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Cutaneous melanoma (CM) is one of the most life-threatening tumors.

Although targeted therapies and immune checkpoint inhibitors have

significantly improved patient outcomes over the past decades, they still

have their efficacy limitations. Immunogenic cell death (ICD) induces

regulated cell death through immunogenic signal secretion and exposure.

Accumulated evidence suggests that the ICD process is an effective target

for the treatment of a variety of tumor types, including CM. However, the

research on ICD in CM is far from complete, and its clinical value has not been

widely concerned. By analyzing the Cancer Genome Atlas (TCGA) database, we

constructed a new risk model based on 4 ICD-related genes and validated its

ability to predict the prognosis of CM patients. In addition, we comprehensively

analyzed the tumor microenvironment (TME) of CM patients and showed a

significant immunosuppressive TME in the high-risk group compared with the

low-risk group. By Immunophenoscore (IPS), we further explored the

correlation between the model and immunotherapy response. The data of

Genomics of Drug Sensitivity in Cancer (GDSC) database were further extracted

to analyze drug sensitivity and evaluate its correlation with the established risk

model. In the end, differential expressed genes (DEGs) were analyzed by Gene

Set Variation Analysis (GSVA) to preliminarily explore the possible signaling

pathways related to the prognosis of ICD and CM. The results of this study

provide new perspectives and insights for individualized and accurate treatment

strategies for CM patients.
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Introduction

As one of the threatening types of cancer, cutaneous melanoma

(CM) accounts for 10% of all new skin cancer cases diagnosed, and its

prevalence and mortality are further increasing worldwide (Siegel

et al., 2020). Due to its high rate of invasion and distant metastasis,

CM accounts for 72% of skin cancer deaths (Schadendorf et al., 2018).

In recent years, immune checkpoint blockade has attracted extensive

attention for its remarkable efficacy in clinical application of

melanoma (Sullivan and Flaherty, 2015). Despite significant

advances in targeted therapies and novel immunotherapies (Davis

et al., 2019; Steeb et al., 2020), the efficacy of all treatments is greatly

affected in comparison to aggressive surgical treatment in the early

stages of the disease. Therefore, there is a need to identify tumor-

related biomarkers and stages that influence prognosis. Therefore,

accurate early diagnosis is crucial for a good prognosis of melanoma.

Immunogenic cell death (ICD) is a type of regulated cell

death with different functions, which is characterized by the

secretion and exposure of immunogenic signals in dead tumor

cells. Immunogenic signals are known as damage related

molecular patterns (DAMP) (Tesniere et al., 2008; Bezu et al.,

2015). These DAMPs include: an endoplasmic reticulum (ER)

partner exposed to the plasma membrane of dead cells,

calreticulin (CALR), which is conducive to the function of

phagocytes (Obeid et al., 2007); ATP secreted in an

autophagy-dependent manner during ICD eventually plays a

chemotactic role (Elliott et al., 2009); under the action of ICD,

cells release a nucleoprotein highmobility group box 1 (HMGB1)

that binds to toll like receptor 4 (TLR4), which acts as adjust like

effects (Apetoh et al., 2007); type I interferon (IFN) is secreted

during ICD through interferon expressed on cancer and immune

cells α and β Receptors ultimately mediate chemotaxis and

immune stimulation (Sistigu et al., 2014). ICD and its related

damp have been reported to affect the outcome of a variety of

tumor diseases. The ICD process of damp above will lead to the

secretion of immunogenic signals in tumor cells, which can

activate dendritic cells (DC) and change immunosuppression

in tumors (Radogna and Diederich, 2018). Additionally,

chemotherapeutic drugs cause ICD, which in turn enhances

the anti-tumor immune response (Zhao et al., 2016). Previous

studies have reported that radiotherapy and some chemotherapy

drugs (such as Adriamycin and oxaliplatin) can induce ICD

in vitro and in vivo and stimulate the immune response against

tumor cells (Paolini et al., 2011; Pol et al., 2015). The accumulated

preclinical and clinical evidence shows that the ICD process is a

promising effective therapy target for a variety of tumors,

including CM (Sethuraman et al., 2020; Zhang et al., 2020).

However, the clinical value of ICD in CM has not been widely

concerned.

In this study, after analyzing the Cancer Genome Atlas

(TCGA) database, we systematically studied the relationship

between ICD related genes and the clinicopathological

characteristics of CM patients. Based on 4 ICD related-

genes, we constructed a new risk model and verified its

ability to predict the prognosis of CM patients. In

addition, we comprehensively analyzed the immune

microenvironment of CM patients, further explored the

correlation between the model and immune response and

drug sensitivity treatment, and preliminarily explored the

potential signal pathways in the process. The results of this

study provide new perspectives and insights for the

individualized and accurate treatment strategies of CM

patients.

Results

Identification of prognostic immunogenic
cell death-related genes

In this study, a total of 33 ICD genes were extracted to

evaluate the prognosis signature of patients with CM.

According to the univariate Cox regression analyses,

20 ICD genes associated with overall survival (OS) were

identified (Figure 1A). The 20 ICD genes were

subsequently subjected to the least absolute shrinkage and

selection operator (LASSO) model to calculate the optimal

coefficients, and 8 ICD-related genes were selected for the

subsequent analysis (Figure 1B,C). The expression of ICD

genes in normal tissues and tumor tissues was statistically

analyzed in Supplementary Figure S1.

Risk model construction of immunogenic
cell death-related genes

A fresh risk model was established to evaluate the

prognosis of CM patients based on the ICD-related genes

prognostic signature. Based on the multivariate Cox

regression analysis, 4 ICD-related genes including BAX,

EIF2AK3, CXCR3 and IL10 were identified to construct

the risk model. According to the median of risk score, the

patients with CM were ranked with the risk score and

classified into low- and high-risk group. The scatter dot

plot showed that the survival time of CM patients was

inversely correlated with the risk score (Figure 2A). The

Kaplan-Meier survival curve suggested that the OS rate of

CM patients in low-risk group was significantly longer than

those in high-risk group (Figure 2B). Principal component

analysis (PCA) results illustrated a clear separation between

low- and high-risk groups based on the 4 prognostic ICD-

related genes (Figure 2C). Heatmap visualization results

revealed the expression differences of 4 ICD-related genes

in low- and high-risk group (Figure 2D). The low-risk groups

showed a lower expression of BAX, whereas the expression of

EIF2AK3, CXCR3, and IL10 were higher in low-risk
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group. These results demonstrate that the risk model

construction based on the prognostic signature of 4 ICD-

related genes could accurately evaluate the prognosis of CM

patients.

Constructing a risk mode in the Cancer
Genome Atlas and GEO cohort

To confirm the accuracy and reliability of the prognosis value of

ICD-based risk score, a risk model was constructed using TCGA and

GEO cohort. The patients with CM in TCGA cohort were randomly

divided into training and test cohort based on the 4 ICD-related genes

prognostic signature. The CM patients were ranked according to the

median risk score in both cohorts, and the scatter dot plot revealed

that the survival time of CM was inversely associated with risk score

(Figures 3A,B). The PCA analysis of the training set and validation set

was shown in Supplementary Figure S2.

Meanwhile, GSE65904 cohort was employed to further

investigate the precision of risk model. According to the

median risk score, the CM patients in GEO cohort were

ranked and the scatter dot plot indicated a significant

correlation of survival time and risk score (Figure 3C).

The Kaplan-Meier survival curve analysis showed that

patients in the training cohort with low-risk score had

higher OS rate than those with high-risk score (p < 0.001,

Figure 3D). Additionally, the OS rate of CM patients with

low-risk score was significantly higher compared to those

with high-risk score in the test cohort (p = 0.015, Figure 3E).

The result of GSE65904 cohort illustrated that the OS rate of

patients with CM in low-risk group was significantly longer

than high-risk group (p < 0.001, Figure 3F). Collectively,

these above findings demonstrate that constructing the risk

model based on the 4 ICD-related genes prognostic signature

is accurate and reliable.

Risk model based on the immunogenic
cell death-related genes is an independent
prognostic indictor

Univariate and multivariate Cox regression analysis were

performed to investigate the ICD-related genes prognostic

signature was an independent prognosis factor for CM.

Univariate Cox regression analysis suggested that age

(hazard ratio (HR) = 1.020, p < 0.001), stage (HR = 1.473,

p < 0.001), T stage (HR = 1.445, p < 0.001), N stage (HR =

1.443, p < 0.001), and risk score (HR = 2.274, p < 0.001) were

closely related to OS rate of CM patients (Figure 4A).

Multivariate Cox regression analysis demonstrated that T

stage (HR = 1.396, p < 0.001), N stage (HR = 1.654, p <
0.001), and risk score (HR = 2.225, p < 0.001) were

significantly correlated with OS rate for CM (Figure 4B).

Subsequently, a model of nomogram was established to

accurately predict the 1-, 3-, 5-years OS rate of CM

patients based on the ICD-related prognostic signature

FIGURE 1
Identification of prognostic ICD-related genes in CM. (A) Univariate Cox regression analysis suggests that 20 ICD-related genes are associated
withOS in CM. (B,C) Least absolute shrinkage and selection operator analysis (LASSO) shows theminimal lambda and coefficients of prognostic ICD-
related genes.
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and clinicopathological characteristics (Figure 4C).

Additionally, the calibration curve revealed that the 1-, 3-,

and 5-year’s survival time predicted of nomogram exhibited

a satisfactory consistency to the actual OS rate for CM

patients (Figure 4D). The time-dependent ROC showed

that the AUC of 1-, 3-, 5-year was 0.672, 0.660, and 0.661,

respectively (Figure 4E). The ROC curves of the training set

and validation set was also analyzed to prove the

performance of this risk model. (Supplementary Figure

S3) Collectively, these results demonstrate that the

prognostic signature based on the ICD-related genes is an

independent prognostic predictor and accurately estimates

the prognosis of CM patients.

Correlation analysis of immunogenic cell
death-related genes prognostic signature
and clinicopathological characteristics

Thereafter, a stratified subgroup analysis was conducted to

investigate the prognostic value of the prognostic signature based

on the ICD-related genes. The CM patients were classified into the

FIGURE 2
Construction of risk model based on the prognostic ICD genes of patients with CM. (A) Distribution of risk score of CM patients and scatter dot
plot shows the correlation of risk score and survival time. (B) The Kaplan-Meier survival curve shows that the OS of low-risk group was significantly
higher than high-risk group. (C) Principal component analysis (PCA) shows a significant difference in high- and low-risk group based on the four
prognostic ICD genes. (D) Heatmap illustrates the expression of four prognostic ICD genes (BAX, EIF2AK3, CXCR3 and IL-10 in high- and low-
risk groups.
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subgroups according to the age (>65 vs. ≤ 65), gender (female vs.

male), N stage (N 0–1 vs.N 2–3), stage (stage 0–1 vs. stage 2–4), andT

stage (T 0–1 vs. T 2–4). The Kaplan-Meier survival curve analysis

revealed that the OS rate of patients with CM in low-risk group was

higher than those patients in the high-risk group based on the ICD-

related gene prognostic signature among the different

clinicopathological characteristics (Figures 5A–J). These results

illustrate that the prognostic signature based on the ICD-related

genes could accurately predict the prognosis of CM patients

relative to the clinicopathological characteristics.

Consensus clustering analysis for
immunogenic cell death-related genes
associated with prognosis and immune

infiltration landscape in cutaneous
melanoma

Consensus clustering analysis was performed to cluster

the patients with CM into different subgroup, and the result

illustrated an optimal classification for consensus clustering

with the K = 2 (Figures 6A–C). According to the 4 ICD-

related genes, the patients with CM were successfully

classified into two subgroups, with 198 patients in Custer

A, and 260 patients in Cluster B. The result of PCA showed a

clear separation between the Cluster A and Cluster B based

on the ICD-related genes (Figure 6D). The Kaplan-Meier

survival curve analysis suggested that the patients in Cluster

A had higher OS rate than those in Cluster B (Figure 6E).

FIGURE 3
Risk model construction in training cohort and test cohort and GSE65904. The distribution of risk score calculated by ICD-related genes
prognostic signature and the scatter dot plot shows the association of risk score and survival time in (A) Training cohort, (B) test cohort, (C)
GSE65904. (D–F) The Kaplan-Meier survival curve displayed the OS rate of patients with CM in low- and high-risk group in training cohort, test
cohort, and GSE65904.

Frontiers in Genetics frontiersin.org05

Fu and Ma 10.3389/fgene.2022.988821

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.988821


Subsequently, multiple immune estimate algorithms

were conducted to investigate the immune infiltration

landscape of patients in Cluster A and Cluster B. The

results of ESTIMATE algorithm showed that the patients

in Cluster A had higher stromal, ESTIMATE, and immune

score, whereas the tumor purity was significantly higher in

Cluster B (Figures 7A–D). To explore the immune

infiltration landscape of patients in Cluster A and Cluster

B, CIBERSORT and ssGSEA algorithm were performed.

The result of CIBERSORT algorithm illustrated a

markedly increased in proportion of B cells naive, plasma

cells, CD8 + T cells, CD4 + memory activated T cells and

T cells regulatory (Tregs)in Cluster A, but the patients in

Cluster B showed a higher proportion of CD4 + memory

resting T cells, NK cells resting, macrophages M0,

macrophages M0, macrophages M2, dendritic cells

activated, mast cells resting, mast cells activated,

eosinophils than those patients in Cluster A, indicating a

notable difference of immune infiltration landscape in the

two subgroups (Figure 7E). Moreover, the result of ssGSEA

algorithm revealed that the fraction of 23 immune cells in

Cluster A was much greater than in Cluster B, illustrating a

FIGURE 4
Independent prognostic analysis of clinical characteristics and risk score. (A) Univariate Cox regression analysis suggests a clear association
between OS rate and clinical characteristics including age, gender, stage, T stage, N stage, and the risk score. (B)Multivariate Cox regression analysis
indicates that T stage, N stage and risk score are an independent prognostic indicator for CM. (C) Nomogram construction of risk score and
clinicopathological characteristics to predict the 1-, 3-, 5-years OS rate of CM patients. (D) Calibration curve shows the accuracy between
predictive capacity and actual OS rate of 1-, 3-, and 5-years. (E) Time-dependent ROC curve shows the AUC at 1-, 3-, and 5-years.
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higher immune status of patients in Cluster A (Figure 7F).

The differential expression of ICD genes between the two

clusters was illustrated in the Supplementary Figure S4.

These above results demonstrate that the ICD-related

genes are associated with the prognosis and immune

infiltration landscape of patients.

The risk model is associated with immune
infiltration landscape in cutaneous
melanoma

The immune infiltration landscape of CM patients in

low- and high-risk group was further explored using multiple

immune estimate algorithms. The results of ESTIMATE

algorithm indicated that the patients with high-risk score

had lower stromal, ESTIMATE, and immune scores than

those with low-risk score. Notably, the tumor purity in low-

risk group was significantly lower than in high-risk group

(Figures 8A–D). The result of CIBERSORT algorithm

suggested that the fractions of B cells naive, plasma cells,

CD8 + T cells, CD4 + memory activated T cells, macrophages

M1 and mast cell activated were higher in low-risk group,

Inversely, the patients in high-risk group exhibited a

markedly increased in the proportion of T cells follicular

helper, T cells regulatory (Tregs), NK cells resting,

macrophages M0, macrophages M2, dendritic cells resting,

dendritic cells activated, mast cells restin, mast cells

activated and eosinophils (Figure 8E). The result of

ssGSEA algorithm revealed that the fractions of

23 immune cells were significantly lower in high-riak

group than in low-risk gorup, indicating that the patients

with low-risk score had higher immune status (Figure 8F).

Taken together, these findings demonstrate that the risk

FIGURE 5
The Kaplan-Meier survival curve of patients in low- and high-risk groups stratified by clinicopathological characteristics. The survival curve
analysis reveals theOS rate of patients in low- and high-risk group stratified by (A,B) Age (>65 vs. ≤65), (C,D)Gender (female vs. male), (E,F)N stage (N
0–1 vs. N 2–3), (G,H) Stage (stage 0–1 vs. stage 2–4), (I,J) T stage (T 0–1 vs. T 2–4).
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model for ICD-related gene is associated with the immune

infiltration landscape and can indicate the immune status of

CM patients.

Risk model is associated with
immunotherapy response

As a novel predictor of immunotherapy response to anti-

CALT-4 and anti-PD-1, immunophenoscore (IPS) has been

employed to indicate the response to immune checkpoint

inhibitor (ICI) therapy in tumor. Considering the

remarkable differences of the immune infiltration landscape

in low- and high-risk group, the association between risk score

and IPS/ICI was further investigated. The results of IPS

analysis revealed that the patients in low-risk group

showing a promising response to anti-CTLA-4, anti-PD-1

and anti-CTLA-4/anti-PD-1, illustrating a better benefit

potential in immunotherapy of patients in low-risk group

(Figures 9A–D). The result of ICI suggested that the

expression of LAG3, CTLA-4, PD-1, PDCD1LG2, and PD-

L1 in low-risk group were significantly higher than in high-

risk group (Figure 9E). To further illustrate the correlation

between the risk score and the efficacy of immunotherapy,

IMvigor210 cohort was investigated. Tumor Immune

Dysfunction and Exclusion (TIDE) analysis was further

applied for the prediction of immunotherapy. According to

the prognostic ICD-related genes, the risk score of patients in

the IMvigor210 cohort were calculated and divided into the

low- and high-risk group. According to TIDE analysis, high-

risk patients had a lower TIDE level and a higher exclusion

score (Figures 10A,B). The Kaplan-Meier survival curve

analysis suggested that the overall survival rate of patients

in the low-risk group was significantly higher than patients

with high-risk scores (Figure 10C). Additionally, the risk score

in CR/PR was significantly lower than in SD/PD in the

FIGURE 6
Consensus clustering analysis of CM patients based on the ICD-related genes. (A) Consensus clustering heatmap of group at k = 2. (B)
Cumulative distribution function (CDF) curve for k = 2–9. (C) Relative change in area under CDF curve for k = 2–9. (D) Principal components analysis
(PCA) shows a significant distribution pattern between cluster A and cluster B. (E) The Kaplan-Meier survival curve analysis reveals that the OS rate of
patients in Cluster A is higher than those in Cluster B.
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IMvigor210 cohort, indicating that the patients with low-risk

score had a better outcome with immunotherapy

(Figure 10D). These results demonstrate a promising

immunotherapy sensitivity in low-risk group, providing an

innovation insight for the future individualized precision

therapy for CM patients in different risk subgroup.

Correlation analysis of risk score and drug
sensitivity

The association between the antineoplastic drug

sensitivity and risk score was further investigated in the

following study. The IC50 of sunitinib, saracatinib,

rapamycin, paclitaxel, lapatinib, ruxolitinib and dasatinib

in low-risk group were significantly lower than in high-risk

group, whereas the IC50 of sorafenib was higher in low-risk

group (Figures 11A–H). The correlation of risk score and

drug sensitivity indicated that the risk score was significantly

positively correlated with sunitinib (R = 0.54, p < 2.2e-16),

saracatinib (R = 0.44, p < 2.2e-16), rapamycin (R = 0.6, p <
2.2e-16), paclitaxel (R = 0.58, p < 2.2e-16), lapatinib (R =

0.48, p < 2.2e-16), ruxolitinib (R = 0.5, p < 2.2e-16) and

dasatinib (R = 0.45, p < 2.2e-16), but negatively correlated

with saracatinib (R = -0.24, p < 1.6e-07) (Figures 11I–P).

These results illustrate a different response of antineoplastic

drugs of CM patients in different risk subgroups, suggesting

a promising benefit for individualized targeted therapy of

CM patients in the future.

Functional enrichment analysis

To explore the potential molecular mechanism

associated with the role of ICD-related genes, enrichment

analysis and GSVA were utilized. The volcano diagram

FIGURE 7
Immune infiltration landscape analysis of CM patients in Cluster A and Cluster B. (A) Stromal score. (B) ESTIMATE score. (C) Immune score. (D)
Tumor purity. (E) The fraction of 22 immune cells in Cluster A and Cluster B calculated by CIBERSORT algorithm. (F) The fraction of 23 immune cells
in Cluster A and Cluster B via ssGSEA algorithm.
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exhibited the DEGs in low- and high-risk groups, and the

result showed that most of the DEGs were down-regulated in

high-risk group (Figure 12A). GO enrichment analysis

indicated that DEGs were mainly enriched in immune-

related procession, such as lymphocyte mediated

immunity, and positive regulation of lymphocyte

activation (Figure 12B). KEGG enrichment analysis

suggested that DEGs were significantly enriched in

hematopoietic cell lineage, cell adhesion molecules, and

cytokine-cytokine receptor interaction (Figure 12C).

Moreover, GSVA analysis was employed to calculate the

KEGG terms in each CM patient, and the result showed

that immune-related signaling pathways were obviously

enriched in low-risk group (Figure 12D). Overall, these

findings demonstrate that immune-related processes may

mediate the role of ICD-related genes in CM patients.

Discussion

As one of the most aggressive malignancies, CM takes

responsibility for a large proportion of tumor related deaths

and the main cause of CM death is early metastasis (Nikolaou

and Stratigos, 2014). Therefore, early detection and risk

stratification are essential to improve CM survival. In this

study, we first constructed a risk model based on four

prognostic ICD-related genes, verified its ability to predict the

prognosis of CM patients, and preliminarily explored the

possible mechanism involved in this process. We also

attempted to explore the relationship between prognostic

models predicting the prognosis of CM and the immune

microenvironment. Considering the heterogeneity of CM

tumors, we conducted a consensus clustering analysis based

on the ICD genes of the model. By clustering the CM

FIGURE 8
Immune infiltration landscape analysis of CM patients in low- and high-risk group. (A) Stromal score. (B) ESTIMATE score. (C) Immune score. (D)
Tumor purity. (E) The fraction of 22 immune cells in low- and high-risk group calculated by CIBERSORT algorithm. (F) The fraction of 23 immune cells
low- and high-risk group calculated by ssGSEA algorithm.

Frontiers in Genetics frontiersin.org10

Fu and Ma 10.3389/fgene.2022.988821

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.988821


samples, we obtained two subtypes and explored the differences

between different subtypes on heterogeneity and tumor

microenvironment.

Although melanoma has immunogenicity, it develops an

immune escape mechanism to stimulate its rapid progression.

These mechanisms include impaired antigen presentation of

tumor cells, the accumulation of dysfunctional effector T cells

and the production of immunosuppressive TME (Oliveira et al.,

2021). Therefore, many methods have been developed to

revitalize the anti-tumor immune response. Recently approved

immune checkpoint inhibitors (ICI) immunotherapies have

completely changed the treatment of CM with significantly

improved survival rate and disease lasting control (Hodi et al.,

2018; Hamid et al., 2019). However, the response rate to ICI is

still limited (Reijers et al., 2022). Therefore, further efforts should

be made to maximize the efficacy of ICI treatment. ICD targeting

has been proved to be an effective way to prevent CM

carcinogenesis (Fu et al., 2022; Zhang et al., 2022). In our

data, TIDE analysis between different groups was used to

predict the effect of immunotherapy. The low-risk group was

more responsive to immunotherapy. Combined with the

significance of immunotherapy in clinical application, the

influence of ICD classification on prognosis was explained. In

addition, differences in drug sensitivity as determined by ICD

may also partly account for differences in prognosis. This is in

line with the report that ICD related to CM immunophenotype

cold to hot transformation. In some CM patients, adverse tumor

microenvironment (TME), lack of invasive T lymphocytes, or

increased Tregs failed to respond to ICI. This kind of situation is

called “cold” TME. The latest report says that by activating ICD,

targeting wee1/akt pathway can lead to the recruitment and

activation of immune cells in TME, triggering an

inflammatory cascade, so that the “cold” TME of melanoma

can be transformed into a “hot” TME responsive to programmed

cell death proteins, leading to the complete regression of

established tumors (Dinavahi et al., 2022). Combined with the

FIGURE 9
Immunophenoscore (IPS) and immune checkpoint inhibitor (ICI) expression of CM patients in low- and high-risk group. (A–D) IPS score shows
the response to PD-1 and CTLA-4 for CM patients in low- and high-risk groups. (E) Immune checkpoints inhibitor (ICI) expression of patients with CM
in low- and high-risk groups.
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significant prognostic significance of ICD-related genes risk

model in this paper, further research on the process of ICD

will help to achieve a better clinical prognosis of CM.

As a member of the Bcl-2 family, BAX forms pores in the

outer membrane of mitochondria, resulting in the release of pro-

apoptotic factors into cytosol, thus initiating the process of

apoptosis (Tait and Green, 2010). In CM, low expression of

BAX has been reported to be associated with higher PFS (Gutta

et al., 2020). The correlation between higher BAX expression and

poor prognosis in our high-risk group also verified this

conclusion. This is not consistent with the intuitive role of

BAX in promoting apoptosis in tumors. In fact, in acute

myeloid leukemia and non-Hodgkin lymphoma, highly

expressed BAX is also associated with poor outcome. Since

the mechanism is not fully elucidated, there is therefore a

need to interpret or study characteristics that indicate

apoptosis capacity or resistance in specific disease settings and

contexts (Gutta et al., 2020). It has been proposed that following

effective apoptosis-induced therapy, dormancy in tumor tissue,

stem-cell-like cancer cells repopulate the tumor and promote

further spread and progression of the disease after amplification

(Labi and Erlacher, 2015; Ichim and Tait, 2016). This may partly

explain why expression patterns of high apoptotic reactivity are

associated with poor prognosis. Chemokine receptor CXCR3 has

been reported to be a biomarker of sensitivity to PD-1 blockade

(Chow et al., 2019; Telli et al., 2021). Combined with the

important role of PD-1-related therapy in CM, the correlation

between higher CXCR3 expression level and better prognosis of

CM can be explained. In addition, the important role of CXCR3

in CM T cell transport was also noted (Mikucki et al., 2015). This

is consistent with our results that higher CXCR3 expression levels

are associated with higher T cell infiltration levels in TME. It was

previously thought that melanoma inhibits the killing effect of

the immune system by secreting immunosuppressive cytokines

including IL-10 (Chen et al., 1994). However, as reviewed in

2019, IL-10 showed conflicting effects on immunity and cancer

(Ouyang and O’Garra, 2019). IL-10 itself has an effective anti-

tumor effect and also inhibits metastasis through immune-

dependent mechanisms, including inhibition of infiltrating

macrophages and angiogenic factors and activation of CD8+

T cell CTL (Berman et al., 1996; Fujii et al., 2001; Mannino

et al., 2015). In addition, IL-10 can activate CD4+ T cells and

CD8+ CTLs under certain in vitro conditions (Groux et al., 1998).

This is consistent with our data that the low-risk group with

higher IL-10 expression level has a better prognosis and the

corresponding results of immune infiltration. Our data suggest

that low EIF2AK3 gene expression levels in this cohort are

associated with poorer outcomes. As an unfolded protein

response (UPR) protein kinase, EIF2AK3 (also known as

PERK) regulates protein synthesis. Although EIF2AK3 has

been reported to be necessary for the progression of CM, it

also has the ability to trigger pro-apoptotic signals and inhibit cell

division by inhibiting cyclin D1 translation in CM (27977682). In

addition, EIF2AK3 induces immune metabolic reprogramming

and enhances anti-tumor T cell function (Chakraborty et al.,

2022). Therefore, the dual characteristics of tumor inhibition and

tumor promotion of EIF2AK3 still need to be further studied

in CM.

In our results, lower CD8+ T, CD4+ T cell, B cell, plasma cell,

MDSC cell level and higher M2 macrophage cell level indicated

that patients in the high-risk CM group undoubtedly had

immunosuppressive TME. The significance of DAMP in TME

has been reported. ATP, as a DAMP member, directs immune

cells to inflammatory sites; in addition, the loss of its receptor

almost completely blocks macrophage activity and accumulation

of CD4+ T and B cells (Merz et al., 2018). Moreover, ATP from

dying cancer cells promotes proteolytic maturation of caspase-1

and cleavage and release of interleukin (IL)-1β (Ghiringhelli

et al., 2009). In addition, as an important member of DAMP,

the CALR molecule acts as an important “eat me” signal against

the “don’t eat me” signal of tumor cells to promote antigenic

uptake and immune recognition of APC (Le Saux et al., 2021).

HMGB1 was characterized extracellular as a pro-inflammatory

predictor. As a “danger” signal, HMGB1 polarizes pro-

inflammatory microglias through the RAGE-NF-κB pathway,

FIGURE 10
Immunotherapy response analysis. (A) TIDE. (B) Exclusion. (C)
The Kaplan-Meier curves shows the OS rate of patients in the low-
and high-risk group in anti-PD-L1 cohort (IMvigor210 cohort). (D)
The risk score in CR/PR and SD/PD indicates a significant
difference in the IMvigor210 cohort. PR, Partial Response, PD,
Progressive Disease; SD, Stable Disease, and CR, Complete
Response.
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FIGURE 11
Drug sensitivity analysis in low- and high-risk group. The IC50 value exhibits a significant difference in low- and high-risk group among (A)
Sunitinib, (B) Sorafenib, (C) Saracatinib, (D) Rapamycin, (E) Paclitaxel, (F) Lapatinib, (G) Ruxolitinib and (H) Dasatinib. (I–P) Correlation analysis of risk
score and drug sensitivity.
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thereby activating innate immunity (Fan et al., 2020). After ICD

development in tumor cells, HMGB1 acts on TLR4 on DC and

promotes optimal processing of tumor antigen toward crossover

triggering T cells (Moriya et al., 2021). Our data again validated

the significant correlation between ICD-related TME changes

and CM prognosis.

In conclusion, we constructed a risk model consisting of

4 ICD-related genes and effectively predicted the prognosis of

CM patients. We also comprehensively analyzed the immune

microenvironment between high and low risk groups. The

correlations of immune infiltration level, immune response

and drug sensitivity treatment between two risk levels were

further explored and signal pathways involved were

preliminarily analyzed. This study provides a new perspective

and insight for individualized and accurate treatment strategies

for CM patients.

Materials and methods

Ethics statement

This study has been approved by the Ethics Committee of

Qilu Hospital (Jinan, China). The data was retrieved from

published literature, and all analysis were performed in

accordance with the Declaration of Helsinki.

Transcriptome data and clinical data
collection

The normalized transcriptome gene expression matrix

(RNA-Sep, FPKM format) and clinical information materials

were downloaded from The Cancer Genome Atlas database

(TCGA) (https://portal.gdc.cancer.gov/). The transcriptome

gene expression matrix of the normal tissues for CM were

downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/) (RNA-Sep, FPKM format).

Moreover, the normalized transcriptome gene expression

matrix of normal tissues and tumor tissues was merged and

normalized for the subsequent analysis. The samples without

survival time were excluded and a total of 458 CM samples were

included for the subsequent analysis. Perl scripts were conducted

to merge the gene expression matrix of each sample and the

expression of mRNAs were annotated using the ensembles

human genome browser GRCh38.p13 (http://asia.ensembl.org/

index.html). The transcriptome matrix of GSE65904 was

obtained from the GEO database (https://www.ncbi.nlm.nih.

FIGURE 12
Functional enrichment analysis of differential expressed genes (DEGs) in low- and high-risk group. (A) The volcano diagram exhibits the DEGs in
low- and high-risk group with the threshold setting at | FC | ≥ 2 and p-value < 0.05. (B)GO enrichment analysis of DEGs in low- and high-risk groups.
(C) KEGG enrichment analysis of DEGs in low- and high-risk groups. (D) GSVA shows the KEGG terms of each CM patient in low- and high-risk
groups.
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gov/geo/) and we extracted the expression file from above

transcriptome matrix via Perl scripts. A total of 210 CM

samples were collected from GSE65904 for the further

analysis. The transcriptome data of TCGA and GEO were

merged and removed batch effects via “SVA” R package. The

clinical information materials included survival time, survival

status, age, gender, stage, and T, N stage were obtained using Perl

scripts from the TCGA database. In this study, all information

and clinical matrix involved were downloaded from the public

database. Approval from the ethics committee and written

informed consent from patients were not required.

Risk model construction of immunogenic
cell death-Related genes

The Immunogenic Cell Death (ICD) related genes were

identified and extracted from the previous research, and a

total of 33 ICD-related genes were included to construct the

risk model (Garg et al., 2016) (Supplementary Table S1).

Based on univariate Cox regression analysis, the least

absolute shrinkage and selection operator (LASSO)

algorithm was employed to identify the ICD-related genes

associated with overall survival (OS) rate using R package

“glmnet”. Then, multivariate Cox regression analysis was

performed to identify the candidate prognostic ICD-related

genes and constructed the risk model. The risk score of each

sample was calculated according to the following formula: =

(−0.244 x the expression of CXCR3) + (−0.236 x the

expression of IL10) + (−0.344 x the expression of

EIF2AK3) + (0.276 x the expression of BAX expression).

Thereafter, the CM patients were divided into low- and

high-risk groups according to the median risk score. The

Kaplan-Meier survival curve was conducted to estimate the

OS rate of patients in low- and high-risk group via log-rank

algorithm using R packages “survival”. The principal

component analysis (PCA) was used to investigate the

separation pattern of patients in low- and high-risk group

based on the prognostic ICD-related genes using R package

“ggplot2”.

Validation of the risk model

According to the ICD-related genes, the samples in TCGA

database were classified into the training cohort and the test

cohort to the ratio of 7:3, with 321 samples in the training cohort

and 137 samples in the test cohort, and calculated the risk score

of each sample, respectively. Moreover, GSE65904 was utilized to

validate the stability of the risk model as an external validation

cohort. The risk score of each sample was calculated and divided

into low- and high-risk groups according to the median risk

score.

Independence evaluation of risk model

Univariate and multivariate Cox regression analysis were

employed to investigate the risk model was an independent

indicator for CM using R package “survival”. A nomogram

model was constructed of clinicopathological characteristic

and risk score via R package “rms”. According to Cox

regression analysis, all variates were calculated and estimated

the 1-, 3- and 5- year’s survival probability of patients.

Calibration diagram and consistency index (C-index) were

commonly parameters to assess the accuracy of nomograms

and the C-index was positively correlated with the nomogram

accuracy. The prognostic capability of the risk model constructed

by risk score was validated using time-dependent receiver

operating characteristic (ROC) analysis via R package

“timeROC”.

Consensus clustering

According to the prognostic ICD-related genes, consensus

clustering was performed using the R package

“ConsensusClusterPlus”. The clustering was established on the

grounds of partitioning around medoids with “Euclidean”

distances and 1,000 verifications were performed. Finally,

according to the optimal classification of K = 2−9, the

patients with CM were clustered into two subtypes for the

further analysis.

Immune infiltration landscape analysis

ESTIMATE algorithm was conducted to evaluate the

estimation of stromal and immune cells in tumor. Stromal,

immune, ESTIMATE score, and tumor purity were calculated

via R package “estimate”. CIBERSORT algorithm was utilized to

investigate the immune infiltration landscape, and 22-types

immune cells were evaluated based on “CIBERSORT R script

v1.03”. A single sample gene set enrichment analysis (ssGSEA)

algorithm was performed to assess the proportion of 23-types of

immune cells via the “GSVA” R package.

Immunotherapy response and drug
sensitivity analysis

In this study, the result of Immunophenoscore (IPS) was

obtained from the TCIA database (https://tcia.at/home). The

expression of immune checkpoint inhibitor (ICI) included LAG3,

CTLA4, PD-1, PDCD1LG2, and PD-L1 were extracted from the

TCGA matrix using R package “limma”. The expression of ICI

was transformed by log2(expression + 1). Tumor Immune

Dysfunction and Exclusion (TIDE) Analysis was analyzed
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using TIDE database (http://tide.dfci.harvard.edu/login/). An

anti-PD-1/PD-L1 treatment cohort (IMvigor210) cohort was

used to evaluate the response of anti-PD1/PD-L1 for CM

patients. The expression of ICD-related genes was extract

from the IMvigor210 cohort and the risk scores of each

sample were calculated. A total of 348 samples were divided

into low- and high-risk group. Drug sensitivity (IC50) was a vital

indicator for evaluating drug efficacy or sample response to

treatment. Based on the Genomics of Drug Sensitivity in

Cancer (GDSC) database, the drug response of each sample in

low- and high-risk was predicted via R package “pRRophetic”. All

statistical analyses were visualized via “ggplot2” R package.

Functional enrichment analysis

The R package “limma” was used to identify the differential

expressed genes (DEGs) in low- and high-risk group, and the p-value

was adjusted using “FDR” method. Moreover, the threshold for

screening DEGs was set at |Fold Change| ≥ 2 and p-value < 0.05.

Metascape database (http://metascape.org/) was used to explore the

potential biological functions of DEGs, and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis was performed to enrich the

DEGs into pathways using the “clusterProfiler” R package (Yu et al.,

2012). The activity of KEGG term in each patient with CM was

conducted using R package “GSVA”.

Statistical analysis

All statistical analyses were performed using R software (version

4.1.0) and Perl scripts. Spearman-ranked correlation analysis was

applied to investigate the correlation between risk score and IC50,

with p-value < 0.05 was considered significantly different.

Differential functions were analyzed using the Wilcoxon rank-

sum test between the two groups, and statistical significance was

set at p-value < 0.05.
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