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Abstract: Cystic fibrosis is a genetic disease caused by mutation of the CFTR gene, which encodes a
chloride and bicarbonate transporter in epithelial cells. Due to the vast range of geno- and phenotypes,
it is difficult to find causative treatments; however, small-molecule therapeutics have been clinically
approved in the last decade. Still, the search for novel therapeutics is ongoing, and thousands of
compounds are being tested in different assays, often leaving their mechanism of action unknown.
Here, we bring together a CFTR-specific compound database (CandActCFTR) and systems biology
model (CFTR Lifecycle Map) to identify the targets of the most promising compounds. We use a dual
inverse screening approach, where we employ target- and ligand-based methods to suggest targets of
309 active compounds in the database amongst 90 protein targets from the systems biology model.
Overall, we identified 1038 potential target–compound pairings and were able to suggest targets for
all 309 active compounds in the database.

Keywords: cystic fibrosis; docking; ligand-based drug design; target-based drug design/target
identification; virtual screening

1. Introduction

Cystic fibrosis (CF) is one of the most common genetic diseases prevalent among the
population of Caucasian ancestry, where it affects approximately 1 in 3000 newborns [1–3].
It is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR)
gene [4], which encodes a membrane protein that serves as a chloride and bicarbonate chan-
nel in the exocrine epithelia of various organs, thereby regulating the viscosity of the mucus
lining [5]. Defective CFTR, therefore, has severe implications throughout the body, its major
hallmarks being recurrent pulmonary infections and pancreatic insufficiency [4,5]. Of the
currently known 2100 mutations of the CFTR gene, several hundred have been shown to
be disease causing [6–8]. These mutations cause disturbances throughout CFTR’s intricate
and delicately balanced biogenesis, which, even in its wild-type (wt) form, only converts
20–40% of the transcripts into a fully functional protein [9]. In order to make handling and
working with the multitude of mutations easier, they are categorized into different classes,
depending on what kind of defect they cause. Originally, four major mutation classes were
proposed, and over the years, this has been expanded to seven classes (I: no CFTR synthe-
sis; II: CFTR trafficking defect; III: CFTR dysregulation; IV: defective gating; V: reduced
CFTR transcription; VI: less stable protein; and VII: no CFTR mRNA) [10–14]; however, as
many mutations cause multiple defects, an expanded, combinatorial classification system
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was proposed [15]. Here, mutations are assigned to groups of all possible combinations
of the single-defect mutation classes, resulting in a more comprehensive grouping. In
addition to the multi-defect mutations, patients often carry more than one mutation. These
factors lead to a vast range of geno- and phenotypes, which makes the development of
effective causative therapeutics especially challenging. In recent years, different small-
molecule therapeutics have been developed for clinical applications, which improve the
CFTR function by directly targeting the CFTR protein and not just alleviating symptoms
of CF-patients. Currently, four pharmaceutical drugs, different combinations of four com-
pounds, are approved and available as causative therapy to some CF patients [16–19]. The
active compound in the first approved drug, Kalydeco, is Ivacaftor, a CFTR potentiator
which is approved mainly for gating mutations [20,21]. The other drugs are combination
therapies [18,19], i.e., they contain two or more active compounds and thereby target multi-
ple defects. Orkambi contains Ivacaftor and Lumcaftor, a CFTR corrector, which acts as
small-molecule chaperone to correct the folding defect of some class II mutations [22,23],
and Symdeco, which contains Ivacaftor and Tezacaftor, an alternative CFTR corrector [24].
The most recent drug, Kaftrio (known as Trikafta in the US), is a triple combination of
Ivacaftor, Tezacaftor and Elaxacaftor, which also acts as CFTR corrector [25,26]. Still, for
about 10% of patients, especially those with rare mutations, there is no causative medication
available [27]. In an effort to find effective treatments for all patients, the search for CFTR
modulators, especially synergistic compound combinations, is ongoing [28,29]. Thousands
of compounds are being tested in different cell-assays, often in high-throughput screens,
leading to large amounts of data and various candidate substances [20,30–41]. In order to
structure and collect the compounds tested as CFTR modulators, we previously developed
the publicly available database CandActCFTR (candactcftr.ams.med.uni-goettingen.de),
where compounds are annotated and categorized according to various characteristics,
including their mode of action and order of interaction with CFTR [42,43]. When analysing
the data, it becomes apparent that for about 70% of the active compounds, it is unknown
whether they affect CFTR directly through physical interaction, or indirectly through its
interactome. To support the elucidation of their mode of action, we previously developed
the CFTR Lifecycle Map (cf-map.uni-goettingen.de), where we used a systems biology
approach to create a human- and machine-readable model of the CFTR maturation path-
way in cells [44,45]. The CFTR Lifecycle Map is written in the standardized SBGN Process
Description format and comprises detailed representations of the molecular interactions
and pathways CFTR undergoes during its entire biogenesis. It contains 156 reactions with
262 different molecular entities, including 170 biomacromolecules, mainly proteins. Here,
we now connect the two resources in order to shed light on the mechanism of action of
active compounds by identifying their targets. For this purpose, we are using and combin-
ing two different reverse screening approaches. Traditionally, in drug discovery, virtual
screening approaches are applied to find bioactive compounds that bind to a specific target
protein. In reverse screening, the opposite approach is employed to identify the target
proteins of active compounds [46,47]. This is becoming increasingly important in order to
predict drug side effects and for drug repositioning, where existing drugs are repurposed
for other disorders. Several computational methods exist for reverse screening, which,
similarly to traditional virtual screening, can generally be divided into three categories [47].
The first class is target-based approaches, mainly docking, which requires high-quality
protein structures and has high computational costs. The two other classes are ligand
based, either on their shape or their pharmacological features. These require a solid data
foundation of known ligand–target interactions as reference databases. In the last decade,
reverse screening approaches have been applied to a range of use cases, especially to find
targets of natural compounds [46,47]. For example, a molecular shape-based method was
employed to identify the cyclin dependent kinase (CDK2) as target of the phytochemical
curcumin as possible explanation for its cancer-preventive properties [48]. Furthermore,
inverse docking, i.e., a target-based approach, has been used to, amongst others, study
different helicases in Zika viruses as targets of ligands from a flowering plant [49], inves-
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tigate the effect of thyme derived thymol on fat deposition [50], and shed light on the
antitumor targets of a library of natural bioactive compounds [51]. While most studies use
either one or the other approach, we here use both a target- and ligand-based approach
independently and combined to identify possible targets in the CFTR Lifecycle Map of
the active compounds from CandActCFTR. By using the two approaches, we were able to
include more potential protein targets than by exclusively using docking or shape-based
approaches. Ultimately, we tested 309 active compounds against 90 targets, resulting in
almost 30,000 possible combinations. Of these, 1038 unique target–compound pairings
were identified with graduated confidence levels in the range of 1–5. Importantly, we could
suggest at least one target for each active compound in the database, thereby bringing
the elucidation of their mechanism of action one step closer and serving as a basis for
finding novel compounds (classes) and predicting synergistic compound combinations.
This application shows how systems medicine disease maps, such as the CFTR Lifecycle
Map, can be utilized for in silico target identification and to provide the means to fill
knowledge gaps and support drug design.

2. Results
2.1. PDB Targets

In order to suggest possible mechanisms of actions of active compounds in the Can-
dActCFTR database [43], possible protein targets that are involved in CFTR biogenesis were
selected from the CFTR Lifecycle Map [45]. For this purpose, the Protein Data Bank [52]
was queried for experimental X-ray or CryoEM structures of all proteins within the CFTR
Lifecycle Map. The list was then filtered according to different criteria such as structure
completeness, resolution and experimental method. This list was narrowed down to 35 PDB
structures, including that of wt-CFTR, which are listed in Supplementary Table S1, together
with their experimental specifications and their role in the CFTR biogenesis. Overall, for 35
of the 170 proteins present in the CFTR Lifecycle Map, appropriate PDB structures could
be found, which cover a diverse range of functions and stages in the CFTR biogenesis. This
will be especially important to develop combination therapies with synergistic effects that
influence CFTR at different stages of its lifecycle. However, for some steps in the CFTR
lifecycle, specifically at the transcription stage, no docking-appropriate PDB structures of
CFTR interactors could be found. To remedy this situation, structure predictions from the
AlphaFold database (https://alphafold.ebi.ac.uk/, accessed on 9 September 2022) [53–55]
were considered as alternatives. Unfortunately, when comparing the results of the blind
cross-docking between a set of reference protein structures with co-crystallized ligands
and their predicted counterparts, the predicted structures resulted in much less accurate
docking results. Since the aim of this study was to find potential targets for our query
ligands, rather than of putative ligands for specific proteins, the inaccurate docking results
from predicted structures could potentially bias the overall results. It was therefore decided
not to use the predicted structures from the AlphaFold database and continue with the
subset of 35 experimental structures from the PDB database. Nonetheless, except for the
transcription stage, the 35 targets are well distributed across the CFTR Lifecycle Map. More
precisely, in addition to CFTR itself, 9 potential targets are involved in translation, folding
and ER quality control, 7 are associated with the secretory pathway, 5 with endocytosis,
and 13 are involved in CFTR activity.

2.2. Docking

All active compounds from the CandActCFTR [42,43] database were docked against
all 35 targets using the Smina [56] and QuickVina-W (qvina-W) [57] docking programs.
After docking, two methods (2.1) were used for post-processing. The first method [51]
(method I) filters out false positives and ultimately results in a list of the overall best-
scoring target–ligand pairings, while the second method [58] (method II) also filters out
false positives but then calculates the most likely target for each ligand. A comparison of
the results from all four approaches can be seen in Figure 1A. Method I resulted in a list of

https://alphafold.ebi.ac.uk/
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21 target–ligand pairings for the docking results from the qvina-w docking program. Of
the 48 high-scoring pairings, 19 were also among the ones identified by method II.
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Figure 1. Available protein structures of targets in the CFTR Lifecycle Map. Highlighted in blue are
all proteins of which an appropriate PDB structure could be found and which were used as targets in
the target-based approach.

Using the results from the Smina docking program, 45 target–ligand pairings were
identified using the method I, 30 of which were also identified by the second approach.

When comparing the results from the two docking programs, method II identified
43 common target–ligand pairings, while there were no common pairings found by both
method I approaches.

Figure 1 shows the number of ligands attributed to the targets by all methods combined.
On average, the mean Tanimoto similarity amongst ligands associated with the same
target was 0.25 on average, indicating that there is no bias towards a specific compound
class for one target. As can be seen, PRKACA (the catalytic subunit α of protein kinase
A) (108 ligands) and CSNK2A1 (Casein kinase II subunit α) (60 ligands) have a lot of
compounds ascribed to them by at least one approach. As both analysis methods take into
account average scores for each ligand over all targets, the docking results for PRKACA
and CSNK2A1 were removed from the data, and the entire analysis of the docking results
was repeated, in order to eliminate bias from these two targets.
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Figure 2B shows that the number of ligands identified per target are much more
evenly distributed after removing the PRKACA and CSNK2A1 from the docking data. The
target with the most ligands associated with it here is RAB5A (Ras-related protein Rab-5A)
(47 ligands). On average, the mean Tanimoto similarity amongst ligands associated with
the same target was 0.21, so they appear to be structurally different.
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Figure 2. Results of the target-based approach using all targets. (A): Venn diagram representing
the number of target–ligand pairings identified by both methods with both docking programs and
the overlap in results. The yellow ellipse shows the pairings identified by method I using the
docking results by Smina, the red ellipse shows the results of method I using qvina-w docking results.
Shown in purple and teal are the pairings identified by method II using the Smina and qvina-w
docking results, respectively. (B): The number of ligands associated with each target by all four
approaches combined.
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The number of targets per ligand of all pairings identified by method I (including
and excluding the results with PRKACA and CSNK2A1) can be seen in Figure 3. As
can be seen, the number of potential targets for each ligand is relatively low, indicating
specific interactions. Most ligands are only associated with one or two targets, one is
associated with three and four targets, respectively, two to five targets, and only one ligand
is associated with six targets. The ligand with the most targets associated (ligand 2144)
is the deoxyribose dATP, which is predicted to bind to the Ras-related proteins RAB4A,
RAB5A, RAB7A, RAB9A, and RAB11B and the secretion-associated Ras-related GTPase 1A
(SAR1A), all of which are GTP-binding proteins.
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Figure 3B shows the Protein–Ligand-Interaction network for all pairings identified
by method I (including and excluding the results with PRKACA and CSNK2A1). Each
edge between two targets stands for a compound found for both of them, the width of the
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edge representing the number of compounds and the size of the node (targets) representing
its degree, i.e., how many other nodes it is connected to. Most targets have only one or
two potential compounds in common, except PRKACA and CSNK2A1, which share four
compounds.

As can be seen in the Venn diagram in Figure 2A, the consensus amongst the different
approaches was similar compared to when all targets were used. For the qvina-w docking
program, method I led to ten target–ligand parings, six of which were also identified by
method II. The results from the Smina docking program led to 39 pairings using method
I, 25 of which were also found with method II. Comparing the two docking programs,
method II identified 32 common pairings, and method I identified only one common pairing.
Interestingly, the ligand in this pairing is Lumacaftor (InChI Key: UFSKUSARDNFIRC-
UHFFFAOYSA-N), also known as VX-809, a well-known and clinically approved CF-drug,
known to bind to CFTR directly. Here, however, it is predicted to bind to the Ras-related
protein Rab-7a (RAB7A), a protein involved in endocytosis.

Two different binding pockets and binding poses were identified by both docking
programs, Smina and qvina-w, in accordance. The binding pockets can be seen in Figure 4,
where the poses predicted by Smina are coloured in blue, and the ones predicted by qvina-
w are green. Binding pocket A corresponds to the GTP binding site of RAB7A. The two
docking poses calculated by Smina and qvina-w, respectively, have an RMSD of 2.30 Å in
pocket A and 2.24 Å in pocket B. Figure 5 shows the 2D poseview of Lumacaftor docked into
both pockets by both docking programs. The black dotted lines represent hydrogen bonds,
the green spline sections represent hydrophobic interactions and the green dotted lines
show π-π stacking or π–cation interactions. As can be seen in Figure 5, in pocket A, for both
predicted binding poses, Lumacaftor interacts with various residues via hydrogen bonds,
and it undergoes hydrophobic interactions with tyrosine-37 and an π–cation interaction
with lysine-126. However, while the binding pose calculated by Smina shows a π–cation
interaction with the Magnesium ion in the GTP binding site, the binding pose predicted
by qvina-w suggests a π-π stacking interaction with tyrosine-37. In binding pocket B,
both binding poses suggest Lumacaftor undergoes hydrogen bonding with serine-72. The
binding pose predicted by qvina-w suggests an additional hydrogen bond with glutamine-
71, while the one predicted by Smina shows π-π stacking with tryptophane-102, as well
as hydrophobic interactions. Overall, both docking programs predict a higher binding
affinity for pocket A (Smina 13.4 kcal/mol, qvina-w 12.4 kcal/mol) than for pocket B (both
10.8 kcal/mol).

Figure 4. Cont.
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Figure 4. Results of method I using both docking programs combined, including and excluding
PRKACA and CSNK2A1. (A): Number of targets associated with each ligand. (B): Protein–Ligand-
Interaction network. Each nodes (circle) stands for one target, while the edges (lines) connecting
them represent the number of common ligands (=number on edge) associated with them by either
method. The thicker the edge, the more ligands two targets share. The size of the nodes represents
their degree, i.e., the number of other nodes they are connected to.
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Figure 5. Docking results of Lumcaftor to RAB7A (PDB 1T91). Pocket A is shown on the right side,
pocket B on the left. The docking poses of Lumacaftor predicted by qvina-w are coloured in green,
the ones by Smina in blue.

Two other target–ligand pairings were identified by three of the four approaches af-
ter the exclusion of PRKACA and CSNK2A1 from the docking data. The Ras-related protein
Rab-4a (RAB4A) was predicted to interact with ligand2995 (InChI Key: PSPRNONTFBJUDQ-
SCFUHWHPSA-N), an ATP analogue. Figure 6A shows the ligand at the GTP binding
site of RAB4A. There it is suggested to be coordinated via hydrogen bonding with leucine-
155, serine-158, alanine-154 and lysine-124, as well as a π-π stacking interaction with
phenylalanine-35. For this pairing, qvina-w calculated a binding affinity of −10 kcal/mol,
and Smina calculated a binding affinity of −12.7 kcal/mol.



Int. J. Mol. Sci. 2022, 23, 12351 9 of 23Int. J. Mol. Sci. 2022, 23, 12351 9 of 23 
 

 

qvina-w Smina 

 

 

(A) 

  

(B) 

Figure 6. Two-dimensional representation of the docking poses of Lumacaftor to RAB7A and pre-

dicted interactions between them. Black dashed lines represent hydrogen bonds, green spline sec-

tions show hydrophobic interactions and green dashed lines represent π-π stacking or π−cation 

interactions. (A) Docking poses calculated by qvina-w and Smina for binding pocket A. (B) Docking 

poses calculated by qvina-w and Smina for binding pocket B. 

Furthermore, Derlin-1 (DERL1), also known as degradation in endoplasmic reticu-

lum protein 1, was predicted to interact with Equol (ligand104, InChIKey:  

ADFCQWZHKCXPAJ-GFCCVEGCSA-N). Figure 6B shows the predicted binding pocket 

of Equol in DERL1, where it is predicted to undergo π-π stacking interactions with tryp-

tophane-106 and 18. Here, qvina-w calculated a binding affinity of −8.9 kcal/mol, while 

Smina calculated a binding affinity of −11.1 kcal/mol. 

2.3. Ligand Similarity Approach 

For the ligand-based similarity approach, known ligands for the 35 selected targets 

were collected from the databases BindingDB [59] (https://www.bindingdb.org, accessed 

09.09.2022) and ChEMBL (https://www.ebi.ac.uk/chembl/, accessed 09.09.2022) [60–62]. 

Overall, 6787 target–ligand interactions could be found in the BindingDB and 8536 were 

Figure 6. Two-dimensional representation of the docking poses of Lumacaftor to RAB7A and
predicted interactions between them. Black dashed lines represent hydrogen bonds, green spline
sections show hydrophobic interactions and green dashed lines represent π-π stacking or π−cation
interactions. (A) Docking poses calculated by qvina-w and Smina for binding pocket A. (B) Docking
poses calculated by qvina-w and Smina for binding pocket B.

Furthermore, Derlin-1 (DERL1), also known as degradation in endoplasmic reticulum
protein 1, was predicted to interact with Equol (ligand104, InChIKey: ADFCQWZHKCXPAJ-
GFCCVEGCSA-N). Figure 6B shows the predicted binding pocket of Equol in DERL1,
where it is predicted to undergo π-π stacking interactions with tryptophane-106 and 18.
Here, qvina-w calculated a binding affinity of −8.9 kcal/mol, while Smina calculated a
binding affinity of −11.1 kcal/mol.

2.3. Ligand Similarity Approach

For the ligand-based similarity approach, known ligands for the 35 selected targets
were collected from the databases BindingDB [59] (https://www.bindingdb.org, accessed
on 9 September 2022) and ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 9
September 2022) [60–62]. Overall, 6787 target–ligand interactions could be found in the

https://www.bindingdb.org
https://www.ebi.ac.uk/chembl/
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BindingDB and 8536 were collected from ChEMBL. When merging the two datasets, 3631
of target–ligand interactions could be found in both databases, resulting in a combined
dataset of 11,692 unique interactions. From ChEMBL, ligands could be found for 22 targets,
of which 15 also had ligands listed in the BindingDB. The targets and the number of ligands
per target from each database are listed in Supplementary Table S2. The most ligands could
be found for the chaperone HSP90AA1 (3112 ligands), followed by the protein kinases
PRKACA (1730 ligands), CSNK2A1 (1710 ligands) and PRKAA2 (1551 ligands), which are
well-known pharmacological targets. For CFTR, 1012 ligands could be found, while less
than 1000 compounds were found for the remaining targets. Hence, ligand-based similarity
comparisons were conducted for 22 of the 35 targets.

For this purpose, the molecular fingerprints of the reference compounds and the
query compounds were calculated and compared pairwise to each other by calculating the
Tanimoto similarity. Using a similarity cut-off of 0.75, similar compounds between reference
and query ligands could be found for eight targets (Supplementary Table S3). Figure 7A
shows that the most compounds were found for CFTR (52 compounds), followed by the
catalytic subunit of the Serine/threonine-protein phosphatase 2B (PPP3CA; 34 compounds),
and the kinases PRKACA (11 compounds), PRKAA2 (11 compounds) and CSNK2A1
(10 compounds). Two compounds could be found for each of the chaperones HSPB1 (also
known as Hsp27) and HSP90AA1, and one for ATPase 2 (ATP2A1). Of the 52 compounds
identified for CFTR, 13 were previously known to interact with CFTR directly. Reversely,
not all compounds reported as directly interacting with CFTR in the CandActCFTR database
were also identified via ligand similarity, showing that the reference ligands from ChEMBL
and the BindingDB do not exhaustively include all known ligands.

Figure 7B shows the Protein–Ligand-Interaction network of the results. As can be seen,
the kinases PRKACA, PRKAA2 and CSNK2A1 share the most compounds with each other.
All 11 compounds associated with them are shared between PRKACA and PRKAA2, 9 of
which they also share with CSNK2A1. All three kinases share the same seven compounds
with CFTR and the same two with HSPB1. PRKACA and PRKAA2 additionally share two
identical compounds with PPP3CA, which also shares one compound with each CFTR and
HSP90AA1, who share another compound amongst them.

Figure 7. Cont.
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Figure 7. Docking results for ligand2995 to RAB4A and Equol to DERL1. The upper panel shows the
docking results of ligand2995 to RAB4A (PDB 2BME). (A) Ligand2995 (coloured in purple) docked to
RAB4A (PDB:2BME) crystal structure at the GTP (coloured in grey) biding site. (B) Two-dimensional
representation of the binding pose of ligand2995 to RAB4A and predicted interactions between them.
Black dashed lines represent hydrogen bonds, green spline sections show hydrophobic interactions
and green dashed lines represent π-π stacking or π–cation interactions. (C): Equol (coloured in
purple) docked to DERL1 (PDB:7CZB) crystal structure. (D) Two-dimensional representation of
the binding pose of Equol to DERL1 and predicted interactions between them. Black dashed lines
represent hydrogen bonds, green spline sections show hydrophobic interactions and green dashed
lines represent π-π stacking or π–cation interactions.

As the ligand-based similarity approach does not depend on protein structures, the
dataset was extended by including all remaining potential targets from the CFTR Lifecycle
Map, resulting in a list of 168 proteins. The same procedure used for the small dataset
was used here to identify potential targets of active compounds in the CandActCFTR
database. For all targets combined, 36,851 target–ligand interactions could be found in
the BindingDB, and 29,020 were found in ChEMBL. There was an overlap of 15,984 target–
ligand interactions, resulting in a combined dataset of 49,887 unique interactions. Ligands
for 75 targets were collected from ChEMBL and ligands for 54 targets were collected from
the BindingDB, with an overlap of 52 targets between them. More than 5000 ligands could
be found for the histone deacetylase 6 (HDAC6, 6815 ligands), the phosphodiesterase 4D
(PDE4D, 6769 ligands), the glucocorticoid receptor NR3C1 (5063 ligands) and the adenosine
A2B receptor (ADORA2B, 5032 ligands). Again, the high number of ligands present in
the database indicates that they are pharmacological interesting targets. For 8 different
targets, more than 1000 ligands could be collected, and less than 100 ligands were found
for 46 targets.

The ligand similarity comparisons resulted in potential targets for 108 compounds,
distributed across 25 targets. Figure 8A shows the number of compounds identified per tar-
get. Again, most compounds were found for CFTR (52 compounds), due to the general bias
towards CFTR-relevant compounds amongst the query ligands from CandActCFTR. More
than 40 compounds were linked to NR3C1 (42 compounds), the beta-2 adrenergic receptor
(ADRB2, 40 compounds), followed again by the catalytic subunit of the Serine/threonine-
protein phosphatase 2B (PPP3CA; 34 compounds). For the remainder of the targets, less
than 15 compounds were found to be similar to the known ligands.
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Figure 8. Results from the ligand-based approach using the 35 selected targets. (A) Number of
ligands associated with each target. (B) Protein–Ligand-Interaction network. Each nodes (circle)
stands for one target, while the edges (lines) connecting them represent the number of common
ligands (=number on edge) associated with them by either method. The thicker the edge, the more
ligands two targets share. The size of the nodes represents their degree, i.e., the number of other
nodes they are connected to.

Figure 8B shows the Protein–Ligand-Interaction network of the results. As can be
seen, the targets with the most shared compounds are NR3C1, ADRB2 and PPP3CA.
PPP3CA shares all of its 34 compounds with ADRB2 and NR3C1. The next targets with the
most shared compounds are again PRKACA, PRKAA2 and CSNK2A1, which, as already
described above, have 11 and 9 shared compounds, respectively. Additionally, CFTR and
NR3C1 share an overlap on 9 compounds. Overall, these seven targets (ADRB2, CFTR,
CSNK2A1, NR3C1, PPP3CA, PRKAA2 and PRKACA) are the most connected between
each other. The remaining targets share a smaller number of compounds with any of the
other targets.

2.4. Combined Approach

In order to obtain the most comprehensive overview of potential target–compound in-
teractions, the results from both the structure-based docking and the ligand-based approach
were combined.

Overall, a total of 1038 unique target–compound pairings were found, 757 via the
structure-based approach and 290 via the ligand-based approach (Supplementary Table S4).
The pairings were assigned confidence scores in the range of 1–5, depending on the number
of approaches they were identified by. Hence, a score of 5 is assigned when pairings are
identified by all methods, i.e., all four target-based approaches as well as the ligand-based
approach. The score therefore represents the consensus amongst the different approaches
used. The highest score reached was 4, by the RAB7A–Lumacaftor pairing. Overall, 8
pairings have a score of 3, 117 pairings have a score of 2, and the remaining 912 pairings
were identified by only 1 approach. No significant structural similarities could be found
between the compounds with higher confidence levels, indicating that there is no bias
present amongst them.

Furthermore, nine target–ligand pairings were identified by both the target- and
ligand-based approach. Of the nine pairings, five ligands were associated with CFTR and
two to each of PRKACA and PRKAA2. Four of the five compounds (Corr4a, InChIKey
RDOBOPJBMQURAT-UHFFFAOYSA-N; CHEMBL4471507, InChIKey DBGTUHVUTOSJOJ-
UHFFFAOYSA-N; CHEMBL4574818, InChIKey KHNUPLUQJFLSLN-UHFFFAOYSA-N;
CHEMBL4435663, InChIKey XTWGHYUHSFTZLL-UHFFFAOYSA-N) associated with CFTR
are similar in structure, but the fifth (InChIKey NOGRVEQYQUCZIW-UHFFFAOYSA-N)
differs substantially. One compound, apigenin, was associated with both PRKACA and
PRKAA2. Apart from apigenin, PRKAA2 was associated with Kaempferol (InChIKey
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IYRMWMYZSQPJKC-UHFFFAOYSA-N) and PRKACA was associated with Biochanin
(InChIKey WUADCCWRTIWANL-UHFFFAOYSA-N).

Potential targets were found for all 309 active compounds from the CandActCFTR
database (Supplementary Table S5). The distribution of compounds across the targets
is visualized in Figure 9. Targets which were associated with at least one compound
are displayed in colour, the colour itself representing how many compounds they were
associated to, ranging from 1 compound (yellow) to 120 compounds (red). The target with
by far the most compounds associated with it was PRKACA (120 compounds), followed by
CFTR with 76 compounds, CSNK2A1 with 72 compounds and RAB5A with 52 compounds.
Of the remaining targets, 27 had between 10 and 50 ligands associated with them, and 20
targets had less than 10 compounds. When looking at the binding sites of the potential
CFTR ligands identified by the target-based approach, mostly five main binding sites were
identified (Figure 10). Two of these correspond to the ATP-binding sites in the nucleotide
binding domains 1 and 2. One was close to the experimentally resolved binding site of
Lumacaftor (coloured in blue), one was close to the one of Ivacaftor (coloured in purple) [63],
and there was one additional binding site in the transmembrane domain 2.
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Figure 9. Results from the ligand-based approach using all targets. (A) Number of ligands associated
with each target. (B) Protein–Ligand-Interaction network. Each nodes (circle) stands for one target,
while the edges (lines) connecting them represent the number of common ligands (=number on edge)
associated with them by either method. The thicker the edge, the more ligands two targets share. The
size of the nodes represents their degree, i.e., the number of other nodes they are connected to.

Conversely, for the majority of compounds, 2–4 targets were identified, while a single
target was identified for only 15 compounds. Between 5 and 10 targets were identified
for 49 compounds, 1 compound has 11 targets associated with it and 6 compounds have
12 targets associated with them. Interestingly, all of these 6 compounds are almost identical
in structure and vary only in stereochemistry or side chain. These compounds were all
predicted to target the kinases CSNK2A1, PRKAA2, PRKACA, PRKCE and WNK1, but
also other targets, namely, ADOR2B, ADRB2, CFTR, NR3C1 and TNF.
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Figure 10. Most predicted binding sites in CFTR by target-based approach (PDB 7SVD and 6O2P).
Coloured in green are the potential binding sites. The positions of Lumacaftor (blue) and Ivacaftor
(purple) were shown experimentally by Fiedorczuk and Chen, 2022 [63]. Shown in light blue is the
binding site of Lumacaftor predicted by blind docking in the target-based approach, which is in agreement with
the experimentally predicted binding site.

3. Discussion

When searching for new drugs experimentally, especially in high-throughput screens,
where thousands of compounds are tested simultaneously, the mechanism of action of
promising compounds often remains unclear. Knowing the mechanism of action, however,
is helpful and important for a number of reasons. It is useful in order to identify novel drug
targets, find new classes of potentially active compounds, and to aid lead optimization.
Furthermore, it can be helpful for the early identification of potential side effects. Elucidat-
ing the mechanism of action of promising compounds is especially important in the drug
discovery for cystic fibrosis, as it is crucial for the development of combination therapies.
Here, we bring together two previously developed resources of community-derived knowl-
edge on cystic fibrosis, namely, the CandActCFTR database and the CFTR Lifecycle Map,
to aid in the elucidation of modes of action for known active compounds. For this purpose,
we use two different approaches to in silico target identification, a target-based approach
and a ligand-based approach.

Both approaches have different advantages and disadvantages when it comes to pre-
requisites. The ligand-based approach is much faster and less computationally expensive.
However, in order to be most effective, it requires comprehensive ligand libraries of the
targets in question. The target-based approach, on the other hand, requires complete and
high-resolution structures of the target proteins. From the 170 potential targets in the CFTR
Lifecycle Map, quality-sufficient protein structures could be found for 35 targets, and ligand
collections could be found for 77 targets, with an overlap of 22 targets. By combining the
approaches, it was thus possible to cover more than 50% of the potential targets in the
CFTR Lifecycle Map.

For the target-based approach, all active compounds from the CandActCFTR database
were docked blindly into the 35 target structures, meaning that no prior binding site was
defined, but the whole protein was searched. In order to produce comprehensive results,
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two different docking programs, QuickVina-W (qvina-w) and Smina, were used, which
differ in their method to calculate binding affinities. Due to their different scoring functions,
qvina-w and Smina produced different results, but with overall similar trends. Generally,
the binding affinities calculated by Smina were slightly higher than those calculated by
qvina-w. This is most likely caused by their different approaches to estimating ligand–
receptor-based affinity. While qvina-w uses the empirical Vina scoring function [57],
which is based on machine-learning [64], Smina uses a more physics-based approach [65].
However, the exact binding affinities are of secondary importance in this case, as the aim
in target identification is not to calculate the most precise scores, but rather compare the
likeliness of different matches to find potential target–ligand pairings. Therefore, in order
to normalize the results and remove false positives, two post-processing methods were
applied to the docking data independently. Method I results in a list of high-ranking target–
ligand pairings, while method II identifies the most likely target for each ligand. Overall,
however, the two methods produce similar results. Due to the high number of ligands,
method II results in a lot of more potential pairings; however, a high portion of pairings
identified by method I are also suggested by method II, underpinning both their validity,
while still remaining non-redundant. Interestingly, two proteins, PRKACA and CSNK2A1,
were identified in pairings significantly more often than the other ones. Both proteins are
protein kinases, which have been previously found to be promiscuous targets [66,67]. With
respect to the high number of ligands associated with the PRKACA and CSNK2A1, the
results from the ligand-based approach support the results from the target-based approach.
Again, the two kinases were amongst those with the most compounds associated with them.
Interestingly, a majority of these compounds could be associated with both proteins, and
additionally the kinase PRKAA2, which suggests a common, possibly promiscuous, binding
motif amongst these kinases. In order to remove bias from PRKACA and CSNK2A1 from
the docking calculations, the analysis was repeated without the data for these two kinases.

Overall, the majority of the predicted interactions (506 of the 1038 predicted inter-
actions) involve proteins that play a role in the activity and regulation of CFTR at the
plasma membrane. One explanation for this are the readouts of the experimental assays
used to identify the active compounds in their original publications. Most assays use
the ion conductance directly as a readout, so compounds that affect the activity of CFTR
directly at the membrane are readily detected by these methods. Of the remaining predicted
interactions, 161 involve proteins that play a role in CFTR translation and folding, 120
involve proteins of endocytosis and 108 involve protein of the secretory pathway. At total
of 76 interactions involve CFTR directly, and only 67 interactions involve transcriptions
factors or other proteins that influence CFTR transcription.

Remarkably, one of the protein-ligand pairings with the highest consensus amongst the
different approaches was for the compound Lumacaftor (VX-809) with RAB7A. Lumacaftor
is a well-known, clinically approved drug for patients with F508del mutations, as it acts
as a small-molecule chaperone to correct the folding defect of F508del-CFTR. It is known
to bind directly to CFTR, with its exact binding site elucidated by CryoEM (PDBs 7SVD
and 7SVR) [63]. Here, however, it was suggested to potentially also bind to the Ras-
related protein RAB7A, a GTP-binding protein involved in endocytosis, including that of
CFTR [68–70]. When looking close at the predicted binding mode, two different binding
sites are suggested for Lumacaftor in the RAB7A protein by both docking programs. In
both pockets, Lumacaftor is predicted to interact with the protein via different hydrogen
bonds, hydrophobic interactions and π-interactions. When looking at the binding mode
for Lumacaftor to CFTR as shown in the CryoEM structure (7SVD) [63], the compound is
coordinated mainly by hydrophobic interactions and only one hydrogen bond (Figure 11).
Hydrophobic interactions are rather weak intermolecular interactions, which is probably
why the binding affinity for Lumacaftor was calculated to be higher for RAB7A than
CFTR by the docking programs. However, when looking at the raw docking results for
CFTR, Lumacaftor is nonetheless amongst the top 10 highest ranking active compounds
calculated by both docking programs. Furthermore, Hou et al. previously showed how
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RAB7A inhibition increases apical CFTR stability [70]. Hence, while certainly intriguing
and requiring further investigation before confirmation, the pairing of Lumacaftor with
RAB7A, rather than with CFTR, therefore does not undermine the potential validity of
the results, as the scores calculated for the CFTR–Lumacaftor (Figure 12) pairing are only
slightly lower than the one for RAB7A–Lumacaftor.
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Figure 11. Combined results of all target identification approaches visualized in CFTR Lifecycle
Map. The CFTR Lifecycle Map is an SBGN (Systems Biology Graphical Notation) representation of
CFTR biogenesis in the cell. All proteins are shown as rounded rectangles. The colour represents the
number of compounds associated with each target by all four approaches combined, ranging from
one compound (yellow) to 120 compounds (red).
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Figure 12. Two-dimensional representation of the experimentally shown binding site of Lumacaftor
to CFTR (PDB 7SVD) [63] and predicted interactions between them. Black dashed lines represent
hydrogen bonds, green spline sections show hydrophobic interactions and green dashed lines
represent π-π stacking or π–cation interactions.

Another high-consensus protein–ligand pairing from the target-based approach was
for the compound Equol with DERL1. Equol is an isoflavandiol oestrogen, known to bind
to oestrogen receptor β [71]. It was also shown to be on the one hand a potent activator
of F508del-CFTR, but on the other hand, it affects its misprocessing [72]. DERL1 is an ER
membrane protein mediating the degradation of misfolded proteins such as misfolded
CFTR [73,74]. Thus, the effect Equol has on F508del-CFTR misprocessing might be mediated
by its binding to DERL1.

Of the 170 different proteins in the map, either protein structures or ligand data could
be found for 90 of them, which amounts to a coverage of 53%. This means that 80 proteins
(47% of proteins in the map) could not be considered as targets, due to the lack of available
data. As is often the case in in silico approaches, this effort to elucidate the mechanism of
action of candidate compounds was hampered by the lack of a comprehensive data corpus.
Nonetheless, by combining the ligand- and the target-based approach, potential targets
were suggested for all 309 active compounds in the CandActCFTR database, distributed
across 53 of the potential targets from the CFTR Lifecycle map.

It has to be noted that not all proteins involved in the CFTR biogenesis are equally
suitable as targets for CFTR modulators. For example, chaperones and other proteins that
are important for CFTR folding, ER quality control, and trafficking play a quite general role
in cells and are not specific to CFTR alone. Targeting them can therefore potentially lead to
unwanted side effects. Therefore, when selecting compounds and targets for experimental
testing, more research is needed on which proteins can be targeted and which should rather
not be interfered with.

Of course, experimental validation of protein–ligand interactions is always necessary
and preferred to docking- and ligand-similarity approaches. However, where experimental
data is not available or its generation not feasible, these in silico approaches are a good
way to fill knowledge gaps, suggest potential interactors, and thereby narrow down the
candidates for testing in the wet lab. These methods should therefore not be viewed as
replacement for wet-lab experiments, but as preceding step to support experimental work
and, in the meantime, at least provide indications of possible modes of action.

This project is part of the CandActCFTR project and serves as an essential connecting
piece between the chemistry centric CandActCFTR database, which collects compounds
tested as CFTR modulators, and the cell biology centric CFTR Lifecycle map, which is a
systems biology model of the CFTR biogenesis. By bringing the two parts together here,
we not only use and repurpose data from both resources, but are able to generate new
knowledge. The structured knowledge in systems medicine disease maps can therefore
directly be applied to drug design approaches. By using this comprehensive approach,
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we can now suggest mechanisms of actions for active compounds, propose potential drug
targets and predict possible additive effects of different substance combinations.

4. Materials and Methods
4.1. Reverse Docking

In order to identify targets for the active compounds of the CF-specific compound
database CandActCFTR [42,43], 37 potentially relevant protein targets were used for reverse
docking. The proteins were selected using the CFTR lifecycle map [45], a systems biology
model of the CFTR lifecycle. For this purpose, a KNIME [75] workflow was used to search
all PDB [52] entries for all proteins in the map and then filter them according different
criteria such as structure completeness, resolution and experimental method. This list was
narrowed down to 35 PDB structures, including that of wt-CFTR, belonging to targets
evenly distributed across the CFTR lifecycle. All target structures were prepared for docking
using AutoDockTools 1.5.7 [76].

The active compounds from the CandActCFTR database [43] were used as ligand
library. Structures were obtained in SMILES notation and converted and prepared for
docking using Open Babel [77,78].

Docking of all compounds against all ligands was performed using Virtual Flow [79]
with two different docking programs. Specifically, it was carried out using the Smina
docking program [56], with the Vinardo scoring function [65] to calculate binding scores
between ligands and targets, and the QuickVina-W [57] program, with the AutoDock Vina
scoring function [64]. Docking was carried out as blind docking, meaning that no specific
binding pocket was defined for each protein, but the entire protein was searched in order
to account for structures without known binding site and targets with several, potentially
unknown, binding sites. The search space in blind docking is significantly higher than
when using pre-defined binding sites, which leads to higher probabilities of not finding the
optimal conformation. Nevertheless, to obtain comprehensive results, the exhaustiveness,
i.e., the number of runs calculated per ligand and target was increased to 100.

All docking calculations were run on the Scientific Compute Cluster at the joint data
centre of Max Planck Society for the Advancement of Science (MPG) and University of
Göttingen with the SLURM Workload Manager [80].

Post-processing of the docking was performed using KNIME [75,81] and Pyrhon. In
order to remove false positives and obtain more reliable consensus results, two different
approaches were used to evaluate target–ligand pairings.

The first approach proposed by Lauro et al. [51] normalizes the binding energies of
each target–ligand pairing in a way that eliminates systematic errors and exclude false
positives. To do so, the docking results are written in a matrix format and equation (1) was
applied, where V is the new value, V0 is the binding energy from the docking calculate,
ML is the average binding energy of each ligand, and MT is the average binding energy of
each target.

V =
V0

[ML + MT]/2
(1)

Promising pairings were then selected by setting a lower threshold at V = + 3σ, where
M is the average of the whole matric, and σ is its standard deviation.

The second approach by Kim et al. [58] uses a 2-directional Z-transformation on
the docking-score matrix. Here, a target- and ligand-specific Z-score is calculated using
Equations (2) and (3), where is xi the docking score specific to the query ligand i, xt and
xl are the average scores of all targets and ligands, respectively, and SDT and SDL are the
respective standard deviations.

ZT =
(xi − xT)

SDT
(2)

ZL =
(xi − xL)

SDL
(3)
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The combined Zcomb is then calculated through Zcomb = 0.7 ∗ ZT + 0.3 ∗ ZL. In order
to select the most likely target, the receptor with the lowest Zcomb is selected for each ligand.
The 2-directional Z-transformation was carried out using the Python script provided by
Kim et al. [58].

Results from both filtering approaches were then compared to check for consensus
and find the most promising target–ligand pairings.

4.2. Ligand Based Approach

For the ligand-based approach, known ligands of the 35 proteins also used for the
reverse docking were collected from different databases. Databases used were the Bind-
ingDB [59] (https://www.bindingdb.org, accessed on 9 September 2022) and ChEMBL
(https://www.ebi.ac.uk/chembl/, accessed on 9 September 2022) [60–62]. Interaction data
from BindingDB were collected using their API via the KNIME workflow provided by
the BindingDB team, and from ChEMBL using the ChEMBL websource client [60] for
Python. All ligands were collected in the SMILES notation [82], which was converted to
the InChIKey [83] using OpenBabel [78].

In order to perform similarity comparisons according to the structural properties
of the molecules, for each reference ligand from the databases, as well as each active
compound from the CandActCFTR database [42,43], the Morgan fingerprint [84] was
computed using the RDKit [85]. Next, the similarity between each reference ligand and
each query compound from CandActCFTR was calculated using the Tanimoto coefficient.
If a query compound shared a similarity of ≥0.75 with at least one of the target-specific
reference compounds, it was considered a potential ligand of the respective target. The
threshold of 0.75 was chosen to be less restrictive than the commonly used threshold of 0.85.

5. Conclusions

This study used a complementary approach of target- and ligand-based in silico
target identification methods to predict potential targets of compounds that were shown to
affect CFTR activity. By using a dual approach, we were able to reap the benefits of both
methods and increase the number of potential target proteins to get a better coverage of
the CFTR biogenesis. Overall, the number of potential pairings could be narrowed down
to 1038 predicted interactions, which are assigned a score depending on how high the
consensus is amongst the methods employed. We were thereby able to predict potential
targets for all 309 active compounds from the CandActCFTR database. These results
help elucidate the mechanism of action of promising compounds and can be used to select
compounds and targets to predict synergistically acting compound combinations for testing
in the wet lab.
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