used to train the CT-Nets. The initial learning rate was set at
0.0005, and the learning rate decayed by a factor of 10 after the 35th, 40th,
and 43rd epochs. All models were trained for 45 epochs. Owing to the
restricted GPU memory, the batch sizes on each GPU were set to 16 for the
abnormality model and 8 for the disease model.

To train CXR-Nets, an Adam optimizer with a weight decay of 0.0001 was
used. The initial learning rate was set at 0.0005, and the learning rate
decayed by a factor of ten after the 25th and 35th epochs. All models were
trained for 45 epochs. Owing to the restricted GPU capacity, the batch sizes
on each GPU were adjusted to 128 for the abnormality model and 64 for
the disease model.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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