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Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) tech-
nology permits the identification and quantification of inherently diverse cel-
lular systems, and the simultaneous measurement of functional attributes at the
single-cell resolution. By virtue of its multiplex ability with limited need for com-
pensation, CyTOF has led a critical role in immunological research fields. Here,
we present an overview of CyTOF, including the introduction of CyTOFprinciple
and advantages that make it a standalone tool in deciphering immunemysteries.
We then discuss the functional assays, introduce the bioinformatics to interpret
the data yield via CyTOF, and depict the emerging clinical and research applica-
tions of CyTOF technology in sketching immune landscape in a wide variety of
diseases.
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1 INTRODUCTION

The immune plasticity is expressed in the remarkably
heterogeneous milieus, including circulation and differ-
ent tissues, during the homeostasis or during the various
disease states.1 An array of adaptive responses, including
training, priming, exhaustion, and tolerance, has been
distinguished in adaptive and innate immunocytes. Pre-
cise classification of cell subpopulations with overlapping
phenotypes and simultaneous interrogation of the pheno-
typic and functional properties of single cells in basal state
and after their exposure to exogenous stimuli are of great
significance.
Fluorescence-based cytometry techniques have dom-

inated for decades in immune system studies at the
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single-cell resolution. However, the number of parame-
ters available and complex compensation processes for
spectral overlap limit its applications. The developments
of fluorescence-based cytometry have been propelled by
recent technological advances. Notably, cytometry by time-
of-flight (CyTOF), also known as mass cytometry, is a
novel combination of flow cytometry and mass spectrom-
etry, which excels in multiparametric single-cell analy-
sis. CyTOF, through the utility of rare-earth metal-tagged
antibodies, inductively coupled plasma ionization, and
time-of-flight detector, allows simultaneous characteriza-
tion of up to 50 parameters per cell. Therefore, CyTOF
provides significant possibilities toward the identification
of disease attributes in cell populations, the orchestrated
interplay amongst protean immune cells, as well as the
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F IGURE 1 Overview of CyTOF analysis

molecular immunological signatures that underlie clinical
manifestations.
Here, we briefly introduce the principle, advantages,

and current limitations of CyTOF. We then describe cur-
rent progresses in functional assay developments leverag-
ing CyTOF and the developed bioinformatic techniques
and pipelines in CyTOF data analysis. Next, we discuss
recent applications of CyTOF in basic and clinical research
of immune profiling in the fields of cancer, immunother-
apy, autoimmune diseases, infective diseases, cardiovascu-
lar diseases, transplantation, and neuroscience. Finally, we
comment on the perspectives of CyTOF’s rapid entry into
research and clinical settings.

2 OVERVIEWOF CyTOF’s WORKING
PRINCIPLES

The technical aspects of the CyTOF system have been
described in detail by Bendall et al,2 as depicted in
Figure 1. In essence, instead of fluorophores, antibodies
are labeled with stable heavy metal isotopes, mainly of the
lanthanide series, which are naturally absent in biological
systems. Each isotope’s readout can be correlated with a
specific antibody probe, representing the antigen levels
within individual cells. Sample preparation and staining
for CyTOF are similar to fluorescence flow cytometry,
except that cells are typically fixed prior to analysis.
Cells are then introduced into the CyTOF analyzer and
nebulized into droplets, which are vaporized, atomized,

ionized, and then accelerated toward a mass spectrometer
via electrical potential. The current time-of-flight (TOF)
detector of commercialized CyTOF is tuned for a mass
window of approximately 89-209 Da, and the remaining
atoms are filtered by a quadrupole to increase sensitivity
and minimize unwanted signals. The filtered ion clouds
are analyzed with TOF detector.

3 ADVANTAGES AND LIMITATIONS
OF CyTOF

rDespite being generally considered an alteration based
on fluorescence flow cytometry, mass cytometry differs
from fluorescence cytometry by several aspects including
dimensionality, sensitivity, cell throughput, and so on
(Table 1). The clever switch from fluorescence readout
to mass spectrometry detection of heavy metal-tagged
antibody probes has given CyTOF several unique advan-
tages. First, the increment in dimensionality represents
a groundbreaking breakthrough. In fluorescence flow
cytometry, the number of detection parameters is limited
by the overlapping of fluorescence signals. This problem
is especially prominent when performing antigen-specific
T cells screening, chromatin modification profiling, and
simultaneous detection of RNAs and proteins. Presently,
up to 45 parameters can be simultaneously and reliably
quantified with the CyTOF technique. In theory, CyTOF
is capable of isotropic discrimination of more than 100
elemental masses, which suggests even higher multiplex
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TABLE 1 Comparisons between flow cytometry and CyTOF
properties

Flow cytometry CyTOF
Labeling Fluorochrome Heavy metal
Detector Fluorescence

detector
Mass spectrometry

Multiplex Up to 30 Up to 45
Sensitivity High Low
Sample efficiency >95% <50%
Accessibility Easy Moderate
Cell throughput 10 000 cells/s 500 cells/s
Cost Moderate High
Sorting Yes No
Cell recovery Yes No

Data analysis Simple and
user-guided

Complex
bioinformatics

capability in future applications. This enables CyTOF pro-
filing and screening in a comprehensive and system-wide
manner. Second, given the precise isotopic discrimination
of mass spectrometer, the channels in TOF have little cross
talk and the need for compensation is limited,3 which to
a great extent circumvents the time-consuming and labo-
rious compensation issues in conventional fluorescence
flow cytometry. Next, the detection of thesemetal isotopes,
which are absent or extremely rare in biological systems,
would fundamentally resolve autofluorescence issues and
background noises problems. In addition, with unique
palladium-based barcode labels,4 palladium-tagged
β2-microglobulin-based barcode label combinations,5
or ratiometry-based CD45 barcode labels,6 individual
samples from a large cohort can be pooled together for
further analysis to eliminate batch effect. The commercial
palladium-based barcode labels adopt a 6-choose-3 bar-
coding scheme and allow 20 samples barcoded together,
whereas the palladium-tagged β2-microglobulin-based
barcode label combinations adopt a 5-choose-2 scheme
and enable 10 samples together. It may take multiple
barcode sets in large-scale experiments. The ratiometry-
based CD45 barcode labels based on three metals and
three ratios can barcode 19 samples and as the ratio levels
and mass tags numbers increase, the maximum poten-
tial barcoding capability would expand exponentially.
This would make barcoding and consistent staining for
large-cohort study feasible, but at the expense of detection
channel numbers. The rate of cell acquiring and analysis
of CyTOF instrument is ∼500 cells/s, which permits the
analysis of millions of cells in 1 h. More importantly,
CyTOF enables in-depth analysis, including exploration
of signaling pathway alterations on archival samples,
such as curated formalin-fixed paraffin-embedded

tissues (FFPEs).7 With the advent of imaging mass
cytometry (IMC), even spatial information and cell inter-
actions in curated FFPEs can be obtained.8 Last, coupled
with advanced computational tools and well-established
pipelines for high-dimensional data analysis, CyTOF
facilitates the visualization of immunocytes and their
networks.
A large body of work has been exerted on the establish-

ment and recapitulation of conventional fluorescence flow
cytometry assays. For instance, the carrier strategy that sig-
nificantly reduces required sample amount in fluorescence
cytometry has been successfully adapted in CyTOF tech-
nique to enable the analysis of rare and precious clinical
samples.9 Limitations and constraints of the CyTOF tech-
nique, however, still exist, as compared with flow cytom-
etry (Table 1). First, cells cannot be recovered for further
functional analysis using CyTOF technique, as cells are
fixed and ultimately ionized. Second, the sensitivity of
CyTOF is 10-fold less than that of flow cytometry, limited
by the chelating polymer used in CyTOF to attach metal
reporter ions.2 Further, a sizable portion of cells is lost
during the sample treatment and instrument processing,
resulting in less than 50% of cells available for analyses by
CyTOF. Flow cytometry, however, can measure over 95%
of cells in a sample.10 In addition, as mass cytometry is
mostly dependent on antibodies, careful antibody panel
design and validation are required to ensure accurate and
specific detection of all targets. Experienced and extensive
labor are needed, especially when processing larger pan-
els. Last, both the instrument and the reagents are expen-
sive. The low accessibility of CyTOF instrument and high
expense of the assay currently limit its wide utilization.

4 FUNCTIONAL ASSAYS

Ongoing improvements to CyTOF approaches continue
to open new opportunities for implementing various
functional assays to tackle the complexities of cellular
immunology. Here, we provide an overview of CyTOF-
based functional assays.

4.1 Phenotype characterization

CyTOF can multiplex up to 45 cellular markers with lim-
ited need for spectral overlap compensation, opening up
a post-fluorescence era of cytometry well suited for deep
phenotyping of cells in complex systems. Genetically simi-
lar or even identical cells that play distinct roles in disease
pathogenesis could be distinguished with CyTOF, hosting
important implications for personalized medicine. Being
able to quantitatively probe nearly any feature (Figure 2A),
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F IGURE 2 Schematic illustrations of functional assays using CyTOF. The current innovations in functional assays can be separated into
12 categories: (A) phenotypic characterization; (B) intracellular cytokines determination; (C) intracellular signaling state characterization;
(D) cell volume and size measurement; (E) cell viability discrimination; (F) cell cycle identification; (G) proliferation tracing; (H) receptor
occupancy assay; (I) tetramers-based antigen-specific T-cell screening; (J) chromatinmodification profiling; (K)RNA and protein codetection;
and (L) imaging mass cytometry
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CyTOF can characterize various cell types11 including rare
cells across the immune cell continuum.12

4.2 Intracellular cytokines
determination

Intracellular cytokine profiling offers novel perspectives
on immune activation states. The higher multiparame-
ter capacity in CyTOF renders it an attractive instrument
in intracellular cytokine staining assays (Figure 2B). Ven-
drame et al utilized CyTOF to evaluate the effects of
cytokines on the natural killer (NK) cells and revealed that
interleukin (IL)-12/IL-15/IL-18 stimulation induced dra-
matically increased interferon-γ (IFN-γ) expression in NK
cells.13 Doyle et al characterized plasmacytoid dendritic
cells (pDCs) in the liver and peripheral blood of patients
with hepatitis C virus (HCV) infection and demonstrated
that liver pDCswere polyfunctional and capable of produc-
ing abundant IFN-γ and other immune modulators dur-
ing chronic HCV infection.14 With ever-growing reports
utilizing CyTOF to determine intracellular cytokines, we
believe that CyTOF will likely act as an indispensable tool
in immune cell function studies.

4.3 Intracellular signaling state

Cellular circuits sense environmental stimuli and accord-
ingly attune the signaling network to enable key decisions
regarding cellular response. Using metal-chelated anti-
bodies targeting phosphorylated proteins, CyTOF enables
interrogation of signal propagation within individual
cells. Studies have demonstrated the utility of CyTOF
to assess cell signaling states in kinetic or time point
(Figure 2C).15,16 Shinko et al have provided an opti-
mized protocol of phosphorylated signaling proteins stain-
ing for clinical blood samples.17 Combined with lineage
markers and stimulations or inhibitions, the signaling
states and cellular responsiveness are comprehensively
evaluated.16,18,19

4.4 Cell volume and size measurement

Cell size and volume are fundamental characteristics that
impact the structure and functions of any given cell type.
Fluorescence flow cytometry uses the metrics of light
scatter properties (forward and side scatter intensity) to
determine cell volume and size. Stern et al established
wheat germagglutinin-based andOsmium tetroxide-based
plasma membrane staining to gauge the size of mam-
malian cells.20 Rapsomaniki et al identified the ruthe-

nium complex ASCQ_Ru as robust marker for quantifying
cell volume.21 These stains (Figure 2D) substitute for light
scatter properties evaluated in fluorescence flow cytom-
etry and expand the range of parameters measured via
CyTOF.

4.5 Cell viability discrimination

Discriminating cellular viability is critical in biological
sample analysis, especially in functional studies such as
intracellular signaling or drug responses, as it enables the
removal of nonviable cells. Platinum-based covalent via-
bility regent,22 Cisplatin, was developed to label cells for
CyTOF discrimination of live/dead ratios, on the basis that
Cisplatin preferentially labels nonviable cells (Figure 2E).

4.6 Cell cycle identification

Cell cycle alterations are important aspects in tumor pro-
gression, developmental biology, and immune modula-
tion. Behbehani et al developed a novel CyTOF approach
to delineate cell cycle stages, based on iododeoxyuridine to
mark cells in the S phase, together with antibodies against
phosphorylated retinoblastoma, cyclin B1, cyclin A, and
phosphorylated histone H3 to define G0, G1, G2, and M
phases (Figure 2F).23 Protocols of cell cycle identification
werewell developed and detailed.24 Utilizing this cell cycle
identification method, researches have revealed cell cycle
differences that mediated chemotherapy sensitivities of
acute myeloid leukemia25 and erythropoiesis impairment
in telomerase knockout mice.26

4.7 Proliferation tracing

Good et al provided a dye dilution protocol for cell prolifer-
ation tracing across time and states, which could be widely
applied in directing studies of cellular differentiation.27
A dilution assay of carboxyfluorescein succinimidyl ester
(CFSE) was adapted and metal-labeled anti-fluorescein
isothiocyanate antibody was employed to track CFSE sig-
nal changes (Figure 2G). Dividing cells that pass half
CFSE signals to individual offspring cell act as a proxy for
cell division counting. The proliferation tracing method
helps uncouple the phenotypic and functional transitions
in tandem with the sequence of cellular differentiation.
Good et al used 23 markers and the proliferation tracing
approach to track single naïve human T cells. A map of
cell variations during naïve T cell expansion was built and
revealed that undivided cells represent a large portion of
phenotype diversity.
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4.8 Receptor occupancy assay

The ratio of drug-bound receptor to total receptor on indi-
vidual cells is known as receptor occupancy. It represents
a response biomarker for treatment of therapeutic mon-
oclonal antibodies. Punet-Ortiz et al28 employed a multi-
parametric quantitative flow cytometry to monitor CD49d
receptor occupancy on peripheral bloodmononuclear cells
(PBMCs) of 19 multiple sclerosis patients receiving natal-
izumab therapy for a 6-month follow up. They used this
index of CD49d receptor occupancy to determine a safe,
personalized regimen, and proposed an optimized CyTOF-
based receptor occupancymeasurement.29 CyTOF enables
the measurement of receptor occupancy in conjunction
with more markers within wide varieties of cell types in
a more reliable and reproducible manner. It would be
valuable in drug pharmacodynamics or immune suppres-
sion fields, replacing fluorescence flow cytometry. Huse
et al emphasized that receptor occupancy determination
by CyTOF expands the clinical cytometry toolbox and
introduced three basic formats of CyTOF-based receptor
occupancy assays (Figure 2H).30

4.9 Tetramers-based antigen-specific
T-cell screening

To better develop vaccines and targeted therapies for
autoimmune diseases and cancer, cognate-specific anti-
gens and binding affinity of antigen-binding T cells need
to be comprehensively characterized. Studies have empha-
sized the adaptability of mass cytometry to profile T-cell
responses that are antigen specific and screen T-cell reac-
tivity against various major histocompatibility complex
(MHC)-class-restricted epitopes. A modified peptide-
MHC class I tetramer was conjugated to metal chelating
polymers, allowing multidimensional analyses by CyTOF
(Figure 2I).31 Coupled with a combinatorial staining
approach, Newell et al simultaneously tested hundreds
of neoantigens in cancer.32–34 Antigen-specific CD8+ T
cells were screenedwith highlymultiplexed combinatorial
tetramer staining in a cohort of 14 nonsmall cell lung carci-
noma patients before and after atezolizumab treatment,33
including eight responder patients and six with progres-
sive disease status. The results indicated enrichment of
low-differentiated effector neoantigen-specific CD8+ T
cells in responders to atezolizumab treatment. Although
lower affinity between T-cell receptor and peptide-MHC
II and lower frequencies of antigen-specific CD4+ T cells
render peptide-MHC II tetramers screening by CyTOF
challenging, peptide-MHC II tetramer staining in PBMCs
and tissue-derived cell suspensions was achieved after
optimization.35,36

4.10 Chromatin modification profiling

Histone modifications are fundamental to proteomic epi-
genetic regulation. Recently published studies employed
CyTOF to investigate chromatinmodification.37,38 Cheung
et al proposed epigenetic landscape profiling using CyTOF
(EpiTOF), a highly multiplexed form to analyze histone
modifications and identify dysregulations associated with
immune-mediated diseases at the single-cell resolution
(Figure 2J).38 Strategies of chromatin marks manipu-
lation were established, such as ectopic overexpression
or CRISPR- or RNAi-mediated chromatin-modifying
enzymes depletion, to validate and select antibodies
for EpiTOF. Two antibodies that are able to recognize
total histone proteins were integrated into EpiTOF for
variation control of antibody background, nuclear epitope
accessibility, and histone expression. The investigators
applied EpiTOF to examine 24 healthy cytomegalovirus-
seronegative subjects, focusing on 22 major immune
subsets and examined the cellular levels of four histone
variants in eight classes of histone modifications. The
results indicated that chromatin variations increased with
age, which are largely driven by nonheritable factors,
and cell-type-specific chromatin mask profiles predicted
identity of immune cells.

4.11 RNA and protein codetection

To enable the codetection of RNA and protein signatures
at the single-cell resolution, Frei et al developed the
proximity ligation assay for RNA (PLAYR) method, which
is a proximity ligation assay by CyTOF for highly mul-
tiplexed transcript quantification (Figure 2K).39 PLAYR
adopts pairs of DNA oligonucleotide probes that include
a region to hybridize target transcripts and another region
as a template to bind and circularize two additional
oligonucleotides, which are ligated and amplified through
rolling circle amplification. The amplified products of
each probe pair are detected using oligonucleotides
labeled with mass tags. Another novel CyTOF-based
mRNA transcript and protein codetection method, termed
metal in situ hybridization (MISH), was developed via
combination of CyTOF and RNAscope@ platform.40 The
technique enables signal amplification through hybridiz-
ing RNA-specific probes and binding with amplified
sequence-targeting metal-labeled probes. Both PLAYR
and MISH are compatible with routine immunostaining,
and simultaneous transcripts quantification number is
only limited by the number of reporters that can be con-
jugated to the oligonucleotides. Notably, in both methods,
the measurement of RNAs will occupy the mass chan-
nels, which means the total number of simultaneously
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codetected RNAs and protein targets depends on the
number of mass channels (up to 45 at present). Frei
et al39 gave an example of simultaneous multiplexed
profiling of protein and transcripts. They used PLAYR
to monitor the induction of eight cytokine transcripts
and 18 protein epitopes in PBMCs after stimulation with
lipopolysaccharide and revealed correlations between the
functional capacity of each cell and its protein marker
expression.

4.12 Imaging mass cytometry

Geisen et al usedCyTOF to image tissue samples to acquire
spatial proteomics.8 The proposed technique, IMC, uses
laser ablation with a resolution of 1 μm to generate plumes
of tissue sections that are aerosolized, atomized, ionized,
and carried to the mass spectrometry detector by an inert
gas stream (Figure 2L). IMC is considered as a land-
mark development, as it allows for simultaneous profil-
ing of up to 50 parameters in tandem with cell interaction
and spatial information at subcellular resolution. Since
its introduction, IMC is being rapidly adopted for various
applications.41–47 Damond et al employed IMC to investi-
gate 1581 islets from four nondiabetic, four patients of onset
type 1 diabetes, and four patients of long-duration type 1
diabetes.44 They depicted the progression of human type
1 diabetes and revealed an alteration of β cells phenotype
prior to its destruction.

5 CyTOF DATA ANALYSIS

Prior to analysis, a stringent beads-based data normaliza-
tion is required48 to correct variations in instrument per-
formance caused by drift and build-up of cellular debris.
For samples run individually or in multiple barcode sets,
a batch adjustment technique is required. Schuyler et al49
flexibly adopted several standard normalization methods,
such as per channel quantile normalization, and recom-
mended combining statistical testing results of conditions
within batches via Fisher’s method. Shaham et al50 pre-
sented a deep learning approach, based on distribution-
matching residual networks, to effectively attenuate batch
effects. In bothmethods, technical replicates, as anchors or
references, are included in each run, allowing direct esti-
mation and adjustment of batch effect. CyTOF achieves
analysis of high cell throughput (up to millions of cells)
and high dimensions, which pose challenges toward its
analysis. Traditional user-guided manual gating on bivari-
ate plots has been proven as subjective, cumbersome, and
inefficient. Novel computational analyses that are able to
visualize and explain CyTOF-generated data have been

developed (Table 2). Each of these algorithmic tools is
designed with distinct goals and advantages.
Of these tools, dimensionality reduction is utilized to

organize complex data into recognizable patterns and
thus provides an overview of the data. Principal compo-
nent analysis (PCA)51 is a commonly employed dimen-
sionality reduction technique for visualizing the mul-
tidimensional data.52 With linear transformation, PCA
can reduce dimensionality; however, biological systems
can contain nonlinear relationships. Therefore, nonlinear
dimensionality reduction techniques that avoid represen-
tation of overcrowding have gradually gained attraction.
Nonlinear dimensionality reduction techniques employed
in CyTOF data analysis include Isomap,53 Diffusion
Map,54 t-distributed stochastic neighborhood embedding
(t-SNE/viSNE),55 and uniform manifold approximation
and projection (UMAP).56 Of these, t-SNE can efficiently
present the local data structure and is commonly used
in single-cell data analysis. But the limitations of t-SNE
include global information loss, long computational time,
and inability to provide meaningful results. Compared to
t-SNE, UMAP can preserve more data structure during a
shorter run time.
Other computational tools further define cell clus-

ters. Clustering approaches can be divided into
unsupervised57–62 and supervised63,64 categories. Unsuper-
vised clustering methods detect cell clusters mainly based
on protein expression profiles from a single, multiple,
or combined biological sample. Unsupervised cluster-
ing detects cell subsets in a data-driven and unbiased
manner that facilitates exploratory analysis of previously
unknown cell subpopulations. Defined clusters can be
individually analyzed or compared across samples in
different biological conditions. For example, ACCENSE
combines t-SNE mapping with discrete cell clusters
identification.57 With a peak-detection algorithm that
identifies local maxima, ACCENSE is able to partition a
two-dimensional t-SNE map. Clusters are decided by a
user-specified P-value threshold. Corresponding expres-
sion profiles are generated with built-in functions for each
detected cluster. ACCENSE produces color-coded and
density-partitioned cluster maps, facilitating visualization
and comparison. Supervised clustering methods usually
depend on biological or clinical variables that describe
each sample, such as disease status or clinical outcome.
The external information can be used to train an inter-
pretable prediction model. For instance, defined clusters
that correlate with clinical outcomes can be considered as
biomarkers. Automated cell-type discovery and classifica-
tion (ACDC)63 and linear discriminant analysis (LDA) are
typical supervised clustering methods. ACDC utilizes bio-
logical knowledge of a marker × cell type annotation table
to guide learning algorithms. Trained with predetermined
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TABLE 2 Comparisons between flow cytometry and mass cytometry methods

Methods Classification Description Ref.
PCA Dimensionality

reduction
Linear, principle component analysis, orthogonal transformation. 51

Isomap Nonlinear, spectral clustering, geodesic distance. 53

Diffusion Map Nonlinear, spectral clustering, diffusion distance. 54

t-SNE/viSNE Nonlinear, t-distributed stochastic neighborhood embedding,
attraction/repulsion balance.

55

UMAP Nonlinear, uniform manifold approximation and projection, identify
user-specified number of neighbors to build high-dimensional manifolds.

56

ACCENSE Unsupervised
clustering

t-SNE, kernel-based density estimation, peak-finding, and partitioning. 57

Phenograph k-nearest neighbors (k-NN) detection, community detection, and Jaccard
similarity coefficient.

58

Xshift Weighted k-NN density estimation and density-ascending path-based clustering. 59

FlowSOM Self-organizing map, minimal spanning tree-based nodes connection, and
consensus of hierarchical meta-clustering.

60

DEPECHE Penalized k-means clustering. 61

SPADE Density-normalization, spanning tree progression analysis, and
hierarchical/agglomerative clustering.

62

ACDC Semi-supervised
clustering

Community detection of landmark points. Cells and random walker-based
clustering.

63

LDA Linear discriminant analysis. 64

Citrus Clustering with
statistics

Hierarchically clustering, regularized supervised learning algorithms, nearest
shrunken centroid methods, and lasso regularized logistic regression.

67

Wanderlust Differentiation
trajectory
determination

Ensemble of k I-nearest neighbor graphs, shortest path distance-based trajectory
construction, and waypoints-based iteratively trajectory refinement.

69

manual labels, LDA classifier64 achieves high clustering
precision in automatically identification of cell popu-
lations. Weber et al65 and Liu et al66 provided detailed
comparison frameworks and guidelines of clustering
methods.
Furthermore, some computational tools provide statis-

tical testing or infer differentiation trajectories. Citrus67
(cluster identification, characterization, and regression)
aims to identify cell abundance or cellular traits associ-
ated with disease conditions used to categorize samples.
Conditions generally include healthy control or patients,
before or after/with or without therapeutic intervention,
cancerous or paracancerous tissue, responsive or irrespon-
sive to treatment, and good or poor prognosis. In addition
to hierarchically clustering of phenotypically similar cells,
Citrus employs regularized supervised learning algorithms
including L1-Penalized Regression (glmnet) and Predic-
tion Analysis for Microarrays to identify predictive clus-
ter features. Gaudillière et al applied Citrus and identi-
fied a signature that correlated with patient recovery after
hip surgery.68 Wanderlust sequentially orders cells based

on their developmental trajectory and enables inference of
the differentiation course. First, the data are transformed
into an ensemble of graphs, then waypoints are randomly
selected. Next, an orientation trajectory is calculated based
on a user-defined “initiate” cell, which is further refined
by waypoint cells. Wanderlust produces a trajectory over
an average of all graphs. Within the results, each marker
can be plotted against the trajectory axis to further exam-
ine trends.Wanderlustwas used to build and identify novel
transitional phenotypes in B-cell development by extend-
ing a trajectorymap fromhematopoietic stem cells to naïve
B cells.69
Novel tools that are faster and containing more features

are being continuously developed and proposed. In addi-
tion, proper combination of computational approaches
may provide more insights into the interpretation of the
true complexity of biological systems. Therefore, compre-
hensive understanding of the functionality, the strengths,
as well as the limitations of available algorithms is criti-
cal to the selection of optimal analytical tool for specific
goals.
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6 APPLICATIONS

The benefits of CyTOF are obvious in the immunol-
ogy field. In combination with novel bioinformatics tech-
niques, CyTOF allows for the systematic investigations
of fundamental questions on immune pathogens and
immune mechanisms underlying clinical disease mani-
festations. A wide range of applications for either mice
or humans including studies of cancer, immunotherapy,
autoimmune diseases, infective diseases, cardiovascular
disease, and neuron science are described below.

6.1 Cancer

With relative high cellular throughput and high dimen-
sions, CyTOF is an ideal and potent technique that reveals
intratumor heterogeneity in a variety of tumors, includ-
ing breast,70–73 lung,74–77 oropharyngeal,78 brain,79–83
colon,7,11,84,85 ovarian,86,87 kidney,88,89 gastric cancer,90,91
leukemia and lymphoma,19,92–95 and melanoma.96,97
A summary of single-cell CyTOF studies on primary
tumors of various human cancers is presented in Table 3.
Beyond the analysis of phenotypic markers,88 CyTOF
allows simultaneous measurement of cell signaling
process7,85,92,93 through the analysis of protein phospho-
rylation and neoantigen-specific T-cell pools. In addition
to peripheral blood profiling,81 single-cell suspensions
dissociated from organs or tumor tissues75,79,82,88 can also
disentangle alterations in the local immune networks.
It is evident that CyTOF can potentially identify

valuable phenotypic and functional variations, includ-
ing cytokines and phosphor-signaling alterations, in
the course of tumor development, progression, and
metastasis. This enables researchers to identify defined
populations for deep causative mechanism studies. More-
over, CyTOF permits biomarker discovery for disease
diagnosis or prognosis prediction, because multiple
parameters can be measured at the single-cell resolution
from clinical samples of different conditions. For example,
Good et al utilized CyTOF to simultaneously quantify
35 phenotypic and signaling-associated proteins in the
B-cell development of 60 primary diagnostic patients
with B-cell precursor acute lymphoblastic leukemia.93
They employed machine learning to analyze the high-
dimensional data and identified activated and responsive
pre-B-cell receptor signaling in pre-BI cells, and acti-
vated mTOR signaling in pro-BII sunsets was sufficient
to predict patient relapse at diagnosis. By following a
data-driven approach, this study provides a framework for
applying CyTOF in human cancer diagnosis and prognosis
prediction.

6.2 Immunotherapy

The heterogeneous and suboptimal clinical responses to
immunotherapy treatment highlight the need for deep
profiling of systemic immune networks to support studies
of pathogenesis, disease tracking, therapeutic targets
identification, and treatment selection. Spitzer et al98
demonstrated the utility of CyTOF to profile systemic
immune orchestrations with multiparameters in periph-
eral blood and tissue, including tumor, lymph node,
spleen, and bone marrow. They studied three groups of
mice with spontaneous model of triple-negative breast
cancer: untreated, effective, and ineffective immunother-
apy. The investigators sought to define immune system
alterations in the tumor environments between effec-
tive and ineffective treatment group. Network analysis
identified that CD4+ T cells initiated immunotherapy
response and conferred protection against new tumors.
Researches further confirmed the functional differences
of T-cell compartments in response to immunotherapy,
both in peripheral blood99 and in tumor infiltrates.100
Although current immune checkpoint therapies target
mainly lymphoid compartments, researches have started
to focus on the role of myeloid compartments in response
of immunotherapy (Table 4).101–103 In addition, in combi-
nation with immunotherapy and by elevating the efficacy
and duration of immune responses, CyTOF offers an
attractive promise in developing more effective treatment
schemes. Beyrend et al used CyTOF to decipher the ratio-
nal design of combination immunotherapy and concluded
that PD-L1 blockade therapy was enhanced by therapeu-
tically co-targeting activating and inhibitory (LAG3/PD-1)
molecules.104 Chua et al focused on the synergy between
radiotherapy and immune checkpoint blockade and
found that expansion of activated Ki-67+CD8+ T cells
may account for its synergism relationship.105 Although
challenging, CyTOF profiling should offer novel insights
into personalized immunotherapy.

6.3 Autoimmune disease

Systemic activation of inflammatory cells plays a critical
role in disease severity, progression, and therapy response
of patients with autoimmune diseases. A deep understand-
ing of heterogeneities in inflammatory states of individual
patients during the disease course can contribute to
therapeutic decisions. Many studies have used CyTOF
to examine the pathogenesis of autoimmune diseases
(Table 4).18,36,106–111 Several researchers focused on the
immunome perturbations in patients with rheumatoid
arthritis, a chronic autoimmune, inflammatory disease
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TABLE 3 Summary of CyTOF studies on various types of human cancers

Organs Tumor types Cell source Multiplex Results Reference
Breast Breast cancer Tumor tissues 35-plex/38-plex Advanced estrogen receptor (ER)+/− tumors

exhibited higher percentages of
programmed death ligand 1 (PD-L1)+

macrophages and exhausted T cells.

70

4T1 metastatic
breast cancer

PBMC/spleen 24-plex Cisplatin downregulated splenic
CD44+interleukin (IL)-17A+

myeloid-derived suppressor cells (MDSCs)
and promoted circulating interferon
(IFN)-γ+ myeloid cells.

71

Breast carcinoma Tumor tissues 38-plex Intratumor T-cell subsets exhibited diverse
patterns of environmental signatures.

72

Invasive breast
lobular
carcinoma in
mouse model

Mammary
glands

33-plex Immune suppression and exhaustion were
observed in myeloid and T-cell
compartments in mice bearing cancer.

73

Lung Early stage lung
adenocarcinoma.

PBMC/tumor
tissues

31-plex Lung macrophages prevalent in noninvolved
lung tissue contained higher levels of
cerium, whereas it was lower in
tumor-associated macrophages.

74

Nonsmall cell lung
cancer

Tumor tissues 35-plex T-cell immunoglobulin and mucin-domain
containing 3 (TIM-3), lymphocyte-activation
gene 3 (LAG-3), and programmed cell death
1 (PD-1) showed differential functional
impact, tissue/cell distribution, and clinical
significance in nonsmall cell lung cancer.

75

Nonsmall cell lung
cancer

Tumor tissues 31-plex Developed EMT-MET PHENOSTAMP for
mapping epithelial-mesenchymal transition
(EMT) states.

76

Early lung
adenocarcinoma

PBMC/Tumor
tissues

32-plex/32-
plex/38-plex

Early stage lung cancer exhibited increased
peroxisome proliferators-activated receptor
γ (PPARγ)hi macrophages, decreased
CD141+ dendritic cells (DCs), and reduced
and impaired NK cells.

77

Oropharynx Oropharyngeal
cancer

Tumor tissues 36-plex Intratumor human papillomavirus type 16
(HPV16)-specific type I T cells and its
oriented tumor microenvironment were
present and related to a better overall
survival.

78

Brain Glioblastoma/
multi-tumor

PBMC 36-plex CD73 was identified as a combinatorial
immunotherapeutic target.

79

Glioblastoma Tumor tissues 28-plex An increase in cytotoxic immune infiltration. 80

Glioblastoma PBMC 25-plex MDSC reduction was associated with a
continued increase of dendritic cells (DCs).

81

Gliomas/brain
metastases

Tumor tissues 37-plex/36-plex Brain metastases showed upregulated invasion
of T cells and monocyte-derived
macrophages and gliomas characterized by
activated microglia.

82

Glioma PBMC/Tumor
tissues

27-plex T cells that expressed PD-1 displayed
hallmarks of activation and exhaustion.

83

(Continues)
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TABLE 3 (Continued)

Organs Tumor types Cell source Multiplex Results Reference
Colon Colorectal cancer FFPE 20-plex Dysregulation of signaling pathways in

colorectal cancer.

7

Microsatellite stable
colorectal cancer

PBMC/tumor
tissues

27-plex Increased immunosuppressive/exhausted T
cells at tumor lesions.

11

Colon cancer PBMC 19-plex Abnormal levels of epithelial cell adhesion
molecule (EpCAM)+CD4+ T cells were
observed in colon cancer patients.

84

Advanced
colorectal cancer
following
chemotherapy

PBMC 34-plex Sustained reduction in CD16+ natural killer
cells (NKs) following chemotherapy in
colorectal cancer patients.

85

Ovary Ovarian cancer PBMC/Tumor
tissues

36-plex Tregs with highly activated phenotype were
present in ovarian cancer,

86

High grade serous
ovarian cancer

Tumor tissues 41-plex Higher frequencies of cMyc+HE4+vimentin+

cell subset were observed in tumors from
patients with poorer outcome.

87

Kidney Clear cell renal cell
carcinoma

Tumor tissue 35-plex/33-plex Immune compositions correlated with
progression-free survival.

88

Different renal
tumors

Tumor tissues 28-plex/21-plex Different renal tumors had different cell
subsets with distinct characteristics.

89

Stomach Gastric cancer Tumor tissues 32-plex CD8+ T and FOXP3+CD4+ T cells were
important markers for diagnosis of gastric
cancer.

90

Gastric cancer AGS cells 17-plex CyTOF technology was critical at single-cell
analysis of gastric cancer.

91

Blood Myelofibrosis/
secondary acute
myeloid
leukemia

PBMC/BM 35-plex NF-kB signaling was abnormally activated. 19

Secondary acute
myeloid
leukemia

PBMC 29-plex Patients with thrombopoietin stimulation
exhibited higher levels of signal transducers
and activators of transcription (STAT)
phosphorylation in
Lin−CD61+CD34−CD38−CD45low cells.

92

B-cell precursor
acute
lymphoblastic
leukemia

BM 35-plex Pre-B-cell receptor signaling-activated pre-BI
cell and mTOR signaling-activated pro-BII
cells are related with relapse.

93

Germinal center
B-cell lymphoma

Tumor tissues 32-plex In addition to CD68 and CD163, S100A9,
CCR2, CD32, CD36, and Slan were also
critical in the characterization of
lymphoma-specific tumor macrophages.

94

Follicular
lymphoma

Tumor tissues 33-plex Patient survival was correlated with naïve
CD4+ T-cell frequency and CD27−CD28− T
cells frequency.

95

Skin Stage IV melanoma PBMC 38-plex The alterations in myeloid phenotypes and
differentiated NKs were associated with
patient survival.

96

B16 melanoma Tumor tissues Unknown General control nonderepressible 2 (GCN2)
altered function of macrophages andMDSCs
in tumor microenvironment of melanoma.

97

Abbreviations: BM, bone marrow; FFPE, formalin-fixed paraffin-embedded sections; PBMC, peripheral blood mononuclear cells.
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TABLE 4 Summary of CyTOF studies in the fields of immunotherapy, autoimmune disease, infective diseases, cardiovascular diseases,
transplantation, and neuroscience

Fields Specific fields Cell source Multiplex Results Reference
Immunotherapy Triple-negative

breast cancer
PBMC/tumor
infiltrates/
BM/lymph
node/spleen

41-plex Effective cancer immunotherapy is dependent on
systemic immunity.

98

Stage IV Melanoma PBMC 28-plex Clinical response is correlated with the ratio of
T-cell reinvigoration to tumor burden.

99

MC38 colorectal
tumors

Tumor
infiltrates

29-plex Distinct cellular mechanisms were utilized by
anti-programmed cell death 1 (PD-1) and
anti-cytotoxic T-lymphocte associated protein 4
(CTLA-4).

100

Stage IV melanoma PBMC 30-plex/ 26-plex/
25-plex

CD14+CD16−HLA-DRhi monocytes frequency
predicts anti-PD-1 immunotherapy response.

101

T3 sarcoma Tumor
infiltrates

37-plex Immune-checkpoint therapy was critical in
macrophages polarizing in the milieu.

102

Melanoma PBMC 36-plex Identified distinct biomarkers for anti-CTLA-4
and anti-PD-1 therapy.

103

MC38 colorectal
tumors

Tumor
infiltrates

38-plex Programmed death ligand 1 (PD-L1) blockade
upregulated specific tumor-infiltrating CD4+

and CD8+ T-cell subsets.

104

Metastatic disease
of various tumor
histology

PBMC 40-plex Upregulated Ki-67+CD8+ T cells may be
correlated with the synergy between
radiotherapy and Immunotherapy.

105

Autoimmune
disease

Rheumatoid
arthritis (RA)

Joint tissue 36-plex The synovium of patients exhibited expanded
PD-1hiCXCR5−CD4+ T cells.

106

RA PBMC 32-plex Patients exhibited upregulated CD27−HLA-DR+

effector memory cells.

107

RA synovial tissue 34-plex Expanded cells associated with rheumatoid
arthritis synovia.

108

RA PBMC 33-plex RA induces the expansion of CD11blow

neutrophils.

109

Systemic sclerosis,
systemic lupus
erythematosus
(SLE), and
primary Sjögrens
syndrome

PBMC 34-plex All autoimmune diseases exhibited varied
frequencies of immune-cell subsets, with low
discriminative power.

110

Juvenile idiopathic
arthritis

PBMC 37-plex Relapse patients had CD3+CD4+CD45RA−tumor
necrosis factor α (TNFα)+ PD-1−CD152− T cells
prior to therapy withdrawal.

111

SLE PBMC 40-plex Toll-like receptors (TLR)-induced responses
within cell types diverse.

112

SLE PBMC 33-plex Patients taking mycophenolate mofetil had
significantly decreased transitional B cells,
plasmablasts, and T cells.

113

Psoriasis PBMC 31-plex Psoriasis was impacted by CD3–CD4+ cells. 114

Atopic dermatitis
and psoriasis

PBMC 42-plex Mucosal-associated invariant T cells, recirculating
memory CD8+, and CD49+CD4+ T cells play a
role in atopic dermatitis.

115

(Continues)
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TABLE 4 (Continued)

Fields Specific fields Cell source Multiplex Results Reference
Early multiple
sclerosis (MS)

PBMC 64-plex Early MS-PBMCs exhibited upregulated CCR7+

and interleukin (IL)-6+ T cells, whereas
NFAT1hiT-bethiCD4+ T and
CD141hiIRF8hiCXCR3+CD68− dendritic cells
decreased.

116

Neuroinflammation
and neurodegen-
eration

PBMC and brain
infiltrates

39-plex Myeloid cells are distinct in different mouse
neuroinflammation and neurodegeneration
model.

117

Relapsing-remitting
multiple sclerosis

PBMC 35-plex T helper cells expressing granulocyte-macrophage
colony-stimulating factor and the CXCR4
expanded in patients with multiple sclerosis.

118

Infectious
diseases

Salmonella Typhi
infection

PBMC 30-plex Adults and older pediatric patients had more
multifunctional effector memory T (TEM) and
effector memory CD45RA+ T clusters than
children.

119

Salmonella Typhi
infection

PBMC 42-plex /42-plex Salmonella infection induced accumulation of
circulating interferon (IFN)-γ- and macrophage
inflammatory protein 1 β (Mip-1β)- producing
CD38+CCR7−CD4+ T cells.

120

Mycobacterium
tuberculosis
infection

PBMC 38-plex Metformin intake induced decreased
CD14hiCD16− classical monocytes and
increased CD14−CD16+ nonclassical monocytes

121

Mycobacterium
tuberculosis
infection

PBMC 37-plex /40-plex Enhanced cytotoxic responses and continuous
inflammation is related to latent tuberculosis.

122

Streptococcus
pneumoniae

Nasal biopsy 37-plex Colonized clusters had significantly lower B cells
and CD161+CD8+ T cells than noncolonized
controls.

123

Influenza A virus
infection

PBMC 38-plex The 2009 pandemic H1N1 strain (Cal/09) versus a
seasonal 2011 H3N2 strain (Vic/11) infection was
predicted with CD54 and CD112 natural killer
(NK) cell-activating ligands.

124

Human immunode-
ficiency virus
(HIV) infection

Tonsil 38-plex HIV entry but not viral gene expression was
supported by memory CD127hiCD4+ T cells in
HIV patients.

125

HIV infection PBMC 26-plex Noticeable amounts of CD25−DR−CD4+ “resting”
T cells were into cycle or expressed coinhibitory
molecules.

126

HIV infection CD4+ T cells 19-plex IL-15 stimulation induced expansion of memory
and memory stem CD4+ T cells.

127

HIV infection lymph nodes 37-plex An oligoclonal HIV-reactive IL-21+ follicular
helper T cells accumulated in severe HIV
patients and correlated with abnormal B-cell
distribution.

128

HIV infection PBMC 28-plex CD27hiCD28hiCD127hiCD44hiCD4+ T cells were
abundant in healthy subjects and acute stage
patients undergoing antiretroviral therapy.

129

HIV infection PBMC 29-plex HLA-I+CD64+LILRA2+ LILRB4+CD317+

monocytes were plentiful in early HIV-infection
and CD32b+HLA-DR+CD1c+ classic dendritic
cells (cDCs) were abundant in HIV controller
patients.

130

(Continues)
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TABLE 4 (Continued)

Fields Specific fields Cell source Multiplex Results Reference
HIV infection PBMC 35-plex/ 32-plex/

33-plex
Monocyte and PMNs displayed upregulations of
CD11a, CD11b, CD32, CD38, CD64, CD83, CD86,
and TLR2 in HIV-infected patients.

131

HIV infection Bronchoalveolar
lavage cells

7-plex Expression of CD163 significantly decreased in
HIV-infected subjects, and CD163 was inversely
correlated with cytochrome P450 family 1
subfamily B member 1 (CYP1B1) expression in
alveolar macrophages.

132

HIV infection PBMC 38-plex NKG2C and CD2 expression were increased;
CD244 and NKp30 expression were decreased
in IL-2-treated NK cell repertoire in treated
HIV-infected patients.

133

Japanese
Encephalitis
virus infection

Brain 9-plex CD8+ T cells infiltration was presented in the
central nervous system of mice after infection.

134

Ebola virus
infection

PBMC 42-plex Nonclassical monocytes and myeloid DCs were
dramatically reduced in patients. Declining
viral load correlated with increased classical
monocyte and CD38-upregulated plasmatoid
DCs (pDCs).

135

Primary gamma-
herpesvirus
infection

Lung 35-plex Effector CD4 T cells were observed in the lungs of
acutely infected mice, including an activated
subset that co-expressed IFN-γ, TNF-a, and
IL-10.

136

Chikungunya virus
infection

PBMC 37-plex Acute infection was associated with expansion of
CD14+CD16+ monocytes.

137

Hepatitis B virus
(HBV) infection

PBMC 40-plex Serum HBsAg level variations did not correlate
with phenotypes and functions of T and NK
cells.

138

HBV infection PBMC 8-plex Circulating Vδ1+ and Vδ2+ γδT-cells displayed
distinct phenotypes and functions in patients
with acute or chronic hepatitis B.

139

Zika virus infection PBMC 37-plex Acute patients exhibited elevated IFN-β across
major cell subsets.

140

Dengue virus
(DENV) infection

PBMC 37-plex Compared with the unstimulated cells, DENV
IFN-γ+ effector memory T cells had higher
expression of activation and effector molecules.

141

DENV infection PBMC 32-plex/29-
plex/40-plex

Dengue infection caused broad activation in
immune system and dengue-specific T cells
differentiated into two types.

142

Zika virus infection PBMC 37-plex Acute infection and convalescent stages exhibited
differentially expanded CD14+ monocytes.

143

Zika virus infection Spleen 12-plex Significantly reduced inflammatory monocyte and
neutrophil cellular responses were observed in
the rectal route group.

144

Corona virus
disease
(COVID-19)
pneumonia

PBMC 35-plex Immunosuppression and immune dysfunctions
existed in COVID-19 patients.

145

COVID-19
pneumonia

PBMC Unknown The IFN-γ-eosinophil pathway activated before
lung hyper-inflammation.

146

(Continues)
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TABLE 4 (Continued)

Fields Specific fields Cell source Multiplex Results Reference
COVID-19
pneumonia

PBMC 35-plex Circulating CXCR3+CD4+ T, CXCR3+CD8+ T,
and CXCR3+ NK cells were upregulated in
severe patients and restored to normal levels
after mesenchymal stem cell transplantation.

147

Helminth infection PBMC 37-plex Human type 2 and regulatory networks were
heterogeneous in helminth-infected patients.

148

Malaria infection PBMC 29-plex Approximately 80% of mature B cells that
expanded after acute infection expressed CD11c.

149

Cardiovascular
disease

Mouse
atherosclerosis

Aorta 35-plex Aortic leukocyte system is as complex as that in
lymphoid organs.

150

Human
atherosclerotic
plaques

Plaque/PBMC 37-plex The atherosclerotic plaque are dominated by T
cells and macrophages.

151

Transplantation Kidney
transplantation

PBMC 34-plex PD-1+CD57− exhausted T cells increased after
lymphocyte-depleting induction treatment,
which correlated with better allograft function.

154

Kidney
transplantation

PBMC 33-plex Frequencies of transitional B cell and regulatory T
cell at the baseline could discern between
responders and nonresponders.

155

Pediatric liver
transplantation

PBMC 22-plex In operationally tolerant patients, the
CD4+CD5+CD25+CD38−/loCD45RA− cells were
upregulated in comparison with patients of low
immunosuppression levels.

156

Neuroscience Normal mouse
brain

Brain/PBMC 44-plex CD44 discriminates infiltrating and resident
myeloid cells in the brain.

157

Postmortem human
brain

Brain∖PBMC 57-plex Regional specific heterogeneity existed in human
microglia.

158

Homeostasis,
epilepsy, or
tumors

Brain 37-plex/36-plex A unique glioma-associated microglia was
identified.

159

Aging, Alzheimer’s
disease, and
multiple sclerosis

Brain 43-plex Central nervous system border-associated
macrophages were distinguished by CD38 and
major histocompatibility complex (MHC) II
and all microglia are homogenously affected in
neuroinflammatory disease.

160

Neurodegeneration Brain 33-plex Repopulated microglia showed IFN regulatory
factor 7-driven activation pattern.

161

Alzheimer’s disease PBMC 21-plex Increased CD8+ TEM cells were observed in
Alzheimer’s disease.

162

Refractory epilepsy
and autoimmune
encephalitis

PBMC 40-plex Patients with refractory epilepsy and autoimmune
encephalitis displayed CD4+ and CD8+ T cell
subsets alterations and unbalanced
proinflammatory IL-17 production. Refractory
epilepsy patients uniquely showed NK cells
alteration.

163

Acute stroke PBMC 38-plex Increased signal transducers and activators of
transcription 3 (STAT3) signaling in innate
immune cells in the acute phase, increased
cAMP-response element binding protein
signaling in adaptive immune cells during the
intermediate phase, and increased neutrophils
and immunoglobulin M (IgM)+ B cells in the
late phase were observed.

164

Abbreviations: BM, bone marrow; PBMC, peripheral blood mononuclear cells.
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depicted with synovitis in small- and medium-sized
joints,18,106–109 exploring both the peripheral blood18,107
and synovium tissue samples.106,108 In one study,106 the
investigators examined synovitis of patients with rheuma-
toid arthritis through a 36-plex CyTOF panel specific
to activated T cells. The results identified upregulated
PD-1hiCXCR5−CD4+ T cells in patients, indicating a key
functional role of CD4+ T subsets in rheumatoid arthritis.
O’Gorman and coworkers focused on specific chemokine
signature in Systemic lupus erythematosus (SLE) patients
and identified Toll-like receptor activation.112 Similarly,
Slight-Webb’s groups applied CyTOF to reveal the STAT3
phosphorylation reduction after mycophenolate mofetil
treatment in SLE.113 Another study, with the aid of CyTOF,
interrogated the circulatory reservoir of CD4+ subsets in
juvenile idiopathic arthritis patients undergoing TNF-
alpha therapy withdrawal and found putative subsets
prior to withdrawal that discriminated relapse from
remission.111 Researchers have also provided comprehen-
sive overview of distinct immune signatures in multiple
autoimmune conditions, including psoriasis,114–116
neuroinflammation,117 and multiple sclerosis.118 Together,
these results provided a strong foundation for CyTOF
studies with increased dimensionality to characterize
central immune mediators in various autoimmune
disorders.

6.4 Infectious diseases

Infection caused by a vast majority of microorganisms
induces profound immune responses that involve innate
and adaptive immune subsets. Recently, a plethora of
studies applied CyTOF to investigate pathogen-specific
immunological signatures in infectious diseases (Table 4).
Revealing bacteria’s physiology and pathogenicity and the
specific immune compartments that steer the immuno-
logical reactions to infection is crucial for vaccine
development, diagnostic, and tailoring of treatment
schemes. CyTOF has been gradually integrated into
the research of bacteria-associated diseases to identify
pathogen-specific immune signatures and characterize
response disparity of leukocytes to vaccine. Rudolph et al
studied T-cell responses to HLA-E-restricted Salmonella
enterica serovar Typhi antigen before and after Ty21a
vaccination.119 Several multifunctional gut-homing effec-
tor memory T and effector memory CD45RA+ T cells were
more abundant in adult patients, compared with younger
children. Napolitani et al performed another CyTOF
analysis of Salmonella infection-induced T-cell responses
and reconstructed the Salmonella serovar-shaped reper-
toire of circulating effector CD4+ T cells.120 CyTOF also
supported the investigations of immune factors associated

with Mycobacterium tuberculosis121,122 and Streptococcus
pneumoniae123 infection.
Viral infections pose a constant challenge to the hosts’

immune system. Researchers have applied CyTOF to
explore the immune alterations of patients infected with
influenza,124 HIV,125–133 Japanese Encephalitis,134 Ebola,135
Gammaherpesvirus,136 chikungunya,137 hepatitis B,138,139
as well as the mosquito-borne human viral pathogens,
including dengue140–142 and Zika,143,144 and elucidated the
fates of immune cells across viral infections. The use of
CyTOF has also supported recent findings in COVID-19
pathogenesis and immune perturbations,145,146 where the
results showed immunosuppression and dysfunction in
PBMCs of COVID-19-infected patients. Leng et al investi-
gated the inflammatory responses to SARS-coronavirus-2
(SARS-COV-2) in patients with COVID-19 after treatment
with ACE2-mesenchymal stem cells.147 A key conclusion
of this study is that treatment played a vital immunemodu-
lation role to reverse the functional failure of lymphocytes.
Some headway has also beenmade in employing CyTOF

to investigate parasites-induced immune regulatory net-
works. By profiling type-2 immune response through a
37-marker CyTOF analysis, Ruiter et al revealed detailed
insights into the spectrumof immunomodulatory effects of
helminth infection.148 Heathy Indonesians, Indonesians
infected with soil-transmitted helminths, and healthy
Europeans that are not normally exposed to helminths
were profiled. The profiling was conducted prior to and
1 year after deworming. The investigators found that
immune signatures in Europeans and Indonesians were
distinct and identified both Th2 and rare ILC2 cells, which
expanded and acted as sources of type 2 cytokines in
helminth-infected patients. Only Th2 cells decreased after
deworming, whereas the functional activity of both Th2
and ILC2s declined after anthelmintic treatment. Another
study applied CyTOF to profile B-cell compartments
in Plasmodium falciparum malaria-infected patients.149
In general, the understanding of immune subsets con-
tributions in antibacterial, antiviral, and antiparasites
defense by CyTOF profiling helps to define correlations
of protective immune factors and guide effective vaccine
development.

6.5 Cardiovascular disease

Atherosclerosis is affected by the interaction of pro- and
anti-inflammatory factors in the aorta. The immune
system’s heterogeneity provides an effective defense
against various pathogens. The CyTOF technique helps
to define the multifaceted contributions of immune
defense within circulation and plaques (Table 4). Recently,
Winkels’s group demonstrated the phenotypic diversity
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of leukocytes from aortas of healthy and atherosclerotic
mice via single-cell RNA sequencing (scSeq) and CyTOF
with a panel of 35 markers. The results revealed three
principle B-cell subsets that exhibited varied functional
pathway responses, based on marker expressions of CD43
and CD220.150 Similarly, the Fernandez’s group adopted
37-plex CyTOF combined with scSeq and revealed a
single-cell immune landscape within human carotid
artery plaques. Their analysis shows that, in symptomatic
patients, plaques were characterized by distinct T-cell sub-
sets presenting markers of activation, differentiation, and
exhaustion, whereas in plaques of asymptomatic patients,
T cells and macrophages were activated and exhibited IL-
1β signaling.151 In essence, CyTOF technique is anticipated
to accelerate discovery of underlying immunopathogenic
factors for tailored cardiovascular immunotherapies.

6.6 Transplantation

CyTOF can also investigate the immune system perturba-
tions after transplantation and patients’ heterogeneities
in response to specific immunosuppressive regimes
(Table 4).152,153 One elegant implementation of CyTOF in
transplantation research is the work of Fribourg et al154;
through characterizing 26 kidney transplant recipients
via serially collected PBMCs (before, 3 m, and 6 m after
transplantation) using a panel of 35 immunemarkers, they
defined a distinct role of T-cell exhaustion in induction
therapy responses and allograft functions. They delin-
eated PD-1+CD57− exhausted T cells that correlated with
better allograft function, which had low ATP production
and cytokine secretion. This helps to identify T-cell
exhaustion-associated factors for risk assessment. Allo-
graft biopsies can be examined with the CyTOF technique
at unprecedented resolution. CyTOF has also supported
the identification of immune subsets that correlated with
desensitization therapy results in patients undergoing sen-
sitized kidney transplantation155 and a distinct immune
profile that suggests operational tolerance in pediatric
liver transplantation.156 In addition, CyTOF enables the
investigations of protective and pathogenic immunity
involved in transplants. As such, CyTOF analysis can
link phenotype characteristics to variable posttransplant
conditions, reveal the underlying mechanisms, and thus
dramatically support the need to create and experiment
with new strategies against posttransplant diseases.

6.7 Neurobiology and neuroimmune

The brain consists of highly dynamic and complex
microenvironments that are populated with immune

cells. The depiction of immune systems within the naïve
or impaired brain compartment uncovers the diverse
roles of immunomodulatory in central nervous system
homeostasis. Korin et al characterized the immune system
of the naïve mouse brain, with comparison to immune
system in circulation, via CyTOF with 44 surface markers.
The results show that most infiltrating leukocytes were
mainly present at the brain boundaries, such as meninges
and choroid plexus, and that CD44 distinguished resi-
dent and infiltrating immune cells.157 To better define
human microglia cell repertoire, CyTOF was applied to
investigate postmortem human microglia isolated from
nine donors158 and interestingly revealed that mucin-like
hormone receptor 1 was expressed in human microglia,
whereas it was not expressed in the monocytes and
myeloid cells of circulation and cerebrospinal fluid.
Researches also provided a nuanced comparison of the
human brain’s immune states during homeostasis, aging,
and disease through the integration of CyTOF and other
omic techniques and demonstrated that microglia subsets
exhibited disease-specific transformations in the brain
(Table 4).159–163 Another interesting study focused on the
impact of immune response to stroke on long-term cogni-
tive disability.164 With the approach of CyTOF, serial blood
sample from patients was collected and analyzed over
the course of a year to functionally and comprehensively
characterize the immune response to stroke and its corre-
lation with cognitive functioning between 90 and 365 days
poststroke. The results confirmed a significant correlation
between immune responsemeasured during the stroke tra-
jectories, which demonstrated the utility of CyTOF in the
clinical prognosis and prediction of stroke. In summary,
these studies depict the confounding utility of CyTOF
in understanding immune orchestrations in human
brain.

7 PERSPECTIVE

Recent progress and applications illuminate the salient
features and the prospects of CyTOF in sketching the
immune landscape. In essence, CyTOF can picture
both innate77,137,165,166 and adaptive123,167 immune land-
scapes, which includes numerous phenotypically and
functionally heterogeneous cell subsets of lymphoid and
myeloid lineages that are involved in adequate surveil-
lance and pathogens killing. Panoramic views of sys-
temic immunity involving circulation and infiltration can
also be obtained.98 In addition to horizontal compari-
son among groups of health and different disease sta-
tuses, CyTOF also supports longitudinal profiling,164 with
the advancement in normalization48,168 and batch effect
minimizing.49,50 CyTOF can alsowork in conjunctionwith
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other techniques including single-cell genome and tran-
scriptome profiling169,170 and bioinformatic pipelines.171,172
For instance, Zheng et al conducted CyTOF profiling
of immune microenvironment in hepatocellular carci-
noma and revealed that leading-edge regions exhibited an
increase of tumor-associated CD4/CD8 double-positive T
(DPT) cells, which synergistically expressed PD-1/HLA-
DR/ICOS/CD45RO.173 Single-cell RNA-seq was employed
to characterize DPT cells and specifically identified PD-
1high DPT cluster derived from intratumoral CD8+ T cells.
Instead of only investigating single aspects of a cell subset,
the joint analysis of multiple omics offers the opportunity
to provide comprehensive insights into coordinated cellu-
lar process across different omic layers.
In general, the current progress made by CyTOF tech-

niques mainly includes identifying cell ancestry to reveal
the trajectory of cell differentiation and find reliable and
specific immune signatures in patient stratification and
treatment. CyTOF has facilitated the biospecimens anal-
ysis across large cohorts and permits the identification
of ideal immunological biomarkers that are stable, repro-
ducible, and easilymeasured, to reflect features underlying
pathophysiology,174,175 disease progression,95 or treatment
schemes.176
We expect CyTOF to be established in pharmacologi-

cal research and function as a powerful drug screening
tool. Cell heterogeneities pose challenges for treatment
selection.177 However, this heterogeneity is often obscured
in conventional screeningmethods that yield averagemea-
surements of bulk populations, motivating the need for
a high-throughput single-cell technique. CyTOF facili-
tates the screening of signaling network and dynamics
of baseline or stimulated status. This creates a detailed
response profile of the drug-perturbed immune systemand
aids in the examination of drugs’ impact on the immune
system.178 The understanding of drugs and its relationships
with the immune system confers information for treat-
ing diseases, minimizing unwanted side effects, facilitates
individual-tailored medicine, and optimizes combination
therapies.179 In addition, we expect CyTOF to enter clinical
laboratories and gradually play a dominant role in immune
compartment profiling. By virtue of its capacity of compre-
hensive and systematic immune characterization, CyTOF
would play an indispensable role in routine evaluation of
global health.
However, critical challenges remain. Several aspects

of CyTOF require careful adaptation and routinization
before its adaption in routine laboratory and clinical
settings. Notable among these aspects are the standard-
ization of single-cell preparation techniques, rigorous
antibody validation, sensitivity enhancement of antibody
tags, a paradigm shift in pattern linking of data to relevant
clinical outcomes, and even more parameters in routine

use. Once the challenges in scalability, sensitivity, repro-
ducibility, and reliability are overcome, it seems likely that
in the near future, in tandem with its wider accessibility
in pharmaceutical companies and clinical departments,
CyTOF will assume the center stage to sketch immune
landscape for varieties of diseases. We envision it playing a
more confounding role in drug and vaccine development
and immune demystification.

8 CONCLUSION

Researchers across biological fields have advanced the
understanding of immunocyte heterogeneities involved
in malignant diseases. By utilizing the increased dimen-
sionality, CyTOF provides opportunities toward unlock-
ing the mysteries surrounding immunopathogenesis and
immune responses, which underlines clinical manifes-
tation and shows immense potential for clinical labora-
torial diagnosis, therapy efficacy monitoring, as well as
treatment strategies. Ongoing improvements on technical
aspects, including marker scalability and mass tag barcod-
ing approaches for eliminating batch effects, facilitate the
adaptation of CyTOF for routine applications in research
and clinical laboratories. Coupled with innovative data
analysis pipelines, application of CyTOF should accelerate
the progress in fundamental and clinical immunology and
advance the study and application of precision medicine.
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