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Objective: Mutations in γ-aminobutyric acid (GABA) transporter 1 (GAT-1)-encoding SLC6A1 
have been associated with myoclonic atonic epilepsy and other phenotypes. We determined the 

patho-mechanisms of the mutant GAT-1, in order to identify treatment targets.

Methods: We conducted whole-exome sequencing of patients with myoclonic atonic epilepsy 

(MAE) and characterized the seizure phenotypes and EEG patterns. We studied the protein 

stability and structural changes with homology modeling and machine learning tools. We 

characterized the function and trafficking of the mutant GAT-1 with 3H radioactive GABA uptake 

assay and confocal microscopy. We utilized different models including a knockin mouse and 

human astrocytes derived from induced pluripotent stem cells (iPSCs). We focused on astrocytes 

because of their direct impact of astrocytic GAT-1 in seizures.

Results: We identified four novel SLC6A1 variants associated with MAE and 2 to 4 Hz 

spike-wave discharges as a common EEG feature. Machine learning tools predicted that the 

variant proteins are destabilized. The variant protein had reduced expression and reduced GABA 

uptake due to endoplasmic reticular retention. The consistent observation was made in cortical 

and thalamic astrocytes from variant-knockin mice and human iPSC-derived astrocytes. The 

Slc6a+/A288V mouse, representative of MAE, had increased 5–7 Hz spike-wave discharges and 

absence seizures.

Interpretation: SLC6A1 variants in various locations of the protein peptides can cause MAE 

with similar seizure phenotypes and EEG features. Reduced GABA uptake is due to decreased 

functional GAT-1, which, in thalamic astrocytes, could result in increased extracellular GABA 

accumulation and enhanced tonic inhibition, leading to seizures and abnormal EEGs.

Keywords

SLC6A1; GABA transporter 1 (GAT-1); Protein misfolding; Myoclonic atonic epilepsy (MAE); 
Endoplasmic reticulum (ER); Astrocytes; Thalamus

1. Introduction

SLC6A1 variants are associated with a wide spectrum of neurodevelopmental phenotypes, 

with myoclonic atonic epilepsy (MAE) being the most prominent seizure phenotype (Carvill 

et al., 2015; Mattison et al., 2018; Johannesen et al., 2018). MAE is characterized by abrupt 

falls, also called drop attacks, due to sudden loss of muscle tone. MAE patients can display 

multiple seizure types including absence, myoclonic jerks, and generalized tonic clonic 

seizure with or without fever. In SLC6A1 variant mediated epilepsy, over 70% of patients 

experience absence seizures (Goodspeed et al., 2020). It is intriguing that the inhibition of 

SLC6A1-encoding GABA transporter 1 (GAT-1) increases tonic inhibition and gives rise 

to absence seizures in animal models (Cope et al., 2009; Crunelli et al., 2020; Walker and 

Kullmann, 2012), while pharmacological inhibition of GAT-1 with tiagabine has been used 

to treat focal epilepsy (Bresnahan et al., 2019). Thus, it is of the utmost importance to 

understand if SLC6A1 variants cause a loss-of-function or a gain-of-function and how each 

contributes to the disease phenotype.

We have previously identified that altered protein stability due to protein misfolding is a 

major pathology for GAT-1 variants, which would result in impaired protein trafficking 

Mermer et al. Page 2

Neurobiol Dis. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Cai et al., 2019; Wang et al., 2020). Consequently, trafficking-deficient transporters result 

in reduced protein presence at the cell surface and synapse and compromised GABA 

uptake, likely leading to increased extracellular GABA level and tonic inhibition in the 

brain. Enhanced tonic inhibition in thalamocortical neurons is sufficient to elicit both 

electrographic and behavioral seizures in animals, including the Genetic Absence Epilepsy 

Rat from Strasbourg (GAERS), Stargazer mice, and lethargic mice (Cope et al., 2009).

It has been established that GAT-1 is expressed in both neurons and astrocytes (Minelli 

et al., 1995; Mermer et al., 2021) with regional or cell type variations. In the thalamus, 

GAT-1 is mainly expressed in astrocytes in both humans and rodents (De Biasi et al., 

1998). Recent work reappraised the localization of GAT-1 in the neocortex and indicated 

that GAT-1 is also expressed in microglial cells and oligodendrocytes (Fattorini et al., 

2020). One study using immunohistochemistry and electron microscopy for ultrastructural 

investigations demonstrated that GAT-1 and GABA transporter 3 (GAT-3) immunoreactivity 

is present throughout the thalamus in small punctate structures scattered in the neuropil 

among unlabeled neuronal perikaryal. In contrast to other brain regions, such as the 

cortex (Minelli et al., 1995; Minelli et al., 1996) or hippocampus (Ribak et al., 1996), 

GAT-1 and GAT-3 staining is absent from GABAergic synaptic terminals (Minelli et al., 

1995). Ultrastructural investigations confirm that GAT-1 and GAT-3 labelling is restricted 

to astrocytes (Minelli et al., 1995; De Biasi et al., 1998). Labeled astrocytes are adjacent 

to terminals making either symmetric or asymmetric synaptic contacts, and are close to 

neuronal profiles that do not form synaptic contacts in the plane of the section. These 

findings demonstrate that in the rodent thalamus, the GABA uptake mediated by GAT-1 and 

GAT-3 is localized exclusively to astrocytes near the synapses and in the neuropil and absent 

from GABAergic terminals. This implicates the critical role of thalamic and astrocytic 

GAT-1 in seizure genesis. Considering the contribution of cortico-thalamic-cortical circuitry 

in absence seizure generation, it is important to determine the functional consequence of 

the mutant GAT-1 in astrocytes. Thus, characterizing the impact of SLC6A1 variants in 

astrocytes could provide direct evidence explaining seizure genesis in patients bearing the 

SLC6A1 variants.

In this study, we report novel SLC6A1 variants associated with MAE and characterize the 

clinical history, EEG patterns, and molecular defects of these variants. We used machine 

learning tools to predict protein stability and determined the hydrophobicity score of the 

protein surface. We also determined the function and trafficking pattern of variants in the 

physiologically-relevant cell models: mouse cortical and thalamic astrocytes and human 

astrocytes derived from human induced pluripotent stem cells (iPSCs). We compared and 

validated the molecular findings from these novel variants with a previously characterized 

recurrent variant A288V associated with MAE and other phenotypes (Mermer et al., 2021). 

Our study provides novel findings and suggests a unifying disease mechanism for MAE 

and absence epilepsy with 2–4 Hz spike wave discharges (SWDs) associated with SLC6A1 
variants in accordance with previous studies in animal models of absence seizures.
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2. Materials and methods

2.1. Patient history

The patients and unaffected family members were evaluated at the Pediatric Epilepsy 

Program at Children’s Hospital of Shanghai Fudan University and Xiangya Hospital of 

the Central-Southern University in Changsha, China. The collected clinical data included 

age of seizure onset, a detailed developmental history, seizure types and frequency, response 

to antiseizure drugs, family history, and general and neurological examination results. Video 

electroencephalography (EEG) was conducted, and the results were reviewed by certified 

electroencepha-lographers. Written informed consent for the sharing of clinical and genetic 

information was obtained from the parents.

2.2. Whole-exome sequencing (WES), variant interpretation and confirmation

The exome was captured from peripheral blood DNA using Agilent SureSelectV6 

(Agilent Technologies, Santa Clara, California) or IDT xGen Exome Research Panel 

(Integrated DNA Technologies, Coralville, Iowa). Subsequent paired-end sequencing 

was carried out with Illumina HiSeq4000 or NovaSeq 6000 (Illumina, Santa Clara, 

California). Data processing, alignment (using a Burrows-Wheeler algorithm, BWA-mem), 

and variant calling were performed using Genome Analysis Tool Kit (GATK v4) best 

practices (https://software.broadinstitute.org/gatk/best-practices/) from the Broad Institute 

according to the reference genome GRCh38. Variants were annotated using ANNOVAR 

(http://www.openbioinformatics.org/annovar/). Variants were absent from the population 

database gnomAD (https://gnomad.broadinstitute.org/). Multiple bioinformatic analysis 

results indicated that the variants were deleterious. Variants were classified in accordance 

with the guidelines of the American College of Medical Genetics and Genomics (ACMG) 

(Richards et al., 2015). Sanger sequencing was performed for variant confirmation and 

segregation analysis for family members.

2.3. The cDNAs for coding GABA transporter 1

The plasmid cDNA encoding enhanced yellow fluorescent protein (EYFP)-tagged rat GAT-1 

was sub-cloned into the expression vector pCMV (Cai et al., 2019; Scholze et al., 2002). 

Replications of patient GAT-1 mutations were cloned via a standard molecular cloning 

process. A QuikChange Site-Directed Mutagenesis Kit was utilized to introduce the GAT-1 

mutation into the wildtype GAT-1 coding sequence. The product from the polymerase chain 

reaction was transformed using DHα competent cells and finally plated. A clone was chosen 

from the kanamycin-containing agar plate and grown overnight, replicating the cDNA. All 

GAT-1 mutations were confirmed by DNA sequencing. Both the wildtype and the mutant 

cDNAs were prepared with Qiagen Maxiprep kit.

2.4. Slc6a1+/A288V knockin mouse and EEG recordings

We generated the novel Slc6a1+/A288V global knockin mouse model in collaboration with 

University of Connecticut Health Center. The CRISPR-CAS9 strategy was utilized to 

mediate 863C to T knockin in exon 9 of the coding sequence. The heterozygous mouse was 

bred with the C57BL/6 J wildtype mouse (stock 000664). The mice used for biochemistry 
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were between 2 and 4 months old. The pups used for astrocytes culture were at postnatal day 

0–3. Mice used for EEG recordings were 1–2 months old. Both male and female mice were 

included except for EEG recordings, for which only males were included.

Video-monitoring synchronized EEG recordings were conducted based on our standard lab 

protocol (Warner et al., 2016; Kang et al., 2015; Warner et al., 2017). Mice were surgically 

implanted with prefabricated skull head mounts (Pinnacle Technology) that have two bipolar 

EEG channels and one subcutaneous nuchal EMG channel. Four holes were drilled through 

the skull to dura, with two placed 1 mm anterior to the bregma and two placed 7 mm 

posterior to the bregma and each being 1.5 mm lateral to the central sulcus. These holes 

accommodated a prefabricated mouse head mount, which was fastened to the skull with 

stainless steel screws (Small Parts, Miami Lakes, FL). Loose skin was sutured around the 

implant, and at least seven days were allowed for recovery before EEG recording. Following 

the recovery period, mice were placed individually in cylindrical chambers and allowed ad 

libitum access to food and water. EEG recordings lasted for at least 48 h for each mouse.

2.5. EEG analysis with Seizure Pro software

The EEG recording sampling rate is set at 400 Hz with a pre-amplifier gain of 100 Hz. EEG 

and EMG channels have a filter set at 25 Hz. EEG recordings are scored blindly by a skilled 

scorer using the Sirenia Seizure Pro software. A power analysis is performed using the theta 

frequency band of 5–7 Hz. We chose to measure 5–7 Hz SWDs because they correlate with 

the typical 2–4 Hz SWDs observed in humans (Seki et al., 2002; Savojardo et al., 2016). 

An average power is calculated using baseline recordings and applied to seizure analysis 

for treatment recordings. Parameters for seizures including both morphology and duration 

identified by the software were confirmed with video recordings. The Racine Scale (Stage 1: 

mouth/facial movements; Stage 2: head nodding; Stage 3: forelimb clonus; Stage 4: rearing; 

Stage 5: rearing and falling) was used for seizure identification. The identified SWDs 

were then confirmed with video monitoring and compared across treated and non-treated 

recordings.

2.6. Cultures of HEK293T cells, Chinese hamster ovary cells, and mouse astrocytes

The human embryonic kidney (HEK) 293 T cell line and Chinese hamster ovary (CHO) 

cell line were purchased from American Type Culture Collection (ATCC), and the cells 

were used under passage 20 for experiments. Cells were seeded at a density of 0.4 × 

106 per 60 mm dish and passaged every 3–4 days. HEK293T cells were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS and 1% 

penicillin/streptomycin (Gibco). CHO cells were used as a control because we identified 

that their endogenous GAT-1 expression is lower than in HEK293T cells. CHO cells were 

maintained in a F12(1×) nutrient mixture supplemented with 10% FBS and 1% penicillin/

streptomycin (Gibco). For the culture of mouse cortical and thalamic astrocytes, we used 

the same protocol as in our previous study (Mermer et al., 2021). Briefly, the cortices or 

thalami of postnatal day 0–3 pups were dissected. The tissues were minced after removing 

the meninges and then digested with 0.25% trypsin for 10 min at 37 °C. The debris 

and large tissue chunks were removed, and the remaining cell suspension was plated in 

uncoated 100 mm dishes at a density of 3–6 million cells. The plated cells were taken 
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as passage 0 and the astrocytes used for experiments were prepared from passage 2. The 

culture media was refreshed the next day and then every 4–5 days. At least 95% of the cell 

population was astrocytes, as confirmed by anti-glial fibrillary acidic protein antibody. The 

culture medium used for astrocytes is the same as is used in the HEK293T cells, which 

is Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS and 1% 

penicillin/streptomycin. As in HEK293T cells, the astrocytes were transfected with PEI.

2.7. Human astrocytes derived from induced pluripotent stem cells (iPSCs)

The human induced pluripotent stem cell (iPSC) line was purchased from Thermo Fisher 

(A18945). We followed our previous protocol used for the astrocyte differentiation from 

the SLC6A1(S295L) patient cell line (Mermer et al., 2021). We first prepared the neural 

progenitor cells (NPCs) and then differentiated the NPCs into astrocytes. The differentiation 

of NPCs was induced with the STEMdiff SMADi Neural induction kit from STEMCELL. 

Differentiation of human astrocytes started from NPCs at day 5 of passage 1 (P1). The 

differentiation of astrocytes was initiated by using the Astrocyte medium (ScienCell) for 

25–30 days (doi: https://doi.org/10.1101/2020.04.21.054361) (Romero-Morales et al., 2021) 

and the culture medium was refreshed every other day. Astrocytes were passaged at ~70% 

confluence and were validated based on the protocol described in our previous study by 

staining with S100β and Glial Fibrillary Acidic Protein (GFAP) (Mermer et al., 2021). 

>95% of cells adopted astrocytic morphology and about 80% of the total cell population 

was positively stained with GFAP and S100B, consistent with previous studies on astrocyte 

differentiation (Mermer et al., 2021).

2.8. Polyethylenimine (PEI) transfection

Standard transfection protocols were performed in HEK293T cells (Cai et al., 2019) and 

astrocytes. Briefly, 24 h before transfection, HEK293T cells were split equally into plates 

of the desired size. Astrocytes at passage 2 were prepared and grown in 35 mm dishes for 

GABA uptake and 100 mm dishes for western blot. The experiments were conducted in 

cells with 80–90% confluence. Transfection for both HEK293T cells and astrocytes was 

based on our standard PEI protocol with PEI reagent (40 kD, Polysciences) at a DNA: 

transfection reagent ratio of 1:2.5, and the cells were harvested 48 h after transfection. 

For radiolabeling GABA uptake, 1 μg of the cDNAs with PEI at a ratio of 1:2.5 μl was 

transfected in each 35 mm dish. For total protein expression, 3 μg cDNAs were used for 

transfection in each 60 mm dish, while 10 μg cDNAs were used for transfection in each 

100 mm dish. The cDNAs were combined with Dulbecco Modified Eagle Medium (DMEM) 

and a PEI/DMEM mixture. For iPSC derived human astrocytes, both PEI and lipofectamine 

2000 transfection protocols were used. Lipofectamine transfection was conducted per the 

manufacturer’s protocol. The experiments were conducted 48 h after transfection.

2.9. Western blot analysis of total GAT-1 protein

Live transfected HEK293T cells were washed with phosphate-buffered saline (1 × PBS, 

pH 7.4) three times and were then lysed in RIPA buffer (20 mM Tris, 20 mM EGTA, 1 

mM DTT, 1 mM benzamidine) supplemented with 0.01 mM PMSF, 0.005 μg/ml leupeptin, 

and 0.005 μg/ml pepstatin for 30 min at 4 °C. The samples were then subject to protein 

concentration determination followed by SDS-PAGE. Membranes were incubated with 
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primary rabbit polyclonal antibodies against GAT-1 (Alomone Labs, AGT-001 or Synaptic 

System, 274102 at 1:200 dilution). Primary mouse monoclonal antibodies against ATPase 

(Developmental Studies Hybridoma Bank) were used as a loading control. Blots were 

imaged with a digital fluorescence scanner, Odyssey DLx (LI-COR), and analysis of blots 

was performed in the program used to acquire the images: Image Studio Lite Version 5.3. 

To avoid variation, we normally measure the protein band twice and take the mean of their 

integrated density values (IDVs). The raw values of the targeted protein in both the wildtype 

and the mutant conditions were normalized to the loading control. The mutant condition was 

then normalized to the wildtype.

2.10. Radioactive 3H-labeled GABA uptake assay

The radioactive 3H-labeled GABA uptake assay in HEK293T, mouse astrocytes and human 

astrocytes was modified from previous studies (Cai et al., 2019; Mermer et al., 2021). 

Briefly, cells were cultured in 35 mm dishes three days before the GABA uptake experiment 

in DMEM with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were 

then transfected with equal amounts of the wildtype or the mutant GAT-1 cDNAs (1 μg) 

with PEI at a ratio of 1 μg cDNA:2.5 μl of PEI for each condition 24 h after cell seeding. 

GABA uptake assay was carried out 48 h after transfection. The cells were incubated with 

preincubation solution (140 mM NaCl, 5 mM CaCl2, 1 mM MgSO4, 2 mM glucose and 

2.5 mM HEPES, pH 7.4, Osmolarity 320) for 15 min and then incubated with preincubation 

solution containing 1μci/ml 3H GABA and 10 μM unlabeled GABA for 30 min at room 

temperature. After washing, the cells were lysed with 0.25 N NaOH for 1 h. Acetic 

acid glacial was added and lysates were then determined on a liquid scintillator with 

QuantaSmart. The flux of GABA (pmol/μg/min) was averaged with duplicates or triplets 

for each condition at each transfection. The average counting was taken as n = 1. The 

untransfected condition was included as a reference. The pmol/μg/min in the mutant was 

then normalized to the wildtype from each experiment, which was arbitrarily taken as 100%.

2.11. Live cell confocal microscopy and image acquisition

Live cell confocal microscopy was performed using an inverted Zeiss laser scanning 

microscope (Model 510) with a 63 × 1.4 NA oil immersion lens, 2–2.5 × zoom, and multi-

track excitation. Astrocytes were plated on poly-D-lysine-coated, glass-bottom imaging 

dishes at the density of 1–2 × 105 cells and cotransfected with 1 μg of the wildtype or 

the mutant GAT-1 plasmids and 1 μg ERCFP with PEI based on our standard lab protocol. 

Cells were examined with excitation at 458 nm for ECFP and 514 nm for EYFP. All images 

were single confocal sections averaged from 8 times to reduce noise, except when otherwise 

specified. The images were acquired using a LSM 510 invert confocal microscope with 63× 

objective.

2.12. Protein structural modeling and machine learning tools

We predicted the impact of the variant on the GAT-1 protein with multiple machine 

learning tools. Tertiary structures of both the wildtype and mutated GAT-1 proteins were 

modeled with I-TASSER (Zhang, 2008) and analyzed by MAESTRO web (Laimer et al., 

2016). Details in structural differences between the wildtype and the mutant GAT-1 were 
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illustrated using the modeled structure with DynaMut (Rodrigues et al., 2018). Analysis of 

self-aggregation or co-aggregation was conducted using PASTA 2.0 (Walsh et al., 2014).

2.13. Data analysis

Numerical data were expressed as mean ± SEM. A one-way analysis of variance (ANOVA) 

and Newman-Keuls test was used to determine significance compared to the wildtype 

condition and between variants if there are more than two conditions. An unpaired t-test was 

used between the wildtype and the mutant condition for the studies in the Slc6a1+/A288V 

knockin mice. Proteins were quantified by Image Studio Lite 5.3 software and data were 

normalized to loading controls and then to wildtype transporter proteins, which were 

arbitrarily taken as 1 in each experiment. The radioactivity of GABA uptake was measured 

in a liquid scintillator with QuantaSmart. The flux of GABA (pmol/μg/min) in the wildtype 

GAT-1 samples was arbitrarily taken as 1 in each experiment. The baseline activity of HEK 

cells was not subtracted. The fluorescence intensities from confocal microscopy experiments 

were determined using MetaMorph imaging software and the measurements were carried 

out in ImageJ, as modified from previous descriptions (Warner et al., 2016; Kang et al., 

2015; Kang et al., 2004). All statistical analysis was conducted in GraphPad version 8 

(GraphPad Prism, La Jolla, CA). Statistical significance was taken as p < 0.05.

3. Results

3.1. Molecular genetics identified novel variants in SLC6A1 associated with absence 
epilepsy and MAE

Variants in SLC6A1 have been associated with a spectrum of epilepsy syndromes and 

neurodevelopmental disorders (Carvill et al., 2015; Mattison et al., 2018; Johannesen et 

al., 2018; Cai et al., 2019; Wang et al., 2020). We have reported variants in SLC6A1 
associated with Lennox-Gastaut syndrome and epilepsy with autism due to partial loss of 

GAT-1 function. Here we report four de novo variants that are associated with myoclonic 

atonic epilepsy (Fig. 1A). The variants (46G > T, 1379 T > G, 1084G > A, and 1485G 

> A) were identified in the patients but not in the unaffected parents (Fig. 1B) using whole-

exome sequencing. The variants are located at different functional domains of the GAT-1 

protein peptide (Fig. 1C). Two variants result in truncated proteins—GAT-1 (E16X) and 

GAT-1(W495X)—while the other two missense variants alter amino acids that are conserved 

across species (Fig. 1D).

3.2. Common seizure and EEG features with 2–4 Hz spike wave discharges in patients 
and related treatment regimens

Our study is consistent with previous studies (Carvill et al., 2015; Johannesen et al., 2018) 

indicating that MAE is the major seizure phenotype for SLC6A1 variant mediated disorders, 

and all four patients were diagnosed with MAE due to the de novo variants. No positive 

family history of seizures was reported. Compared with mutations in GABAA receptor 

subunits that are associated with a wide range of epilepsy phenotypes and various epilepsy 

syndromes, individuals with SLC6A1 variants showed relative phenotypic homogeneity of 

epilepsy with MAE and childhood absence epilepsy (CAE). MAE is characterized by the 

onset of myoclonic, myoclonic-atonic, and atonic seizures between 1 and 4 years of age and 
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the presence of generalized spike-wave discharges (SWDs) or polyspike-wave discharges. 

Besides common drop attacks or atonic seizures, all four patients were reported to have 

2–4 Hz generalized SWDs on their EEGs either during sleep, wakefulness, or both (Fig. 

1E to G). The common EEG feature of 2–4 Hz in this cohort of patients is consistent with 

previous studies on SLC6A1 variant associated epilepsies (Goodspeed et al., 2020; Cai et 

al., 2019; Wang et al., 2020; Poliquin et al., 2021; Johannesen et al., 2016). The patient 

bearing the GAT-1(E16X) variant also had fast activity (15–25 Hz) with a low amplitude in 

EEG. Similar fast activity in EEG has been reported in a GAT-1(G234S) patient (Cai et al., 

2019). Three out of four patients had neurodevelopmental delay before seizure onset, and 

all had impaired cognition after seizure onset. The patient with the GAT-1(G362R) variant 

also had idiopathic short stature syndrome. It is of note that seizures in all patients were 

controlled with valproic acid alone or in combination with levetiracetam (Lev) (Table 1). 

However, cognitive dysfunction was not improved with seizure control. This is consistent 

with our previous study on the patients with GAT-1(V125M) variant (Poliquin et al., 2021) 

and suggests no direct correlation of seizure control and cognitive improvement for SLC6A1 
variants. Brain magnetic resonance imaging (MRI) was unremarkable for all four patients.

3.3. Machine learning based protein structural modeling suggests that the two missense 
variants destabilize the protein conformation

Our previous studies on SLC6A1 variants reported reduced protein stability and enhanced 

endoplasmic reticulum (ER) associated degradation (ERAD). The GAT-1(E16X) and 

GAT-1(W495X) variants generate truncated GAT-1 that are usually unstable, consistent with 

previous findings (Cai et al., 2019; Wang et al., 2020). We then predicted the impact of 

the two missense variants GAT-1(G362R) and GAT-1(L460R) on the transporter protein 

stability via several machine learning tools. Homology modeling of the GAT-1(G362R) 

and GAT-1(L460R) variants in GAT-1 protein (Fig. 2A–B) was conducted using I-TASSER 

(Zhang, 2008) with homology template PDB ID 4m48. The mutant residue arginine in 

both locations may trigger several conformational changes on GAT-1 by adding a 3-carbon 

aliphatic straight chain. Different from previously reported SLC6A1 variants (Cai et al., 

2019; Wang et al., 2020), these variants add a positive charge to the side chains, which 

may disturb the equilibrium of the transmembrane protein conformation and destabilize the 

protein structure. This destabilization hypothesis is also supported by predicting the ΔΔG of 

the variant using the machine learning-based protein structure stability prediction methods 

SDM (Pandurangan et al., 2017), mCSM (Pires et al., 2014a), DUET (Pires et al., 2014b), 

INPS (Savojardo et al., 2016), DynaMut (Rodrigues et al., 2018) and MAESTROweb 

(Laimer et al., 2016). As indicated in Fig. 3C–D and Supplementary Table 1, five out 

of seven tools predicted that the GAT-1(G362R) variant destabilized the GAT-1 protein 

and six out of seven predicted that GAT-1(L460R) variant destabilized the GAT-1 protein 

(Supplementary Table 1). Although unpredicted, the variant protein GAT-1(E16X) and 

GAT-1(W495X) resulting from nonsense variants are also likely destabilized due to the 

generation of a premature stop codon. Reduced protein stability consequently results in 

enhanced ERAD.
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3.4. All four variants had impaired GABA uptake in HEK293T and mouse astrocytes

We then determined the function of the wildtype and the mutant GAT-1 in HEK cells 

and cultured mouse cortical astrocytes by radioactive 3H-GABA uptake assay. The 

measurements in the variant transporter were then normalized to that of the cells expressing 

the wildtype GAT-1YFP, which was taken as 1. Compared with the wildtype, all four GAT-1 

variants had reduced 3H-GABA uptake in HEK293T (wt = 100% vs 5 ± 1.1% for E16X, 

44.7 ± 6.1% for G362R; 2.8 ± 0.25% for L460R and 1.5 ± 0.2.% for W495X) (Fig. 3A). 

We then determined the GABA uptake function of the variant GAT-1 in cultured mouse 

astrocytes from cortex, cerebellum, and thalamus. We included the cerebellum because 

some patients with SLC6A1 variants display ataxia (Johannesen et al., 2018). We compared 

astrocytes cultured from different brain regions such as the cerebral cortex, cerebellum and 

thalamus (Fig. 3B). GABA uptake in astrocytes cultured from the cortex and thalamus was 

similar, while the GABA uptake activity in astrocytes culture from the cerebellum was 

slightly higher (Fig. 3C) (130.7 ± 4% vs 1 for cortex vs 92 ±2.8% for thalamus). We 

chose to study astrocytes from the cortex and thalamus because of the cortico-thalamic 

pathway’s involvement in absence seizures. All variants had reduced GABA uptake in 

cortical astrocytes (wt = 100% vs 38.25 ± 4.86% for E16X, 66.5 ± 5.1% for G362R; 45.25 ± 

5.6% for L460R and 42.75 ± 4.9% for W495X) (Fig. 3D). GAT-1 inhibitors Cl-966 (50 μM) 

and NNC-711 (35 μM) reduced GABA uptake, and, similarly, all four variant GAT-1 showed 

reduced GABA uptake compared with the astrocytes transfected with wildtype GAT-1YFP 

in the absence of a GAT-1 inhibitor. However, the extent of reduction was smaller than that 

in HEK293T cells. This is likely due to the endogenous GAT-1 expression in astrocytes, 

as some GABA uptake activity in the mutant condition is contributed by the endogenous 

expression of GAT-1.

Consistent with the findings in cortical astrocytes, the variant GAT-1 had reduced GABA 

uptake activity in thalamic astrocytes. Because GABA uptake activity is impacted by both 

GAT-1 and GAT-3, we applied GAT-3 inhibitor SNAP5114 (30 μM) to the cells so the 

GABA uptake activity would be solely contributed by GAT-1. We tested GABA uptake 

in thalamic astrocytes cultured from wildtype pups treated with different concentrations of 

SNAP 5114 including 15 μM, 30 μM, 60 μM, 120 μM. We did not observe any difference 

of GABA uptake in cells treated with 30 μM, and 120 μM of SNAP5114, s we thus applied 

30 μM of SNAP5114 in subsequent experiments. The GAT-3 inhibitor reduced the GABA 

uptake to ~60% of the untreated in the wildtype. Additionally, when we compared the cells 

transfected with GAT-1(E16X) YFP and enhanced YFP alone, the GABA uptake activity was 

comparable in the two conditions (Supplementary Fig. 1). In thalamic astrocytes, regardless 

of SNAP5114 treatment, the variant conditions showed reduced GABA uptake activity (for 

thalamic astrocytes without GAT-3 inhibition, wt = 100% vs 49 ± 4.3% for E16X, 67.0 

± 3.7% for G362R; 42.6 ± 2.9% for L460R and 49.8 ± 4.7% for W495X; for thalamic 

astrocytes with GAT-3 inhibition, wt = 100% vs 26.4 ± 2.7% for E16X, 39.6 ± 2.4% 

for G362R; 30.00 ± 4.1% for L460R and 30.8 ± 1.9% for W495X) (Fig. 3E). Similar 

to cortical astrocytes, thalamic astrocytes expressing GAT-1 (G362R) had greater GABA 

uptake activity than other mutations. SNAP5114 treatment reduced GABA uptake by ~40% 

in the variant condition, consistent with the observation in the wildtype.
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3.5. Variant GAT-1 transporters had reduced GAT-1 total protein expression in both HEK 
293 T cells and mouse astrocytes

Machine learning tools suggested that the variant proteins were misfolded and had reduced 

stability. Reduced protein stability reduces total protein expression and causes reduced 

GABA uptake. We then determined the total level of variant protein expression in HEK293T 

cells or mouse cortical astrocytes. In HEK293T cells, the expression of variant GAT-1 

proteins is heterogeneous. The wildtype GAT-1YFP protein runs as three bands with a main 

band of ~108 KDa (band 1) and two small bands of 96 KDa and 90 KDa (band 2 and 

3), as previously reported (Cai et al., 2019; Wang et al., 2020; Cai et al., 2005). In the 

untreated GAT-1(W495X), two small bands with lower molecular mass were observed. The 

upper band was likely the ER glycosylated or unglyco-sylated immature species. Since only 

fully glycosylated protein can reach the cell surface and exert GABA uptake functions, 

we then treated the protein lysates with Endo-H to determine if the protein maturation 

is altered. With Endo-H digestion that removes the ER attached glycans, bands 1 and 2 

were not shifted because they are mature, in which the glycans were not added in ER. 

Band 3 in both the wildtype and the variant conditions was shifted to a lower molecular 

mass because the protein isoform is immature, in which the glycans were added inside 

ER (Fig. 4A). We included all mature and immature isoforms and quantified the total 

protein amount. Compared with the wildtype, the GAT-1 (E16X) expression was almost 

undetectable (0.002 ± 0.0002), and GAT-1(W495X) also had minimal expression (0.096 ± 

0.029). GAT-1 (G362R) had reduced expression (0.50 ± 0.07), while GAT-1(L460R) protein 

expression was unaltered (0.96 ± 0.06). The wildtype was arbitrarily taken as 1 (Fig. 4B U). 

However, with Endo-H digestion, all the variant proteins including the GAT-1(L460R) had 

reduced expression (0.39 ± 0.04 for G362R, 0.73 ± 0.06 for L460R and 0.32 ± 0.015 for 

W495X) (Fig. 5B Endo-H). The variant GAT-1 differentially affected the expression of the 

wildtype allele (Supplementary Fig. 3).

Consistent with the findings from HEK293T cells, the variant GAT-1 transporters displayed 

reduced total protein expression (Fig. 4C, D, E) in mouse cortical astrocytes. We could 

discriminate the GAT-1YFP from the endogenous GAT-1 in astrocytes by the protein’s 

molecular mass. The recombinant GAT-1YFP is ~27 KDa larger than the endogenous GAT-1 

because of the addition of the YFP tag. Because the GAT-1(E16X) could not be detected 

with GAT-1, we used a GFP antibody to target the YFP tag. Additionally, due to the 

much smaller size of the truncated protein, GAT-1(E16X) was run separately from the 

other variants. The magnitude of the variant protein reduction was larger in mouse cortical 

astrocytes than in HEK293T cells. The variant GAT-1(E16X) and GAT-1 (W495X) proteins 

were almost undetectable. The total amount of all variant transporter protein was reduced 

(0.31 ± 0.05 for G362R, and 0.12 ± 0.07 for L460R, and 0.04 ± 0.03 for the wildtype), 

while the GAT-1(E16X) protein amount was reduced to be undetectable. We then tripled 

the amount of GAT-1(E16X) protein compared with the wildtype, and a faint band was 

detected (Fig. 4D). The large reduction of the variant protein in astrocytes is likely due to 

the relatively low expression of the mutant protein, which can be more efficiently degraded 

than in HEK293T cells. A similar phenomenon has been reported in a GABRA1 variant 

associated with childhood absence epilepsy (Kang et al., 2009a). The reduction of the 

variant GAT-1 was consistent when the variant cDNAs were expressed alone or with the 
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wildtype allele (Supplementary Fig. 3). The variant GAT-1 could cause dominant negative 

suppression on the wildtype allele as demonstrated in our previous study (Nwosu et al., 

2022).

3.6. Variant GAT-1 transporters had increased localization in endoplasmic reticulum in 
mouse astrocytes

To our knowledge, there is no study on how a variant protein is processed in the ER of 

astrocytes. We have previously identified that increased ER retention of variant protein 

due to misfolding and glycosylation arrest (Kang et al., 2009a; Kang et al., 2009b) is a 

common phenomenon for variants across genes affecting the GABAergic pathway. Those 

ER retention-prone variant proteins can have either a higher or lower proportion of the 

total protein level compared with its wildtype counterpart (Kang et al., 2009a; Kang et al., 

2009b). To evaluate the subcellular localization of the variant GAT-1, we coexpressed the 

wildtype GAT-1YFP or the variant GAT-1YFP with an ER marker, ERCFP. When compared to 

wildtype, each of the four variant GAT-1 transporters had a stronger presence intracellularly, 

colocalizing with the ER marker (Fig. 5A). The percent fluorescence signal of GAT-1 

overlapping with ER marker ERCFP was higher in the variant GAT-1 compared to the 

wildtype (25.5 ± 3.6% for wt vs 84.88 ± 3.07 for E16X; 60.56 ± 3.03 for G362R; 79.57 ± 

4.33 for L460R, and 65.56 ± 4.31 for W495X) (Fig. 5B). The total GAT-1YFP fluorescence 

signal was lower in cells expressing all mutant GAT-1 transporters (16.24 ± 2.18 for E16X; 

29.98 ± 2.27 for G362R; 16.84 ± 1.85 for L460R and 21.22 ± 2.26 for W495X) than in 

the cells expressing the wildtype (39.02 ± 1.75 for wt) (Fig. 5C). It is worth noting that 

we compared the subcellular localization of the GAT-1 (E16X)YFP and YFP alone, the 

protein distribution pattern was indistinguishable between astrocytes expressing the variant 

GAT-1(E16X)YFP and YFP alone. Interestingly, the variants, especially the GAT-1(E16X) 

and GAT-1(W495X), had reduced cell numbers with detectable YFP signal (65.4 ± 3.3% for 

wt, 11 ± 1.5% for E16X, 55.5 ± 6.0% for G362R,52.2 ± 3.7% for L460R and 16.7 ± 2.0% 

for W495X, Supplementary 2). Together, this indicates that all GAT-1 variants were retained 

inside the ER, which subsequently caused ER-associated degradation and reduced the total 

GAT-1 protein level.

3.7. Variant GAT-1 transporters had impaired GABA reuptake in human astrocytes derived 
from iPSCs

We then determined the function of the wildtype and the variant GAT-1 in human astrocytes 

using a radioactive 3H GABA uptake assay based on our previous study in human and 

mouse astrocytes (Mermer et al., 2021). Human astrocytes derived from iPSCs were 

validated with glial fibrillary acid protein (GFAP) 27 to 30 days after differentiation and 

were transfected with the wildtype or the variant GAT-1 cDNAs (Fig. 6A). The GABA 

uptake was measured 48 h later. Compared with the wildtype, all four GAT-1 variants had 

reduced 3H GABA uptake in human astrocytes (wt = 100% vs 39.67 ± 1.99% for E16X; 

58.83 ±4.36% for G362R; 49.33 ± 4.26% for L460R and 49.67 ± 3.9% for W495X) (Fig. 

6B). There was robust GABA uptake activity in differentiated astrocytes as demonstrated by 

the steep decrease in uptake counts when GAT-1 inhibitor Cl-966 (50 μM) and NNC-711 

(35 μM) were added. The GABA uptake activity in astrocytes transfected with the wildtype 

GAT-1YFP was ~1.5–2 fold higher than mock transfected with the empty vector pcDNA. 
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Both the protein expression level of the transfected GAT-1YFP and GABA uptake activity 

were much lower in astrocytes compared with the HEK293T cells transfected with the same 

amount of cDNAs.

3.8. A representative mouse of MAE, Slc6a1+/A288V knockin, had impaired GABA uptake 
in thalamic astrocytes and increased seizure activity

We then evaluated the total GAT-1 expression in the thalamus of the Slc6a1+/A288V, a novel 

mouse model of MAE and absence epilepsy. We chose the A288V variant because it has 

been identified in multiple epilepsy cohorts and thus has been extensively characterized 

(Carvill et al., 2015; Johannesen et al., 2018; Mermer et al., 2021). Patients heterozygous 

for the A288V variant display MAE, absence epilepsy, and autism (Seki et al., 2002). We 

dissected the thalamus from 2 to 4 months old wildtype and Slc6a1+/A288V mice. The 

total GAT-1 in thalamus was reduced (0.5025 ± 0.015 vs wt = 1, Fig. 6C, D) in the 

variant heterozygous mice. We cultured the astrocytes from the thalamus and treated the 

astrocytes with GAT-3 inhibitor (SNAP5114 30 μM) to ensure that only GAT-1 activity 

was measured. The thalamic astrocytes displayed reduced GABA uptake compared with the 

wildtype (60.75% ± 6.01% vs wt = 100%, Fig. 6E).

Based on a previous study, impaired GAT-1 in thalamic astrocytes can directly cause 

absence seizures (Pirttimaki et al., 2013). To confirm this, we conducted video-monitoring 

synchronized EEG recordings on a novel mouse model Slc6a1+/A288V knockin. We chose 

the A288V variant because it has been identified in multiple cohorts (Carvill et al., 

2015; Johannesen et al., 2018; Mermer et al., 2021). Additionally, we have extensively 

characterized the variant and identified that the GABA uptake function of GAT-1(A288V) 

is similar to that of GAT-1(G362R), which is ~30% of the wildtype (Mermer et al., 2021). 

With Sirenia Seizure Pro software, we measured the occurrence of 5–7 Hz spike-wave 

discharges (SWDs). We chose to measure 5–7 Hz SWDs because it is the mouse correlate 

of 2–4 Hz SWDs in humans (Seki et al., 2002). The heterozygous mice had increased 5–7 

Hz spike-wave-discharges over 48 h of recordings (69.6 ± 5.30 for het, 2.0 ± 0.71 for 

wt) and displayed behavioral arrest, suggesting absence seizures (Fig. 7 A, B and C). The 

detection of a low level of absence-like activity with a short time duration (1.351 ± 0.12 

vs 4.50 ± 0.43 s) in the wildtype mice is consistent with a previous study (Arain et al., 

2012) and has been commonly observed in studies for other epilepsy mice. The SWDs in the 

variant mice were much more frequent and with a longer time duration than in the wildtype 

mice. It is not surprising as we have previously demonstrated that the GABA uptake of 

the GAT-1(A288V) is only ~30% of the wildtype (Mermer et al., 2021). Together, our data 

provided evidence that the GAT-1 activity is reduced in thalamus and may contribute to 

seizures in the Slc6a1+/A288V mice.

In summary, our data from HEK293T cells, mouse cortical and thalamic astrocytes as 

well as human astrocytes demonstrated that the variants caused almost a complete loss 

of function for GAT-1(E16X), GAT-1(L460R) and GAT-1(W495X), and a partial loss of 

function for GAT-1(G362R). Loss or reduced GAT-1 function in the thalamus may cause 

increased extracellular GABA levels, thus leading to enhanced tonic inhibition and absence 

seizures. Absence seizure is a main seizure type and EEG feature of 2–4 Hz is a primary 
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EEG feature in MAE patients associated with SLC6A1 variants. Consistent with the seizure 

type and EEG feature in patients bearing SLC6A1 variants, the Slc6a1+/A288V mice also 

had absence seizures as reflected by increased 5–7 Hz SWDs over 48 h of EEG recordings 

compared with the wildtype littermates (Fig. 7A and B).

As illustrated in the cartoon (Fig. 7C), variants in GAT-1 result in reduced GABA uptake 

function in astrocytes and neurons. Previous study has demonstrated that GAT-1 is mainly 

expressed in astrocytes in thalamus (De Biasi et al., 1998) in humans and in rodents. Our 

data from Slc6a1+/S295L mice indicated that GAT-1 is abundantly expressed in thalamus as in 

other brain regions such as cortex and hippocampus (Nwosu et al., 2022). Reduced GABA 

uptake in thalamic astrocytes can directly lead to increased extracellular GABA, enhanced 

tonic current, seizure activity and increased 3 Hz in humans and 5–7 Hz SWDs in mice.

4. Discussion

4.1. SLC6A1 variants of various genetic abnormalities and in different locations of 
protein peptide, could result in similar epilepsy phenotypes in patients

SLC6A1 variants are associated with variable epilepsy syndromes and neurodevelopmental 

disorders. Despite the phenotypic heterogeneity, MAE and intellectual disability (ID) are 

consistently reported as prominent phenotypes for SLC6A1 variants (Carvill et al., 2015; 

Johannesen et al., 2018). Here we report four novel variants in unrelated patients of MAE 

who are heterozygous for SLC6A1 variants, further supporting MAE as a major phenotype 

for SLC6A1 variants as originally reported (Carvill et al., 2015). The SLC6A1 variants 

reported here include two nonsense and two missense variants. It is worth noting that 

the patients with nonsense variants had very similar clinical phenotypes even though the 

premature stop codons are located at opposite ends of the full-length protein peptide. The 

truncation at the N terminus removes much of the protein peptide, in contrast to truncation 

in the C terminus that preserves most of the peptide. It is possible the variant proteins with 

different lengths of the protein peptide may adopt distinct conformations that differentially 

affect the remaining wildtype allele and modify the disease phenotype (Johannesen et 

al., 2018). However, the similar consequence of GABA uptake activity and behavioral 

phenotypes suggests the variant protein itself from either variant had minimal effect on the 

remaining wildtype allele function and overall phenotype manifestation. It is likely the MAE 

phenotype across the variants is caused by GAT-1 haploinsufficiency and GABA uptake 

deficit.

4.2. Common EEG features of ~3 Hz spike-wave discharges in MAE associated with 
SLC6A1 variants

All patients were diagnosed with MAE presenting with sudden falls and demonstrated a 

strong EEG correlate with absence seizure based on previous studies (Goodspeed et al., 

2020; Cai et al., 2019; Poliquin et al., 2021). Electrophysiological features are similar to 

those described in GAT-1 deficient mice (Chiu et al., 2005; Jensen et al., 2003). All patients 

had 2 to 4 Hz SWDs that were dominant in frontal or centro-occipital regions. It was noticed 

that the EEG patterns during sleep and wakefulness were different for the patient with the 

GAT-1(G362R) variant. The seizure activity was responsive to valproic acid treatment alone 
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or in combination with levetiracetam. However, cognition was not improved with seizure 

control, suggesting that GAT-1 deficiency may directly contribute to impaired cognition, 

instead of being a consequence of seizure activity. This notion is supported by the fact that 

some patients with SLC6A1 variants only display neurodevelopmental delay or intellectual 

disability either without seizures or before seizure onset.

4.3. Machine learning tools identified reduced stability and altered hydrophobicity of the 
surface of the mutant GAT-1 protein

Based on existing knowledge of thermology effects, we used machine learning based 

methods to predict the impact of missense variants using the changes of ΔΔG, a metric 

for measuring how a single point variant alters protein stability. It measures the change 

in energy between the folded and the unfolded states when a point variant is present. 

A ΔΔG of less than zero, means the point variant destabilizes the protein. Although the 

performances of these computational methods still need improvement due to limited training 

sets and imperfect prediction models, they could give fast and stable predictions without 

requiring expensive, labor-intensive wet-lab experiments. Our data indicate that the mutant 

GAT-1 proteins had reduced stability, which is consistent with our biochemical study. 

Together, this suggests that the GAT-1 variants, regardless of whether nonsense or missense, 

can destabilize the variant proteins and cause enhanced protein disposal inside the ER, 

consequently reducing GABA uptake function.

4.4. Reduced GABA reuptake function of SLC6A1 variants in astrocytes

It is believed that GAT-1 is mainly located in the axon and nerve terminals of GABAergic 

interneurons and in astrocytes (Minelli et al., 1995; Chiu et al., 2005; Conti et al., 1998). 

At the pre-synaptic terminal, GAT-1 is responsible for the re-uptake of GABA from the 

synaptic cleft. Although the data of the GABA reuptake from GAT-1 variant knockin mice 

is not available, it has been reported that in GAT-1-deficient knockout mice (Jensen et al., 

2003), GABA reuptake is compromised, resulting in both increased ambient GABA levels 

and spontaneous spike-wave discharges. Increased ambient GABA would cause enhanced 

tonic inhibition, which is likely mediated by GABAA receptor δ subunit containing receptors 

(Cope et al., 2009). We demonstrated that all four variants resulted in reduced GABA 

reuptake in both human and mouse astrocytes. This is likely due to reduced total amounts of 

the functional protein in astrocytes (Fig. 6).

4.5. Conserved protein quality control machinery in the ER of the astrocytes and ER-
associated degradation of the mutant GAT-1

The loss of GAT-1 function in astrocytes is likely due to the ER retention of GAT-1. ER 

retention and enhanced degradation is likely a common molecular mechanism for many 

pathological variants. The findings were similar to the expression of the wildtype GAT-1 

treated with tunicamycin, an ER stress inducer, in which GAT-1 was subject to ER retention 

and reduced presence at the cell surface (Wang et al., 2020). Misfolded GAT-1 will be 

subject to enhanced degradation without further translocation to other cellular compartments 

or the cell surface (Kang et al., 2015; Kang et al., 2009b). Our data indicate that the 

astrocytes have conserved protein quality control and the mutant protein was likely subject 

to ER retention and associated degradation.
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4.6. Defective GAT-1 in astrocytes in the thalamus can cause enhanced tonic inhibition

We demonstrated that the mutant GAT-1 caused reduced GABA uptake in both cortical and 

thalamic astrocytes. It is known that the thalamus is a rhythmogenic structure, which is 

responsible for generating and maintaining oscillatory activity. Oscillatory activity underlies 

key brain functions such as sleep, sensation, perception and consciousness (Gent et al., 

2018) while increased oscillation has been well documented in epilepsy including the 

Gabrg2+/Q390X mouse model of epilepsy (Huang et al., 2017). Astrocytic GAT-1 deficit 

could directly cause enhanced tonic inhibition because of the excessive extracellular GABA. 

Enhanced tonic inhibition in the thalamus has been shown to cause absence epilepsy and 5–7 

Hz SWDs in multiple animal models. The 5–7 Hz SWDs in rodents are equivalent to the 2–4 

Hz SWDs in human epilepsy patients. Previous studies have attributed a dysfunction of the 

astrocytic GAT-1 as the basis of absence seizures in experimental animals (Pirttimaki et al., 

2013). Our finding of GAT-1 deficiency in thalamic astrocytes may explain the EEG activity 

and seizures in SLC6A1 mutation patients. As mentioned above, in the thalamus of humans 

and rodents, GAT-1 is mainly expressed in astrocytes (De Biasi et al., 1998). This study 

thus provides direct evidence of GAT-1 deficiency in thalamic astrocytes, a likely cause for 

seizure genesis in patients.

Our data is consistent with previous studies from multiple models of absence seizures 

(Cope et al., 2009) and suggests that GAT-1 functional deficit in astrocytes may result 

in enhanced tonic inhibition in SLC6A1 variants associated epilepsy. Multiple lines of 

evidence from protein trafficking, expression, ER retention and transporter channel function 

suggest that loss-of-function – not gain of function – is likely the major mechanism for 

epilepsy associated with SLC6A1 variants.

4.7. GAT-1 functional deficit in astrocytes may contribute to seizure phenotypes in 
SLC6A1 variant-mediated disorders

It is known that GAT-1 is expressed in the nerve endings of GABAergic interneurons and 

astrocytes. We have previously compared the variant GAT-1 in both neurons and astrocytes 

(Mermer et al., 2021) and believe the variant protein metabolism is conserved across cell 

types. This is especially important given GAT-1 is expressed in both neurons and astrocytes. 

It is established that GAT-1 inhibition causes enhanced tonic inhibition (Cope et al., 2009; 

Crunelli et al., 2012). In contrast, enhanced astroglial GABA uptake attenuates tonic 

GABAA inhibition. The changes of GABA uptake, GABA release, and GABAA receptor 

inhibition could eventually lead to epileptogenesis (Brooks-Kayal et al., 1998; During et al., 

1995; Semyanov et al., 2003; Borg et al., 1995). Along the same line, it has been reported 

that GAT-1 currents are reduced in a rat model of absence seizures (Pirttimaki et al., 2013). 

We thus speculate that defective GAT-1 in astrocytes contributes to reduced GABA reuptake, 

making the brain prone to seizure generation.

However, GAT-1 is expressed in both neurons and astrocytes, and the GAT-1 deficit in 

neurons could also contribute to disease phenotype. Additionally, the seizures we observed 

in the Slc6a1+/A288V mice and in the clinical EEG in patients may not specifically represent 

MAE, but rather a wide spectrum of disease phenotypes. Indeed, the GAT-1 (A288V) 

mutation in patients is not only associated with MAE, but is also associated with CAE, 
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autism, and neurodevelopmental delay. Furthermore, other factors such as sex and GABAB 

receptors may also contribute to the disease pathophysiology and phenotype. It is well 

demonstrated that blocking either GAT-1 or GAT-3 can prolong oscillations (Lu et al., 

2020) and enhanced GABAB receptor-mediated signaling is critical for generation of 

thalamocortical seizures. It is likely that GABAB receptor signaling is augmented by GAT-1 

inhibition due to mutant GAT-1 during a chronic disease course such as in SLC6A1 variant-

mediated disorders, thus potentiating absence-like epileptiform oscillations in the thalamus 

(Lu et al., 2020; Dodgson and Watford, 1990).

In summary, this study has reported novel SLC6A1 variants associated with MAE and the 

related molecular defects in the physiologically relevant cell model, thalamic astrocytes. All 

patients displayed 2 to 4 Hz SWDs. All four variants result in reduced GABA uptake of the 

mutant GAT-1 in HEK293T, mouse and human astrocytes due to reduced protein stability 

and expression. This study, in combination with previous studies (Mattison et al., 2018; 

Cai et al., 2019; Wang et al., 2020), demonstrates that partial or complete loss-of-function 

is a major mechanism for SLC6A1 variants mediated epilepsy as well as other disease 

phenotypes. Astrocytic GAT-1 functional deficiency in the thalamus may contribute to 

seizure generation and 2–4 Hz SWDs in EEG as identified in a rat model of absence 

seizures (Pirttimaki et al., 2013). The study identified an apparently converging pathology 

between that previously characterized for absence seizures in experimental animal models 

and absence epilepsy and MAE mediated by SLC6A1 variants (Lee et al., 2013; Dlugos et 

al., 2013; Gencpinar et al., 2016).
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Fig. 1. 
Molecular genetics and electroencephalogram (EEG) patterns of four novel variants in 

SLC6A1 associated with myoclonic atonic epilepsy.

(A) Four patients from different families carrying novel variants in SLC6A1. (B). 

Electropherograms showing identified novel variants in SLC6A1 from patients. (C). 
Schematic representation of GAT-1 protein topology and locations of novel GAT-1 variants 

(red dots) identified in patients associated with a spectrum of epilepsy syndromes. The 

purple dots represent the other variants in SLC6A1 that are previously reported for GABA 

uptake. It is predicted that GAT-1 contains 12 transmembrane domains. The positions of 

variants are based on the published LeuT crystal structure. (D) Amino acid sequence 

homology shows that glycine (G) at residue 362 and leucine (L) at residue 460 are 

highly conserved in SCL6A1 in humans (Accession NO.NP_003033.3) and across species 

as shown in the boxed region. (E). In the patient carrying the E16× variant (patient 1), 
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video EEG recordings showed long-term discharges of medium-high amplitudes of 2–3 

Hz spike-slow waves and 4–7 Hz theta activity mixed with fast activity with a very low 

amplitude during both wakefulness (left panel) and sleep (right panel). The epileptiform 

discharges are prominent in the occipital region or generalized. (F) In the patient carrying 

the G362R variant (patient 2), video EEG recordings showed many medium-high amplitudes 

of 2.5–3.5 Hz interictal spike-slow waves, clusters or continuous ictal discharges in the 

bilateral parietal, occipital, and posterior temporal areas during wakefulness. (G) In the 

patient carrying the L460R variant (Patient 3), there were long-term, generalized 2.5–3.5 

Hz spike-slow wave discharges with high amplitude during wakefulness. (H). In the patient 

carrying the W495X variant (Patient 4), there were long-term, generalized 2.5–3.5 Hz spike-

slow wave discharges with medium amplitude, especially in the bilateral frontal regions 

during wakefulness.
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Fig. 2. 
Machine learning tools predict reduced protein stability of the missense variant 

GAT-1(G362R) and GAT-1(L460R) protein.

(A-B). Tertiary structures of both the wildtype and variant GAT-1 (G362R) (A) or 

GAT-1(L460R) (B) protein are predicted by I-TASSER and DynaMut. In A, the glycine at 

residue 362 is mutated to arginine, both highlighted in light green, alongside the surrounding 

residues. DynaMut predicted the interatomic interactions, where halogen bonds are depicted 

in blue and hydrogen bonds are in red. In B, leucine at residue 460 is mutated to arginine. 

(C, D). Machine learning tools predicted ΔΔG (Kcal/mol) of the mutant GAT-1(G362R) or 

GAT-1(L460R)) protein. Bars in the positive direction are predicted as stabilizing while bars 

in the negative direction are predicted as destabilizing.
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Fig. 3. 
The GABA reuptake function of the variant GAT-1 transporters was reduced in HEK 293 T 

cells and mouse astrocytes.

(A). HEK293T cells under passage 20 were transfected with wildtype (wt) or the variant 

GAT-1YFP cDNAs (1 μg per a 35 mm dish) for 48 h before 3H radioactive GABA 

uptake assay. GAT-1-specific inhibitors Cl-966 (50 μM) and NNC-711 (30 μM) were added 

during flux time for each experiment. (B). Diagram adapted from the Allen Brain Atlas, 

demonstrating the areas that were dissected for astrocyte culture. The astrocytes from the 
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cortex, cerebellum, and thalamus of wildtype C57BL/6 J mouse pups at postnatal day 0–3 

were prepared and the live cells at passage 2 were imaged before experiment of GABA 

uptake assay. (C). The graph showing relative GABA uptake assay in astrocytes from cortex, 

cerebellum and thalamus. The GABA uptake from cerebellum (cb) and thalamus (thal) 

was normalized to the GABA uptake in the cortex (cor). Mouse cortical (D) or thalamic 

(E) astrocytes at passage 2 were transfected with wildtype (wt) or the variant GAT-1YFP 

cDNAs (1 μg per a 35 mm dish) for 48 h before 3H radioactive GABA uptake assay. In C, 

GABA uptake in astrocytes from the cerebellum and thalamus was normalized to that from 

the cortex (=100%) each time. In D, GABA uptake in astrocytes expressing the variant or 

wildtype cDNAs treated with GAT-1 inhibitors Cl-966 or NNC-711 was normalized to the 

astrocytes expressing the wildtype cDNAs without GAT-1 inhibition. “Un” stands for the 

astrocytes transfected with the wildtype GAT-1YFP without treatment of GAT-1 inhibitors. 

(966 stands for Cl-966 while 711 for NNC-711). In E, GABA uptake in astrocytes 

expressing the variant or wildtype cDNAs treated with GAT-3 inhibitor (SNAP5114 (30 

μM)) was normalized to that in astrocytes expressing the wildtype cDNAs without GAT-3 

inhibition. GAT-3 inhibitor was applied 1 h before and during uptake assay. In C, D and 

E, N = 4–5 transfections from 4 batches of cultured astrocytes, ***P < 0.001 vs astrocytes 

expressing the wildtype GAT-1YFP. In A, §§§P < 0.001 vs G362R. In C, *P < 0.05 vs 

cortex; §P < 0.05 vs thalamus. In D, §P < 0.05 vs G362R. In E, §P < 0.05 vs G362R 

without treatment; δ P < 0.05 vs G362R with SNAP5114 treatment. In C, D and E, N = 4–5 

experiments, cells were prepared from 3 different litters of mouse pups. One-way analysis of 

variance (ANOVA) and Newman-Keuls test was used to determine significance compared to 

the wt condition and between mutations. Values were expressed as mean ± S.E.M.
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Fig. 4. 
The mature and functional GAT-1 protein was reduced in the variant GAT-1.

HEK293T (A, B) or mouse cortical astrocytes at passage 2 (C, D, E) were transfected 

with the wildtype or the variant GAT-1YFP cDNAs (3 μg per 60 mm dish or 9 μg per 100 

mm dish) for 48 h before harvest. Equal protein amounts were loaded for SDS-PAGE. The 

membrane was immunoblotted with anti-rabbit GAT-1. In A, protein lysates from HEK293T 

cells expressing the wildtype and the variant GAT-1 cDNAs were either undigested (U) or 

digested with Endo-H (H) followed by SDS-PAGE fractionation. Bands 1, 2, 3, 4 and 5 

represent the main bands detected in lysates without Endo-H treatment, while band 3 was 

shifted down to a lower molecular mass than band 4 after Endo-H digestion. To better show 

both mature and immature bands of GAT-1YFP, a slightly overexposed blot is presented, but 

note that this has no effect on the quantification data in Image Studio. (B). Graph showing 

normalized total protein IDVs in HEK293T cells. The variant GAT-1 protein integrated 

Mermer et al. Page 27

Neurobiol Dis. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



density values (IDVs) were normalized to the wildtype untreated (U) or Endo-H treated 

(H). In C, Total lysates from mouse cortical astrocytes transfected with wildtype or the 

variant GAT-1YFP cDNAs (9 μg per a 100 mm dish) for 48 h before harvest were subject 

to SDS-PAGE. The red arrow pointed bands were quantified. The band run at 67 KDa is 

likely the endogenous GAT-1 from astrocytes. In D, the protein samples of the wildtype 

and the GAT-1(E16×) were run separately due to the small protein mass of GAT-1(E16X). 

The loaded protein amount of the GAT-1E(16X) was tripled for better visualization. The 

membrane was immunoblotted by a rabbit anti-GAT-1 in A and C and by a mouse anti-GFP 

in D because GAT-1(E16X) is undetectable by anti-GAT-1 antibody. (E). The total protein 

IDVs in the mouse cortical astrocytes were plotted. In A and D, CHO stands for Chinese 

hamster ovary cells. CHO cells were used for loading control because of the low level 

of endogenous GAT-1 expression (N = 4–5 transfections from 4 to 5 batches of cultured 

astrocytes, ***P < 0.001 vs astrocytes expressing the wildtype GAT-1YFP; §§§ < 0.001 

vs G362R. One-way analysis of variance (ANOVA) and Newman-Keuls test was used to 

determine significance compared to the wt condition and between variants. Values were 

expressed as mean ± S.E.M).
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Fig. 5. 
The mutant GAT-1 had reduced total protein expression but increased localization inside the 

endoplasmic reticulum in astrocytes.

A. Mouse cortical astrocytes under passage 2 were transfected with wildtype GAT-1YFP 

or the variant GAT-1 (E16X)YFP, GAT-1 (G362R)YFP, GAT-1 (L460R)YFP and GAT-1 

(W495X)YFP with the pECFP-ER marker (ERCFP) at a 1:1 ratio (1 μg:1 μg cDNAs) for 

48 h. Live cells were examined under a confocal microscopy with excitation at 458 nm 

for CFP and 514 nm for YFP. All images were single confocal sections averaged from 

8 times to reduce noise, except when otherwise specified. “Co” stands for overlay, “ER” 

stands for endoplasmic reticulum marker (ERCFP) marker, and “GAT” stands for GAT-1YFP. 

(B). The GAT-1YFP fluorescence overlapping with ERCFP fluorescence was quantified by 

Metamorph with colocalization percentage. (C). Total fluorescence intensity (raw values) 

over the area was measured for each whole field and the raw mean values were plotted. 

In B and C, ***p < 0.001 mutant vs. wt, §§ P < 0.01, §§§ < 0.001 vs G362R. N = 7–8 

representative fields from 4 different transfections. One-way analysis of variance (ANOVA) 

and Newman-Keuls test was used to determine significance compared to the wt condition 

and between mutations. Values were expressed as mean ± S.E.M.
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Fig. 6. 
The GABA uptake function of the mutant GAT-1 transporters was reduced in human iPSC 

derived astrocytes and in the Slc6a1+/A288V mice.

(A). Images showing human induced pluripotent stem cells, neural progenitor cells (NPCs) 

and the 30th day old astrocytes after differentiation from NPCs. The inserted box shows 

astrocytes with typical star-like morphology (upper panel). The 30th day old astrocytes were 

fixed with freshly made 4% Paraformaldehyde (4% PFA) and immuno-stained with mouse 

monoclonal anti-glial fibrillary acidic protein (GFAP) and rabbit polyclonal anti-GAT-1 

antibodies. The mouse IgG was visualized with Alexa 488 and rabbit IgG was visualized 

with Alexa 555 (Lower panel). (B). Human astrocytes derived from human iPSCs 30 days 

after differentiation were transfected with the wildtype or the mutant GAT-1YFP cDNAs 

(1 μg per 35 mm dish) for 48 h before 3H radioactive GABA uptake assay. GABA flux 

was measured after 30–45 min transport at room temperature. The uptake of GABA, 
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expressed in pmol/μg protein/min, was averaged from duplicates for each condition and 

for each transfection. The average counting was taken based on normalization to wt = 100%. 

The pmol/μg protein/min in the variant was then normalized to the wildtype from each 

experiment, which was arbitrarily set as 100%. ***p < 0.01 vs. wt, §§ P < 0.01 vs G362R, 

n = 6 different transfections from 4 batches of differentiations. Cl-966 (100 μm) or NNC-77 

(70 μm) was applied 30 min before preincubation and removed during preincubation in 

C, The GABA uptake (pmol/μg protein/min) from thalamic astrocytes cultured from the 

heterozygous Slc6a1+/A288V pups were normalized to the wildtype (n = 4 pairs of wildtype 

and heterozygous pups, unpaired t-test). (D, E). Brain tissue from thalamic region was 

dissected from 2 to 4 months old Slc6a1+/A288V mice. Lysates were analyzed by SDS-PAGE 

and immunoblotted with a polyclonal anti rabbit GAT-1 (C). The protein IDVs of the 

heterozygous (het) were normalized to the loading control ATPase and then to the wildtype 

(wt) (n = 4 pairs of mice) (D). E. In B, C and E, **p < 0.01, ***p < 0.001 variant or het vs. 

wt, in C, §§ P < 0.01 E16X vs G362R. One-way analysis of variance (ANOVA) and post hoc 

Newman-Keuls test. Values were expressed as mean ± S.E.M.
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Fig. 7. 
The Slc6a1+/A288V knockin mice had increased 5–7 Hz spike wave discharges and absence 

seizures.

(A). Representative EEG recordings show the baseline recordings from the wildtype and the 

heterozygous Slc6a1+/A288V (het) KI mice at 1–2 months old. The EEG traces from Channel 

1 were presented. Both the wildtype and the heterozygous mice were awake during that 

period of recordings, the purple boxed segments were expanded. (B, C). Graph showing the 

total number of 5–7 Hz SWDs or average seizure duration during 48 h recordings in the 

wildtype and the het KI mice. ***p <0.001; vs wt, unpaired t-test, N = 8 for wildtype and 
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6 for heterozygous mice, Values were expressed as mean ± S.E.M. (D). Cartoon illustrates 

that variant GAT-1 results in reduced GABA uptake function in its host cells including 

astrocytes. In thalamus, reduced GABA uptake in astrocytes directly leads to increased 

extracellular GABA, enhanced tonic current and seizures. In summary, defective GAT-1 in 

the astrocytes could result in increased extracellular GABA and increased tonic inhibition, 

leading to increased absence seizures and 3 Hz SWDs in patients.
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