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Abstract: Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) en-
hances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived
suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic
efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using
anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established
subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted
with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting
D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). In-
duction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was
evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-
Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of
releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-
treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact
of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard
of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting
antibodies, which target and eliminate MDSC.

Keywords: immunotherapy; vaccination; myeloid-derived suppressor cells; melanoma; T-Lymphocytes

1. Introduction

Immunotherapy has long found its way into melanoma treatment. Recently, immune
checkpoint-inhibition of CTLA-4 and PD-1 has emerged as the frontline option for the
treatment of patients with advanced stages of the disease, targeting negative regulations of
immune responses and thereby activating tumor-specific cytotoxic T cells [1–3]. In contrast,
active-specific immunotherapy engages autologous tumor cells as a whole cell vaccine to
provide a variety of potential tumor antigens [4]. In many tumors, these tumor antigens
have not been identified and often represent weak self-antigens, unlikely to induce a robust
anti-tumor T cell immune response [5].

Conducting active-specific tumor vaccination in lymphopenic hosts has provided
promising results in murine gastric and melanoma models, as well as in mice challenged
with cells derived from spontaneously occurring mammary tumors of neu transgenic
mice [5–7].

This effect might partially result from a lymphopenia-induced proliferative stimulus
on pre-existing and newly established tumor-directed T cells, especially when homeostatic
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proliferation coincides with antigen encounter [7–10]. Preclinical studies with active-
specific and adoptive immunotherapy in a murine melanoma tumor model demonstrated
that this strategy enhances the induction of tumor-specific T cells, improving therapeutic
efficacy [5,11]. Although van den Engel et al. and others could show an enhanced anti-
tumor immune response using a whole cell vaccine combined with GM-CSF exposure
following lymphodepletion [5–7], generating tumor-directed T cells does not necessarily
translate into an effective trafficking to the tumor site and tumor cell-killing [12]. A major
obstacle is a locally immunosuppressive tumor environment of which MDSC represent a
major component [13].

MDSC represent a heterogeneous population of immature myeloid cells and are known
for their immunosuppressive properties in the tumor microenvironment, facilitating tumor
growth and metastasis [14,15]. Their contribution to an impaired efficacy of immunotherapy
has been shown for adoptive cell therapy, dendritic cell (DC) vaccination and checkpoint
inhibition [16]. MDSC expansion occurs in pathological conditions, including malignant
disease, upon alteration in myelopoiesis followed by accumulation in peripheral lymphoid
organs as well as in the tumor microenvironment [13]. In mice, MDSC are commonly
defined by the co-expression of the myeloid delineation markers CD11b and Gr-1. Based
on the expression of the cell surface markers Ly6G and Ly6C, the two major subtypes of
MDSC with distinct phenotype, morphology, and immunosuppressive properties can be
distinguished: CD11b+ Ly6G− Ly6Chigh monocytic (M-MDSC) and CD11b+ Ly6G+ Ly6C+

polymorphonuclear (PMN-) MDSC [13,17]. In the periphery, PMN-MDSC represent the
largest portion of MDSC, when upregulated under different pathological conditions [13,18].
In the tumor environment, MDSC become more suppressive and M-MDSC outweigh
PMN-MDSC in frequency [13,18,19]. The immunosuppressive capacities of MDSC are
mediated in an antigen-specific and non-specific manner [14]. In lymphoid organs of the
periphery MDSC mainly act antigen-specific with mechanisms including NO and ROS,
nutritional deprivation of T cells from L-arginine, L-tryptophan and L-cysteine, impairment
of T cell homing and production of TGF-β and IL-10, thus creating an immunosuppressive
milieu. Within the tumor environment, MDSC act in a more non-specific way, including
upregulation of ARG-1 and iNOS and the inhibitory surface-expression of PD-L1 [13,20].
Regulatory T cells (Treg), a sub-population of CD4+ T cells capable of downregulating
anti-tumor immune responses, are induced by MDSC in the periphery and are attracted to
the tumor site by secretion of the chemokines CCL4 and CCL5 [13,21,22].

Different efforts have been made to modulate or even ablate MDSC aiming at improv-
ing the outcome of malignant disease in mice and men [23]. There is evidence that depletion
of MDSC, e.g., by applying triperpenoids, all-trans-retinoic acids or nitroaspirin, may im-
prove therapeutic efficacy [24]. Antibody-mediated MDSC depletion using anti-Gr-1 or
anti-Ly6G monoclonal antibodies (mAb) led to a complete but temporary organ-dependent
depletion of MDSC [25–28]. Long-term treatment of mice with an anti-GR1 antibody
combined with a therapeutic BMA-OVA vaccination induced a pronounced tumor reduc-
tion or even a complete tumor eradication in a murine lung tumor model, as reported by
Srivastava et al. [27].

Thus, a promising approach to improve the therapeutic efficacy of anti-tumor vaccina-
tion is the combination of different immunotherapeutic strategies to avoid the threatening
possibility of tumor immune escape.

Different leukocyte populations are involved in anti-tumor reactions. Especially,
high frequencies of CD8+ cytotoxic and memory T cells were found to be associated
with better outcomes in most human cancers [29–31]. Effector CD8+ T cells (Teff) arise
from naive T cells upon antigen presentation and co-stimulation by antigen-presenting
cells. This fundamental process in anti-tumor immunity mainly occurs in TVDLN but
may also happen in direct contact with the tumor. Teff yield robust anti-tumor responses,
but lack in durability and long-term activity [32]. This in turn is the main characteristic
of memory CD8+ T cells, which remain present following first line responses [32,33].
Furthermore, memory CD8+ T cells, in contrast to their effector counterparts, seem to
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be superior in their cytotoxic abilities [34–36]. Both central-memory (Tcm) and effector-
memory (Tem) T cells contribute to an anti-tumor response, where Tem rapidly acquire
effector function, present with enhanced killing capacity and largely contribute to tumor-
specific IFN-γ production [32]; Tcm in contrast reside in secondary lymphatic tissues due to
their expression of CD62L and CCR7 and are characterized by a less pronounced effector
status and a more stem-cell-phenotype with strong proliferative capacities, giving rise to
Tem (and Teff) upon antigen restimulation [37,38]. Overall, compared to Tem, Tcm were
shown to have a more prominent role in anti-tumor responses [33,37,39].

Here, we investigated the therapeutic efficacy of a treatment that combines active-
specific tumor-cell vaccination with mGM-CSF-secreting D5 melanoma cells and an antibody-
mediated depletion of MDSC in a model of murine D5-melanoma. The aim of the study
was to evaluate the frequencies of MDSC and CD8+ T cells following LRAST treatment and
to elucidate whether depletion of MDSC would provide a benefit in anti-tumor treatment.

2. Materials and Methods
2.1. Mouse Strains and Cell Lines

Wild-type C57BL/6 mice (WT, Ptprcb = CD45.2+, Charles River Laboratories In-
ternational, Inc., Sulzfeld, Germany) between 8–12 weeks of age were used for in vivo
experiments, as well as for the generation of single-cell suspensions from lymphatic nod-
ules (LN) and spleen. Congenic B6.SJL-Ptprca Pepcb/BoyCrl mice (CD45.1+; Charles
River Laboratories International, Inc., Calco, Italy) served as spleen cell donors for re-
constitution of wild-type mice after lymphodepletion. Mice were kept under standard
pathogen-free conditions in the animal facility of the Walter-Brendel Center, Ludwig-
Maximilian-University, Munich. The animal experiments were performed after approval
by the local regulatory agency (Regierung von Oberbayern, Munich, Germany, Az. 55.2-1-
54-2532-184-12/55.2-1-54-2532.8-42-13). B16BL6-D5 (D5) is a poorly immunogenic subclone
of B16BL6 melanoma [40]. D5-G6 is a clone of D5 that was stably transduced with a murine
GM-CSF retroviral MFG vector (provided by Dr. M. Arca, University of Michigan, Ann Ar-
bor, MI, USA). D5-G6 cells secrete approximately 200 ng/mL/106 cells/24 h GM-CSF [41].
The MCA 310 fibrosarcoma and LLC1 lung carcinoma cell lines were kindly provided by
Dr. B.A. Fox (Portland, OR, USA).

2.2. Media and Reagents

For cell culture of MCA310-cells RPMI (Roswell Park Memorial Institute) 1640 medium
was used, supplemented with 10% fetal calf serum (FCS “Gold”; PAA Laboratories,
Cölbe, Germany), 2 mM sodium pyruvate (Lonza, BioWhittaker, Walkersville, MD, USA),
0.2 mM non-essential amino acids (Lonza, BioWhittaker), 4 mM L-glutamine and 50 µM
β-Mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA). D5-, D5G6- and LLC1-cells
required DMEM (Dulbecco’s Modified Eagle Medium), containing 10 % FBS, 1 mM sodium
pyruvate, 0.1 mM non-essential amino acids and 4 mM L-glutamine.

2.3. Preparation of Single Cell Suspensions

Mice were killed by cervical dislocation after inhalation of anesthesia with isoflurane
(Forene 100% v/v, Abbott GmbH & Co.KG, Wiesbaden, Germany). Spleen, axillary and
inguinal LN (in the following called tumor vaccine—draining LN “TVDLN”, in the case
when vaccination has been performed), and tumors were removed under sterile conditions.
Organs were disrupted using cannulas and syringe-stomps. Single cells were resuspended
with FBS (1%) containing PBS and filtered over a 100 µm cell-filter.

2.4. In Vivo Treatment of Mice (LRAST)

For the in vivo experiments, lymphodepletion was induced by intraperitoneal (i.p.)
injection of 200 mg/kg cyclophosphamide 3 days after tumor inoculation, followed by
i.v. reconstitution with 20 × 106 naive CD45.1+ spleen cells and active-specific tumor cell
vaccination using 5–10 × 106 irradiated mGM-CSF-secreting D5G6 cells. The cyclophos-



Vaccines 2022, 10, 560 4 of 19

phamide dose was chosen since earlier studies had shown an increased proliferation and
long-term survival of antigen-specific T cells at this particular dose, alone or in combination
with fludarabine [18,27]. Naive, non-lymphopenic mice served as control. Tumor devel-
opment was followed by serial measurements of the tumor diameters and was depicted
as tumor size (mm2) = d × D, where d and D were the shortest and the longest tumor
diameter, respectively.

2.5. Depletion of MDSC

Starting on the day of lymphodepletion (day 0), 230 µg anti-Gr-1 monoclonal anti-
bodies (clone RB6-8C5) were i.p. injected every other day until mice were euthanized.
Anti-phytochromatin antibodies (isotype control) served as control.

2.6. In Vitro T Cell Activation and Expansion

For T cell analyses, mice were vaccinated by s.c. injection with 2.0 × 107 irradiated
D5G6 tumor cells on four sites near the extremities (5.0 × 106 per injection). Where indi-
cated, lymphodepletion and reconstitution were performed as described above. TVDLNs
were harvested nine days after vaccination, and lymph node cells were polyclonally acti-
vated with an anti-CD3 monoclonal antibody (mAb; 5 µg/mL, 2C11, kindly provided by
Dr. H.M. Hu, Portland, OR) for 2 days at 4.0 × 106 cells/mL in complete medium (CM) in
24—well plates. Subsequently, cells were supplemented with 60 IU/mL of interleukin-2
(IL-2, Proleukin, Chiron, Ratingen, Germany) for 4 days. After 4 days, cytokine release
assays were performed as described elsewhere with the following modifications [42]:
TVDLN cells (106 cells) were washed and cultured alone or stimulated with tumor cells
(0.2 × 106 cells), or immobilized anti-CD3 antibody in 1 mL of CM supplemented with
gentamycin (Lonza, Cologne, Germany) and 60 IU IL-2/mL in a 48-well tissue culture
plate at 37 ◦C, 5% CO2 for 18 h. The tumor targets included the tumor cell line used for
vaccination (D5). LLC1 and MCA310 tumor cells served as negative controls. Supernatants
were analyzed by ELISA.

2.7. ELISA

IFN-γ was measured in supernatants by conventional sandwich ELISA, using mAb
AN-18 and biotinylated mAb R4-6A2 (BD Biosciences, Heidelberg, Germany). Supernatants
were analyzed in duplicate. Extinction was analyzed at 405/490 nm on a Spectra Fluor
microplate ELISA reader (TECAN, Crailsheim, Germany) with the EasyWin software
(TECAN). The detection limit of the ELISA for IFN-γ was 125 pg/mL.

2.8. Flow Cytometry

For surface staining, cells were washed with PBS and suspended in PBS supplemented
with 0.5% (w/v) bovine serum albumin (BSA) and 0.02% (w/v) sodium azide. Non-specific
binding of antibodies to Fc receptors was blocked by preincubation of the cells with rat
anti-mouse CD16/CD32 monoclonal antibodies 2.4G2 (1 µg/106 cells, BD Biosciences) for
15 min. Subsequently, the cells were incubated with the mAb of interest for 30 min at
4 ◦C, washed and analyzed using a FACS Calibur or a LSRII (BD Biosciences). Dead cells
were excluded using Zombie Yellow staining. Data were analyzed using the FACS-Diva
software (Version 4.0.2) and FlowJo® software (Version 10.5.0). The following reagents
and mAbs against murine antigens were used: allophycocyanin (APC)-conjugated anti-
mouse/human CD44 (eBioscience), anti-mouse CD8a (Biolegend, including all following),
Ly6C; allophycocyanin/Cy7 (APC/Cy7)-conjugated anti-mouse CD3e, Ly6G; fluorescein
isothiocyanate (FITC)-conjugated anti-mouse CD45.2; Pacific Blue-conjugated anti-mouse
MHC-II; phycoerythrin (PE)-conjugated anti-mouse CD11b, CD3e, CD62L, Ly6G, goat anti-
rat IgG; phycoerythrin/Cy7 (PE/Cy7)-conjugated CD8a, CD11b; Peridinin-chlorophyll
proteins/Cy5.5 (PerCP/Cy5.5)-conjugated anti-mouse CD45.1.
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2.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8 (GraphPad Software Inc.,
La Jolla, CA 92037, USA). Two-way ANOVA or unpaired Student’s t test was used as
indicated. Values of p < 0.05 were considered to be statistically significant (* p < 0.05;
** p < 0.01; *** p < 0.001; ns p > 0.05).

3. Results
3.1. MDSC Subsets Temporarily Accumulate in Spleen and Peripheral Blood after LRAST

The frequencies of CD11b+ Ly6G+ Ly6C+ PMN-MDSC and CD11b+ Ly6G− Ly6Chigh

M-MDSC were assessed in the peripheral blood and the spleen of tumor-bearing wild-type
C57BL/6 mice, at indicated time points following lymphodepletion (day 0) and active-
specific tumor-cell vaccination (day 1). FACS analyses were performed starting on the day
of lymphodepletion (peripheral blood) or 3 days later (spleen; Figure 1).
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except for CD45.1+ donor cells, which were not in situ of the recipient mice on day 0). Frequencies 
of the different myeloid cell types are depicted as percentages of CD45+ leucocytes and separated 

Figure 1. Myeloid cells from spleen and blood at different time points after LRAST-treatment.
C57BL/6 mice were exposed to 5 × 104 D5-cells by s.c. injection and treated according to the LRAST
scheme with cyclophosphamide (L) and active-specific vaccination (AST). CD11b+ MHC-II− cells,
PMN-MDSC (CD11b+ Ly6G+ Ly6C+) and M-MDSC (CD11b+ Ly6G− Ly6Chigh) from spleen (a,b,
n = 2) and blood (c,d, n = 3) were determined on days 3, 10 and 23 (spleen) and 0, 7, 15 and 24 (blood,
except for CD45.1+ donor cells, which were not in situ of the recipient mice on day 0). Frequencies of
the different myeloid cell types are depicted as percentages of CD45+ leucocytes and separated into
CD45.2+ (recipient mouse, a,c) and CD45.1+ (donor mouse, b,d) cells, respectively. Data are means
with SD, and two-way ANOVA was performed. Symbols indicate: * p < 0.05; *** p < 0.001.
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About 7 and 10 days after treatment initiation (LRAST) CD11b+ MHCII− myeloid
cells originating in the recipient mouse (CD45.2+) were significantly increased in the spleen
and the peripheral blood (Figure 1a,c). We observed a significant increase in CD45.2+

PMN-MDSC in the blood (Figure 1c), a remarkable but not significant increase for cells
resembling PMN-MDSC in the spleen (Figure 1a), and M-MDSC in blood and spleen
(Figure 1a,c). CD45.2+ PMN-MDSC accounted for 51% of total CD45.2+ leukocytes in the
peripheral blood of tumor-bearing mice, 7 days after LRAST. In contrast, reconstituted
CD45.1+ PMN- or M-MDSC from donor mice were not found in a considerable extent in
both organs and did not show similar kinetics compared to their CD45.2+ counterparts
over time (Figure 1b,d). One month following LRAST, frequencies of CD45.2+ PMN- and
M-MDSC were back to values comparable to baseline at day 0.

Thus, we hypothesized that the pronounced occurrence of potentially immunosuppres-
sive MDSC following LRAST treatment might be a key limiting factor for treatment efficacy.

3.2. RB6-8C5 Eliminates MDSC in the Initial Treatment-Phase

As we had hypothesized that MDSC inhibit the induction of tumor-specific T cells, we
injected MDSC-depleting antibodies i.p. in combination with LRAST treatment. Dose and
dosing interval were chosen according to previous reports regarding antibody-mediated
depletion of MDSC for therapeutic and non-therapeutic purposes and in combination with
other immunotherapeutic approaches [25–27,43–46]. To deplete MDSC, we injected 230 µg
anti-Gr-1 mAb i.p. every other day, starting on the day of cyclophosphamide administration
(Figure 2a). As a control, mice received an equivalent dose of isotype control following
the same time schedule. Efficacy of MDSC depletion using anti-Gr-1 Ab was monitored in
peripheral blood in short time intervals 24 or 48 h after the last antibody administration
and up to 24 days after treatment initiation (Figure 3c,d).

Due to an identical binding site, staining of Ly6G epitopes with anti-Ly6G (1A8) or
anti-Gr-1 fluorochrome-conjugated antibodies is restricted when Gr-1 antibodies (RB6-8C5)
are being used. Therefore, to reveal hidden PMN-MDSC and to elucidate the proportion of
PMN- and M-MDSC with cell-bound RB6-8C5, we used a secondary antibody (“2nd Ab”)
approach. Peripheral leukocytes from RB6-8C5-treated mice were obtained and stained
with PE-conjugated goat anti-rat IgG. Corresponding plots (Figure 2b) indicate the portion
of PMN- and M-MDSC with cell-bound RB6-8C5. Then, 48 h (day 2) and 96 h (day 4)
following first anti-Gr-1 mAb administration, a significant depletion of PMN-MDSC was
observed (Figure 2b,c). Secondary antibody staining revealed no relevant amount of cell-
bound RB6-8C5 in the PMN-gate on both days. M-MDSC frequencies in mice following
MDSC depletion appeared to be lower, compared to values in mice without RB6-8C5, but
failed to be significantly reduced. A portion of the cells located in the M-MDSC gate was
bound by RB6-8C5 on days 2 and 4 (0.6% on day 2; 1.6% on day 4).

Thus, anti-Gr-1 mAbs seem capable of sufficiently depleting circulating PMN-MDSC,
while M-MDSC appear to be altered in frequencies, but not depleted.

3.3. PMN-MDSC Recur Despite Long-Term Treatment with RB6-8C5

In our experiments, the MDSC-depleting antibody was administered i.p. every other
day for approximately 4 weeks. Since both MDSC subsets express Ly6C at the surface and
anti-Ly6C fluorochrome-conjugated antibodies do not interfere with Rb6-8C5, we plotted
CD11b+ Ly6C+ cells to depict all MDSC, which exhibit secondary antibody binding over
time (Figure 3a), representing the percentage of anti-Gr-1 mAb bound MDSC. Compared to
the control, which showed absence of RB6-8C5-binding, the CD11b+ Ly6C+ cells, which
represent both MDSC subsets, exhibited increasing RB6-8C5-binding over time, with 0.0%
on day 0 (before RB6-8C5 administration), 8.9% on day 2, 62.8% on day 4, and 64.6% on
day 7 after the first dose of anti-Gr-1 mAb.
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Figure 2. Successful elimination of PMN–MDSC in the initial treatment phase of LRAST + RB6-
8C5. (a) LRAST treatment scheme. D5 tumor cells (5 × 104) were injected s.c. into C57BL6 mice
3 days prior to LRAST treatment. One day following lymphopenia induction with cyclophosphamide
(200 mg/kg, i.p.), C57BL/6 (CD45.2+) mice were reconstituted i.v. with 20 × 106 splenocytes from
naïve C57BL/6 (CD45.1+) mice and vaccinated s.c. with 10 × 106 irradiated D5G6 cells. Beginning
on the day of lymphodepletion, in groups with MDSC depletion, mice received 230 µg anti-Gr-1
mAb (clone: RB6-8C5) i.p. every other day until mice were euthanized. n = 2 per group. (b) Plots
depict mean and standard deviation visualizing depletion results assessed by flow cytometry for
PMN-MDSC and M-MDSC on days 2 and 4 from the blood of mice treated with LRAST + RB6-8C5
compared to control (Isotype alone), respectively. Results in the middle of both plots represent % of
CD11b+/MHCII− cells with RB6-8C5-binding as indicated by secondary antibody staining (“2nd
Ab+”). Symbols indicate: ** p < 0.01; *** p < 0.001; ns p > 0.05. Student’s t test was performed.
(c) Representative dot plots for (b). Dot plots demonstrate depletion of PMN- and M-MDSC on day 2
(=48 h) after treatment initiation with LRAST + RB6-8C5-treated mice compared to mice receiving
Isotype control Ab without any further treatment.
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cells with anti-Gr-1 mAb (RB6-8C5) bound to their cell surface in the blood of mice treated with
LRAST + RB6-8C5 compared to mice treated with Isotype Ab alone. RB6-8C5-binding is as indicated
by secondary antibody staining. FACS analysis was performed on days 0 (before first RB6-8C5
administration), and days 2, 4, and 7. n = 2 per group. (b) Representative Ly6G/Ly6C dot-plots with
gates for PMN-, M-MDSC, and Ly6Cmid/Ly6G− cells, illustrating appearance of PMN-MDSC when
exposed to depleting antibodies (RB6-8C5) on day 7. Red dots represent RB6-8C5-bound cells, as
indicated by secondary antibody staining. (c,d) Long-term depletion results for PMN-, and M-MDSC,
depicted as % of CD45.2+ CD11b+ MHCII− cells on days 0 (before first RB6-8C5 administration), and
days 7, 15, and 24 after lymphodepletion. Grey columns represent the amount of PMN- or M-MDSC
net of cells with RB6-8C5 surface binding within the same (PMN- or M-MDSC-) gate, respectively.
Red columns represent the portion of secondary antibody bound cells (“2nd Ab”) within the PMN-
or M-MDSC gate, respectively. n = 3–4 per group. (a,c,d) Data are means with SD. Two-way ANOVA
was performed. Symbols indicate: ** p < 0.01; *** p < 0.001; ns p > 0.05.

RB6-8C5-bound CD11b+ MHCII− myeloid cells revealed a dynamic shift within
the Ly6G/Ly6C-plot (Figure 3b). Red dots, indicating RB6-8C5-bound cells, appear in
the Ly6G positive and negative region of the Ly6G/Ly6C-plot, but exhibit equal Ly6C-
fluorescence intensity, when comparing different mice of the same treatment group at
day 7 (Figure 3b). As the significance of antibody-bound MDSC occurring in respective
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MDSC-gates is not yet clear, we compared adjusted frequencies of PMN- and M-MDSC (all
MDSC in the PMN- and M-MDSC gate minus RB6-8C5-bound cells), as well as overall cell
frequencies of respective gates (PMN- and M-MDSC including RB6-8C5-bound cells) from
LRAST + RB6-8C5-treated mice to MDSC from mice treated only with LRAST (Figure 3c,d).
In this manner we tried to address whether RB6-8C5 can induce long-term MDSC depletion.

Depleting antibody was evident on the surfaces of PMN- and M-MDSC up to day 15 af-
ter onset of i.p. antibody administration. The portion of PMN-MDSC net of RB6-8C5-bound
cells was significantly reduced on days 7 and 15. Remarkably, when the maximum increase
in PMN-MDSC after LRAST could be expected (day 7, Figure 1c), PMN-MDSC, even
including the RB6-8C5-bound portion, were significantly reduced (Figure 3c). Nevertheless,
on both days (7 and 15), a considerable percentage of PMN-MDSC (less pronounced for M-
MDSC) showed RB6-8C5-binding, as indicated by secondary antibody staining (Figure 3c).
Trends for frequency kinetics for M-MDSC appeared to be different from those of PMN-
MDSC, with an initial increase seen on day 7, followed by a reduction by day 15 (Figure 3d).
At the end of the experiment (day 24), both PMN- and M-MDSC frequencies where back to
baseline in mice treated with LRAST + RB6-8C5 as compared to the control group.

These data demonstrate that a successful depletion of MDSC, especially PMN-MDSC,
can be achieved for a short period of time, despite continuous administration of depleting
antibodies. Further, these long-term results indicate a different impact of anti-Gr-1 mAbs
on M-MDSC compared to PMN-MDSC, since no significant depleting effect on M-MDSC
and little binding of RB6-8C5 could be observed within 24 days.

3.4. MDSC Depletion Improves Vaccination Responses

In order to evaluate the effect of MDSC depletion on the induction of tumor-specific T
cells, IFN-γ release from TVDLN of LRAST-treated mice was assessed. Therefore, TVDLN
were isolated nine days following LRAST and analyzed in a cytokine release assay. Cytokine
responses were evaluated upon restimulation with D5-melanoma cells or control tumor-cell
lines (LLC1 and MCA310). Following LRAST treatment alone, an increased D5-melanoma-
specific IFN-γ release from TVDLN was observed (577 pg/mL; Figure 4a). While the
administration of MDSC-depleting antibodies (RB6-8C5) alone did not have any detectable
effect on cytokine release with any tumor cell line, we observed a remarkable increase in
the D5 tumor-specific IFN-γ secretion from TVDLN in mice treated with the combination
of LRAST and RB6-8C5 mAb (8193 pg/mL; Figure 4a).

Tumor growth was recorded starting 7 days after onset of the treatment. Compared to
the control group both, LRAST and LRAST + RB6-8C5 led to a delay in tumor progression
(Figure 4b). Within the first two weeks after treatment initiation, tumor sizes of animals
treated with the combination of LRAST and MDSC depletion were significantly smaller
than with LRAST alone (Figure 4b).

3.5. Use of RB6-8C5 Leads to Alteration of Memory CD8+ T Cells

Effects of a lymphodepleting preconditioning with cyclophosphamid and the admin-
istration of antibodies targeting Gr-1 epitopes on CD8+ cells and subsets thereof have
already been investigated and will be discussed below [11,47,48]. In the treatment groups
containing lymphodepletion with cyclophosphamide, frequencies of CD8+ cells increased
during recovery from cyclophosphamide, followed by a reduction below the baseline and
the values of control groups (RB6-8C5 alone and Isotype, Figure 5a). RB6-8C5 treatment had
no significant impact on the frequency of CD8+ cells compared to untreated mice (Isotype
group, Figure 5a). Regarding the administration of MDSC-depleting antibodies (anti-Gr-1
mAb, RB6-8C5) Matsuzaki et al. showed that the Gr-1 epitope is not only attributed to
neutrophils and a subset of mouse DC but is also expressed on memory type CD8+ T
cells [48]. In the present investigation, we confirmed the expression of the Gr-1-epitope
on CD8+ T cells, but not on CD4+ T cells of female C57BL/6 mice (Figure 5b and data
not shown). The use of RB6-8C5 for MDSC depletion as described above also led to a
reduction in frequencies of CD8+ CD44high CD62L+ “central” and CD8+ CD44high CD62L−
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“effector” memory cells (Figure 5c). To address to which extent Gr-1+ CD8+ cells are affected
by RB6-8C5 administration, we stained peripheral CD45.2+ blood cells for the indicated
markers. In groups that included MDSC depletion consistently, lower proportions of
Gr-1+ CD8+ central and effector memory cells were observed compared to the control
group. To evaluate whether CD8+ memory cells were depleted and not simply masked by
cell-bound RB6-8C5, we assessed their percentage of peripheral leukocytes. While CD8+

central memory cells were consistently reduced in groups with RB6-8C5 administration,
the portion of CD8+ memory effectors in mice with LRAST + RB6-8C5 treatment steadily
increased over 7 days following an initial decline after initiation of MDSC depletion. This
resulted in an increasing Tem:Tcm-ratio over time (Figure 5d). On day 7, frequencies of
CD8+ effector memory cells from mice treated with LRAST + RB6-8C5 surpassed both
control groups. Similar cell kinetics were not found in mice treated with lymphodepletion
but without vaccination, followed by MDSC depletion (LR + RB6-8C5). Thus, we conclude
that administration of a whole cell vaccine after lymphodepleting preconditioning drives
the expansion of CD8+ memory cells with an effector phenotype (CD62L downregulation).

1 

 

 

Figure 4. Cytokine response and effect on tumor growth after combining LRAST with anti-Gr-1
antibody treatment. (a) C57BL/6-mice were subcutaneously injected with 20 × 104 D5-cells (5 × 104

at each flank nearby the proximal extremities) and treated according to LRAST w/o MDSC depletion
with anti-Gr-1 mAb (clone RB6-8C5) (n = 2–4 per group). Mice were euthanized on day 9 after
lymphodepletion, and inguinal as well as axillary lymphatic nodules were harvested. T cells from
TVDLN were polyclonally stimulated with anti-CD3 mAb and expanded with IL-2. To assess tumor-
specific IFN-γ release, cells were incubated with autologous tumor cells of the D5-lineage or control
tumor cell-lines (MCA310 and LLC1). Wells coated with anti-CD3 mAb served as positive controls,
and wells with native RPMI cell culture medium represented negative controls. Bars represent
means with SEM. (b) Subcutaneous tumor growth of mice treated with LRAST alone (green), LRAST
combined with RB6-8C5 (red), or isotype control (black) (n = 4 for both LRAST groups, n = 3 for
isotype control group). Maximum and minimum diameter of the tumors were determined using
caliper and the multiplication product (in mm2) depicted against time (in days). Each line represents
one mouse of the respective treatment group. (c) Comparison of mice treated with LRAST alone
versus mice treated with a combination of LRAST and RB6-8C5, focusing on the initial treatment
phase (days 7–15). Dots represent values of single mice. Error bars indicate means with SD. Student’s
t test was performed. Symbols indicate: * p < 0.05; ns p > 0.05.
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Figure 5. Effect of RB6-8C5 administration on CD8+ memory T cells. (a) Frequency of CD3+ CD8+

cells in % of CD45.2+ leukocytes (in the following referred to as CD8+ cells), assessed by flow cytometry
on days -3, 0, 2, 4, and 7 from the blood of mice in different treatment groups (as indicated in the
picture). (b) Frequency of Gr-1+ CD8+ central (left) and effector (right) memory T cells from the same
animals as in (a). (c) CD8+ central (left) and effector (right) memory T cells in % of CD45.2+ leucocytes
form the same animals as in (a). (d) Ratio of CD8+ effector and central memory T cells (Tem/Tcm)
calculated from results depicted in (c). A ratio equal to 1 represents an equilibrium state with identical
amounts of both memory T cell subsets. (a–d) n = 2 per group. Data are means with SD.

4. Discussion

The recent success of immune checkpoint inhibition in the therapy of malignant
melanoma and various other cancer entities emphasizes the significance of tumor-reactive
cells, especially effector T cells [32,49–51]. However, tumors escape immune surveillance
acquiring different accesses, including reduction of immune recognition and immune
activation, developing resistance to immune effector mechanisms and establishing an
immunosuppressive tumor microenvironment [52]. Focusing on melanoma, with a high
risk of disease recurrence in thicker, nodular or mucosal forms, new systemic treatments are
necessary for the management of this condition [53]. MDSC were shown to be key mediators
of immunosuppression in the tumor microenvironment, facilitating tumor outgrowth,
metastasis, and negatively influencing the efficacy of immunotherapy of cancer [54–60].
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In our experiments using a murine melanoma model, we applied a combined im-
munotherapeutic approach, LRAST, consisting of lymphodepletion with the alkylating
agent cyclophosphamide, followed by i.v. reconstitution with naive congenic spleen cells
and active-specific tumor vaccination using GM-CSF-secreting whole tumor cells. In the
poorly immunogenic D5-melanoma model, we intended to improve T cell immunization
at different levels simultaneously [61]. Induction of a lymphopenic environment should
empower T cells with a homeostatic drive to proliferate and, by simultaneous exposure to
tumor-antigens via whole cell vaccine, ensure that preferentially tumor-directed T cells col-
onize empty lymphatic niches [62]. GM-CSF is a hematopoietic cytokine and is often used
as an adjuvant in immunotherapeutic regimes, especially vaccination strategies [63–66].
It acts to promote the local recruitment of antigen-presenting cells and improves their
maturation, thus enhancing antigen presentation to T cells in TVDLN [67].

In line with previous reports [7,62], we observed a remarkable increase in frequencies
of CD11b+ Ly6Chigh Ly6G− (phenotype of M-MDSC) and CD11b+ Ly6C+ Ly6G+ (phenotype
of PMN-MDSC) cells (together also attributable as CD11b+ Gr-1+ cells) following LRAST.
Within 24 days after lymphodepletion with 4.0 mg i.p. cylophosphamide per animal, PMN-
as well as M-MDSC increased, peaking at day 7 in peripheral blood and day 10 in the
spleen. Similar cell kinetics were reported by Salem et al. in blood, spleen and bone marrow
of C57BL/6 mice after treatment with the same amount of i.p. cyclophosphamide [68].
Although we observed CD45.1+ cells of the myeloid lineage (CD45.1+ CD11b+) in the blood,
spleen and tumor, reconstituted cells, in contrast to their host counterparts, did not give
rise to relevant amounts of progeny with the phenotype of PMN- or M-MDSC or displayed
a similar behavior in frequency kinetics over time. Thus, we conclude that CD45.1+ MDSC
do not considerably contribute to an immunosuppressive tumor micromilieu in mice with
established D5 melanoma.

To enhance priming of tumor-specific T cells and anti-tumor effects of cytotoxic T cells,
we aimed to deplete CD11b+ Gr-1+ cells. Anti-Gr-1 mAb (clone: RB6-8C5) has already
successfully been used to eliminate MDSC in tumor, spleen, peripheral blood and bone
marrow of tumor-bearing and control mice [25,27,43–45]. Thus, proof of principle for the
efficacy of the anti-Gr-1 antibody and its therapeutic effect slowing down the growth of
malignant tumors has already been brought forward. Srivastava et al., for example, used
200 µg anti-Gr-1 mAb (RB6-8C5) every other day for a total amount of 4 weeks in a model of
3LL-lung carcinoma, starting one week after tumor inoculation. They observed a reduction
of CD11b+ Gr-1+ in blood, spleen, bone marrow and tumor and a significant reduction in
tumor volume and weight [27]. Using a similar approach in mice carrying 3LL-tumors,
Zhang et al. were able to significantly reduce tumor-infiltrating MDSC, slowing down
tumor growth and improving survival of the animals, using repeated i.p. administrations
of 250 µg RB6-8C5, every 3 days starting 2 weeks after tumor inoculation [44].

In our experiments, we administered 230 µg anti-Gr-1 mAb (RB6-8C5) or isotope con-
trol via intraperitoneal injection every other day, starting with the day of cyclophosphamide
administration and continuing until the animals were euthanized, thus ensuring that the
period of RB6-8C5 administration would cover the days with maximum MDSC frequencies.
To maintain comparability, dose and time intervals between the single doses of antibody
were set in accordance with previous reports [26,44]. However, assessing the depletion
status of MDSC is not trivial since fluorochrome labelled Ly6G antibodies (clone 1A8),
which we and others used to distinguish between PMN- and M-MDSC, do not bind due to
the same binding site, when anti-Gr-1 antibodies were administered previously [25,26,28].
Thus, we performed co-staining and quantification of RB6-8C5-bound cells using a sec-
ondary antibody-approach with fluorochrome-labeled antibodies directed against goat-IgG
heavy chains of the anti-Gr-1 antibodies [25,26,28,48]. Complete absence of MDSC after
conventional and secondary antibody staining indicated that MDSC were reliably depleted.
Absence of MDSC regarding the conventional staining, but detection of secondary Ab
positive cells in the same gate or neighboring areas, indicated the persistence of MDSC. In
some cases, we observed (a) secondary Ab bound cells negatively stained for Ly6G, (b) a
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cell cloud with a positive and negative portion regarding Ly6G-staining, or (c) secondary
Ab bound cells within the PMN-gate. The fact that cells of all three cases retained the
same Ly6C intensity suggests that in every case PMN-MDSC with different degrees of Gr-1
epitope saturation with RB6-8C5 were visualized. Hence, the absence of PMN-MDSC in
their designated gate was not necessarily accompanied with complete absence or depletion
of PMN-MDSC.

With this in mind, we observed complete disappearance of PMN-MDSC in the periph-
eral blood, 2 and 4 days after treatment initiation, as there were no secondary antibody-
bound cells in the PMN-gate. However, starting with day 4, RB6-8C5-bound cells emerged
in the Ly6Cmid-Ly6G− gate, indicative for PMN-MDSC completely covered with RB6-8C5
mAb and thus potentially mimicking successful depletion (Figure S1). In contrast, the
frequencies of M-MDSC appeared to be reduced but were not completely depleted. In the
timespan, when maximum frequencies of MDSC were to be expected following LRAST
treatment (day 7 and day 10), frequencies of PMN-MDSC appeared to be significantly
reduced, but, at the same time, a major portion of cells in the PMN-gate showed sec-
ondary Ab binding. Since anti-Gr-1 antibodies (RB6-8C5) were shown to persist on the
cell surface of MDSC for up to 4 days and might retain suppressive activity [25,26], the
persisting portion of RB6-8C5-bound cells might represent an obstacle to therapy due to
preserved immunosuppressive properties. Therefore, we aimed at investigating whether
the observed reduction of PMN-MDSC, despite the occurrence of RB6-8C5-bound cells,
would be sufficient to improve a tumor-specific T cell response and display a measurable
therapeutic effect.

IFN-γ secretion is often used as a marker for the cytotoxic properties of T cells, in-
cluding anti-tumor reactivity [69–72]. Van den Engel et al. have already demonstrated
an increase in IFN-γ secretion from TVDLN after LRAST [7]. Here, we hypothesized
that tumor-specific T cells in TVDLN from mice in the group with LRAST + RB6-8C5
treatment would exert improved IFN-γ producing capability due to better T cell-priming
after MDSC depletion. TVDLN from mice treated with LRAST alone already presented
an increased tumor-specific IFN-γ production and a delay in tumor outgrow compared to
untreated mice. We could show that RB6-8C5 administration in addition to LRAST could
further increase the IFN-γ-secretion from TVDLN, although significant results could not
be obtained due to the variability of results per mouse. In accordance with this, tumor
growth in mice treated with LRAST + RB6-8C5 appeared significantly reduced in the initial
treatment phase up to 13 days after tumor inoculation, including the point in time with
maximum IFN-γ secretion and covering the timespan of successful MDSC depletion in
our experiments—at least regarding PMN-MDSC. Since PMN-MDSC are known to mainly
target T cell priming accounting for tumor-specific T cell tolerance [24], the improvement
in tumor-specific INF-γ secretion from TVDLN and the delay of tumor-growth, which is
chronologically fitting to the time-span of successful reduction of PMN-MDSC, implies that
the observed effects are attributable to the administration of MDSC-depleting antibodies. In
contrast to Srivastava et al. and Zhang et al. [27,44], who gained good long-term results due
to a presumably successful long-term depletion of MDSC in their tumor models, our results
clearly demonstrate the recurrence of MDSC, especially the PMN-subset after repetitive
administration of anti-Gr-1 antibodies. The presence of RB6-8C5-bound cells, as indicated
by secondary Ab binding, initially increased over time. After approximately 4 weeks of
repetitive RB6-8C5-administration, binding of depleting antibodies could not be observed
anymore and MDSC depletion appeared insufficient. The comparability of our data to
pre-existing literature on MDSC depletion using RB6-8C5 is impaired due to a pervasive
pre-treatment, which even bears the risk to be a MDSC driving stimulus itself. We assume
that most likely side effects of the components of LRAST work in synergy and oppose
MDSC eradication. Hence, despite its positive immunomodulating features, low-dose
cyclophosphamide is known to increase levels of various cytokines (GM-CSF, IL-1b, IL-5,
IL-10, IFN-γ, TNF-α), which can contribute to the expansion and activation of MDSC [73].
GM-CSF, a major component within LRAST, in turn is a driving force in MDSC recruitment.
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It is not only found manifold as an adjuvant in immunotherapeutic regimes, but also
produced by many human and murine tumor cell lines [74]. GM-CSF has been shown to
recruit MDSC into secondary lymphoid tissues with a consecutively impaired function
of tumor-specific CD8+ T cells [75]. In experiments with irradiated GM-CSF producing
B78H1-GM cells, a cell line derived from the B16 melanoma, Serafini et al. proposed a
cut-off concentration at 1500 ng/106 cells/24 h, which—if exceeded—was associated with
a suppression of antigen-specific T cell response [76]. Irradiated D5G6 cells used in this
work showed an in vitro GM-CSF production of 154 ng/106 cells/24 h with an ascending
tendency over 6 days (Figure S2). Although the GM-CSF concentrations observed in our
experiments are below the proposed cut-off, a positive contribution to MDSC recruitment
by GM-CSF cannot be ruled out, especially considering the potentially synergistic effects
when combined with cyclophosphamide. Furthermore, even the anti-Gr-1-depleting an-
tibodies themselves may act as a driver for MDSC expansion and thereby stand in the
way of their own therapeutic purpose. Single application of RB6-8C5 was shown to be
accompanied by enlarged spleens with increased cell numbers 9 days after antibody in-
jection [43], observations which we also could obtain in our experiments. An increase in
numbers of PMN- and M-MDSC was attributed to a pronounced proliferative stimulus
on early myeloid precursors due to depletion [43]. More to the point, following repetitive
administration of RB6-8C5 every other day, Ribechini et al. found an induction of STAT1,
STAT3 and STAT5. STAT3 in particular acts as an inducer of myeloid cell lineages and
thereby may promote MDSC differentiation and activation [26].

Overall, the increasing frequencies of PMN-MDSC despite administration of anti-Gr-1
mAb, and an increasing number of cells with cell-bound RB6-8C5, indicate that antibody
administration becomes insufficient in keeping up with the reproduction/regeneration of
MDSC, especially the PMN-subset. The abrogated depleting efficacy of long-term use of
RB6-8C5 together with the fact that, in the long run, no RB6-8C5 bound cells were detectable
in the gates of both MDSC-subsets, implies the existence of a neutralizing mechanism (e.g.,
neutralizing self-antibodies) directed against RB6-8C5 antibodies.

Depending on the tissue localization the ratio of MDSC subpopulations and their
suppressive activity vary, as does their susceptibility to RB6-8C5 [13]. Overall, we observed
a differing behavior of the M-MDSC subset compared to their PMN counterparts in re-
sponse to MDSC depletion. For a period of 4 weeks, repetitive RB6-8C5 administration did
not—apart from an initial reduction in peripheral blood—have any significant depleting
effect on M-MDSC in the peripheral blood of tumor bearing mice. In previous reports par-
ticularly tumor-localized M-MDSC were shown to be resistant to depletion with anti-Gr-1
mAb and the frequency of Ly6Chigh cells was not altered 48 h after a single administration
of 250 µg RB6-8C5 [26,77]. In our experiments, frequencies of tumor-infiltrating PMN-
and M-MDSC showed no significant difference after LRAST and repetitive administration
of RB6-8C5, compared to mice treated with LRAST alone (Figure S3). Apart from that,
varying levels of Gr-1-expression on both MDSC subsets, as anti-Gr-1 mAbs bind to both
Ly6G and Ly6C, might affect binding capacity of RB6-8C5 and therefore influence deplet-
ing results [78]. Since the tumor-specific milieu as well as cytokines exerted by various
leukocytes affect MDSC generation, activation and distribution, we expect the increased
cytokine levels after lymphopenia induction with cyclophosphamide including GM-CSF
and the GM-CSF released by the whole-cell vaccine to have relevant influence on M-MDSC
kinetics. Lesokhin et al. reported that chronic GM-CSF exposure in a B16-GM-melanoma
model leads to increased expansion of CCR2+ monocytic MDSC and accumulation at the
tumor site. This prevented adoptively transferred activated CD8+ T-cells from entering
the tumor site [79]. Thus, we assume that in our experiments, the variability in M-MDSC
frequencies by day 15 and 24 after LRAST pretreatment (w/o RB6-8C5) results from a
GM-CSF-driven expansion and redistribution, e.g., into tumor tissue. Still, given the initial
occurrence of RB6-8C5 bound cells in the M-MDSC gate and a short-term reduction in
numbers of M-MDSC after treatment initiation with LRAST + RB6-8C5, we cannot assume
a general resistance of M-MDSC to anti-Gr-1 mAbs. However, M-MDSC frequency kinetics
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appeared to be independent of anti-Gr-1 Ab administration. This has to be evaluated in
future experiments.

Apart from the MDSC-depleting properties of anti-Gr-1 antibodies, a secondary focus
was to elucidate the effect of RB6-8C5 on CD8+ cells and CD8+ memory T cell subsets
(Tcm and Tem) in mice after LRAST treatment. Both the anti-Gr-1 antibodies as well as
lymphopenia induced by cyclophosphamide provably have an impact on CD8+ T cells
and their memory subsets [11,47,48], but—to the best of our knowledge—the combined
effect has not been investigated thus far. In line with previous work by Matsuzaki et al., we
confirmed the expression of Gr-1 on memory CD8+, but not CD4+ T cells with FACS analysis
(data not shown) and observed a depletion of CD8+ memory T cell subsets following
RB6-8C5 administration [48]. In accordance to results from Salem et al., the relative cell
frequency kinetics of CD8+ cells were obviously influenced by lymphopenia/lymphopenia
driven homeostatic proliferation [68], but no significant impact of MDSC depletion on
the population of CD8+ cells could be observed. However, looking at the CD8+ memory
subsets (Tcm and Tem), reduced staining capability with fluorochrome-conjugated mAb
directed towards Gr-1 and reduced overall frequencies indicated that not only targeting of
memory T cells by anti-Gr-1 mAb occurred, but a portion of both memory T cell subsets
was depleted following RB6-8C5 administration, independent from pretreatment with
LRAST. Nevertheless, despite continuous injections with anti-Gr-1 mAb, we observed that
frequencies of Tem, more than Tcm, in the peripheral blood strongly increased following
LRAST, reflecting in a Tem:Tcm ratio of 3.5:1 by day 7, compared to a ratio of 1.2:1 in the
control group. Tem in mice with RB6-8C5 monotherapy and LR + RB6-8C5 treatment
(no vaccination) remained reduced in the same period of time. These results are in line
with observations from Ma and coworkers. They found that the exposure to a tumor
vaccine during homeostatic recovery after induction of lymphopenia resulted in strong
expansion of CD4+ and CD8+ CD44high CD62Llow effector memory T cells, accompanied
by a pronounced tumor-specific IFN-γ production and better tumor reactivity [11]. In
our experiments, the proliferative drive seems to exceed the depleting properties of the
anti-Gr-1 antibodies exerted upon the Gr-1 expressing CD8+ memory T cells, which are
capable of producing significant amounts of IFN-γ in a tumor-specific manner [11,48].
Nevertheless, it remains to be evaluated whether the observed increase in IFN-γ secretion
from TVDLN is attributable to the increased occurrence of Tem, since these cells lack the
ability to home to lymphatic tissue [37]. Also, compared to CD8+ Tem, CD8+ Tcm are
referred to as the cell population with a more pronounced role in antitumor immunity.
Downregulation of CD62L enables Tem to quickly migrate to peripheral tissues and exert
effector functions upon antigen encounter [39]. Thus, Tem might successfully invade tumor
tissue and kill transformed cells. We therefore hypothesize that the increased frequencies
of Tem cells might be reflected in the initial delay of tumor growth of mice treated with
LRAST + RB6-8C5. Nevertheless, the influence of RB6-8C5 on the CD8+ memory T cell
compartment might limit the anti-tumor efficacy of LRAST + RB6-8C5 treatment.

5. Conclusions

Overall, within the wide field of immunotherapy, cancer combination therapies con-
tinue to be promising. With LRAST, a therapy combining lymphodepletion with active-
specific tumor cell vaccination, we could confirm pre-existing results showing a notable
delay in melanoma growth. By adding the use of monoclonal-depleting antibodies (anti-
Gr-1 mAb), our data highlight the significance of MDSC as major tumor-promoting cells,
as depletion of MDSC further delayed tumor progression and improved the tumor-specific
IFN-γ response. Nevertheless, the positive effects of MDSC depletion in addition to LRAST
were mainly restricted to the PMN subset and the first weeks after treatment initiation.
The recurrence of PMN-MDSC and the impact of anti-Gr-1-depleting antibodies on the
memory T cell compartment might be responsible for the failure in long-term tumor reduc-
tion. Overall, we could show that reduction of the frequencies of MDSC in animals with
established melanoma has beneficial effects.
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6. Limitations

Leukocyte dynamics as assessed by flow cytometry at different time points in spleen
and blood, as well as tumor, provide profound insights into immunological response to
therapy. Nevertheless, functional analysis of both MDSC subtypes in different organs and
at different time points would help to better understand their suppressive capacities and
evaluate their mechanisms of suppression. A detailed description of leukocyte populations,
their functional status and interplay in the tumor micromilieu would also provide guidance
to further improve LRAST therapy with MDSC depletion and should be performed in
future experiments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines10040560/s1, Figure S1: Recurrence of PMN-MDSC, Figure S2:
In vitro GM-CSF production of D5G6 cells. Figure S3: Tumor-infiltrating PMN- and M-MDSC after
LRAST +/− RB6-8C5.
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