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Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. 
However, the pathogenesis of CVD is complex and remains elusive. Within the last years, 
systems medicine has emerged as a novel tool to study the complex genetic, molecular, 
and physiological interactions leading to diseases. In this review, we provide an overview 
about the current approaches for systems medicine in CVD. They include bioinformatical 
and experimental tools such as cell and animal models, omics technologies, network, 
and pathway analyses. Additionally, we discuss challenges and current literature exam-
ples where systems medicine has been successfully applied for the study of CVD.

Keywords: systems medicine, cardiovascular disease, omics, networks, functional characterization

iNTRODUCTiON

Cardiovascular disease (CVD) morbidity and mortality pose a major public health burden world-
wide, and the prevalence of CVD is rapidly increasing. CVD is a heritable condition (1) and has 
a complex and heterogenic etiology involving numerous environmental and genetic factors of 
disease risk (2). Increasing our understanding of the multifactorial, complex underpinnings of 
CVD promises to have a global impact on the promotion of health. The invention of arrays and 
analysis of multiple case–control samples have led to the identification of numerous genetic vari-
ants associated with coronary artery disease (CAD) risk. In 2007, the first genome-wide association 
studies (GWASs) for CAD were published, identifying a locus on chromosome 9p21 (3–5). To 
date, 56 loci have been identified due to denser genotyping and a higher number of individuals 
(6). Almost all of them are located in non-coding parts of the genome (6, 7). From these analyses, 
the locus on chromosome 9p21 is the locus with the highest population-attributable risk. It influ-
ences different isoforms of the non-coding RNA ANRIL (8). Besides GWASs, the first exome-wide 
association study on CAD was published in 2016, not only confirming known variants for CAD 
such as ANGPTL4 and LPL but also identifying novel variants such as SVEP1 (9). Results from the 
GWAS area have also led to the development of novel therapeutics, most prominently targeting 
lipid metabolism through inhibitors for PCSK9 (6). So, despite large success of GWASs (10–12) 
and sequencing approaches (13, 14) in identifying genetic loci associated with CVD, the underlying 
pathophysiological mechanisms involve different genotypes and changes in a systems level – for 
instance, at the transcriptome, proteome, and metabolite levels (Figure  1). To provide a more 
comprehensive picture, the systematic integration of multidimensional “omics” datasets evolves as 
the next challenge for the future, including molecular findings of interactions between proteins, 
metabolites, regulatory RNAs, and DNA as well as knowledge from cell biology, animal experiments, 
and human phenotypic and clinical data. In this systems approach, all known (patho-)physiologi-
cal components of CVD are integrated appropriately in order to create a dense modular network 
incorporating information from various disciplines and novel effective computational models. 
These approaches will guide the next steps in cardiovascular research, enhance our understanding 
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of disease susceptibility, treatment, and monitoring, and might 
influence preventive actions (15).

In this review, we discuss state-of-the-art systems medicine 
approaches in CVD. We provide an overview of existing bioin-
formatical and experimental methods commonly used in systems 
medicine and illustrate selected exemplary CVD studies from the 
current literature.

MeTHODOLOGY – OMiCS APPROACHeS

Omics is the study of different biological entities, including 
genomics, proteomics, transcriptomics, or metabolomics, 
describing different aspects (components and interactions) of 
the cell (16).

In systems medicine, such omics data types are integrated to 
better understand the global relationship among genotype, envi-
ronment, and phenotype and to reveal the underlying molecular 
systems and their function (17). Consequently, a more compre-
hensive picture is taken by the combination of multidimensional 

omics data covering different levels of knowledge about the cell, 
genome, or environment.

Subsequent systems medicine approaches, e.g., network and 
pathway analysis, reveal novel insight into the disease or condi-
tion of interest. Here, the relationship among genes, proteins, 
transcripts, or other biological entities is analyzed and interpreted 
on a genome-wide scale (e.g., network) or a more detailed scale 
(e.g., pathway, sub-network).

In the following, we first review selected omics data types 
and methods for data integration and subsequent data analysis. 
Table  1 provides additional information along with selected 
resources (databases, tools) for each presented data type.

Genomics
Genomic studies investigate the sequence, structure, and 
function of the entire genome in a cell. DNA sequencing and 
assembling is one of the most prominent techniques in genomics. 
Established techniques and methods involve Shotgun sequencing 
(e.g., Sanger method), Next-generation sequencing (NGS), and 
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TABLe 1 | Tools and resources for omics data.

Name Description webpage Reference

Genomics
Ensembl System for genome annotation, analysis, storage, and dissemination designed 

to facilitate the access of genomic annotation from chordates and key model 
organisms

http://www.ensembl.org (18)

1000 Genomes project The goal of the 1000 genomes project was to find most genetic variants with 
frequencies of at least 1% in the populations studied

http://www.1000genomes.org (19)

UCSC Genome browser Web tool for rapid and reliable display of any requested portion of the genome 
at any scale, together with several dozen aligned annotation tracks

https://genome.ucsc.edu (20)

Transcriptomics
GEO gene expression 
omnibus

Public functional genomics data repository supporting MIAME-compliant 
data submissions. Tools are provided to help users query and download 
experiments and curated gene expression profiles

http://www.ncbi.nlm.nih.gov/geo (21)

ArrayExpress Archive of functional genomics data stores data from high-throughput 
functional genomics experiments

https://www.ebi.ac.uk/arrayexpress (21)

Expression atlas Provides information on gene expression patterns under different biological 
conditions. Gene expression data are re-analyzed in-house to detect genes 
showing interesting baseline and differential expression patterns

https://www.ebi.ac.uk/gxa (22)

GXD the mouse gene 
expression database

Collects and integrates the gene expression information in MGI, focusing on 
endogenous gene expression during mouse development

http://www.informatics.jax.org/
expression.shtml

(23)

Proteomics
PRIDE – PRoteomics 
IDEntifications

Data repository for proteomics data, including protein and peptide 
identifications, posttranslational modifications, and supporting spectral 
evidence

https://www.ebi.ac.uk/pride/archive (24)

ProteomicsDB Database for the identification of the human proteome https://www.proteomicsdb.org (25)

PeptideAtlas Compendium of peptides identified in a large set of tandem mass spectrometry 
proteomics experiments

http://www.peptideatlas.org (26)

NIST libraries of peptide 
tandem mass spectra

Comprehensive, annotated mass spectral reference collections from various 
organisms and proteins

http://peptide.nist.gov

COPaKB Proteome biology platform specifically for cardiovascular research http://www.heartproteome.org (27)

MitoCarta Inventory of human and mouse genes encoding proteins with mitochondrial 
localization

http://www.broadinstitute.org/
scientific-community/science/
programs/metabolic-disease-program/
publications/mitocarta/mitocarta-in-0

(28)

Metabolomics
HMDB – the human 
metabolome database

Database containing detailed information about small molecule metabolites 
in human, containing chemical data, clinical data, and molecular biology/
biochemistry data

http://www.hmdb.ca (29)

MetaboLights Database for metabolomics experiments and derived information. The 
database is cross-species, cross-technique and covers metabolite structures 
and their reference spectra, their biological roles, locations and concentrations, 
and experimental data from metabolic experiments

http://www.ebi.ac.uk/metabolights (30)

BiGG models Knowledgebase of genome-scale metabolic network reconstructions, 
integrating multiple published genome-scale metabolic networks into a single 
database

http://bigg.ucsd.edu (31)

MetaCyc Database of non-redundant, experimentally elucidated metabolic pathways. 
It is curated from the scientific experimental literature and contains pathways 
involved in both primary and secondary metabolism, as well as associated 
compounds, enzymes, and genes

http://metacyc.org (32)

ConceptMetab Compound set network tool http://conceptmetab.med.umich.edu/ (33)

MetDisease Metabolic network app for Cytoscape http://metdisease.ncibi.org/ (34)

interactomics
IntAct – molecular 
interaction database

Database system and analysis tools for molecular interaction data derived from 
literature curation or direct user submissions

http://www.ebi.ac.uk/intact (35)

BioGRID – biological 
general repository for 
interaction datasets

Interaction repository with data compiled through comprehensive curation, 
containing protein and genetic interactions, chemical associations and 
posttranslational modifications

http://thebiogrid.org (36)

STRING – protein–protein 
interaction networks

Database of known and predicted protein–protein interactions, including direct 
(physical) and indirect (functional) associations

http://string-db.org (37)
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Illumina sequencing. They mainly differ in the length of sequence 
reads (number of base pairs), coverage, sequencing/processing 
time, and costs. Whole-genome sequencing analyzes all coding 
and non-coding regions of the genome. While it has the highest 
coverage producing large amount of data, it is so far the most 
expensive method. By contrast, whole exome sequencing covers 
just the coding sequences of all genes at a high coverage but with 
cheaper costs. Other techniques include the identification of 
common single nucleotide polymorphisms (SNPs) by GWASs 
and CpG methylation sites by epigenome-wide association stud-
ies (EWASs), both covering the whole genome (6).

Subsequently, sequenced DNA fragments are assembled and 
annotated using reference genomes [e.g., RefSeq (38), Genome 
Reference Consortium]. Such obtained DNA sequences can then 
be used to study certain mutations, including genetic variants 
(SNPs), copy number variations (CNVs), and deletions or inser-
tions of gene fragments (39).

Transciptomics
The transcriptome can be defined as “the complete set of transcripts 
in a cell, and their quantity, for a specific developmental stage 
or physiological condition” (40). Often, it is used to determine 
expression patterns of transcripts and how they change under 
certain conditions, such as disease status and drug treatment. 
A  transcriptome analysis aims, depending on the technique in 
use, to catalog and annotate RNA, including coding and non-
coding transcripts, to query gene structures, and to support 
constructing and mapping interaction networks.

The most popular technique in transcriptomics analysis is the 
use of microarrays. They allow us to study tens of thousands of 
transcripts (RNA) on a genome-wide scale with different condi-
tions in parallel (e.g., disease and healthy). Additionally, they have 
an extensive coverage, high-throughput applicability, uncompli-
cated data analysis, and are relatively inexpensive (41). However, 
microarrays still suffer from several technical limitations (42, 43). 
They are limited by the amount of RNA required, the dynamic 
range, the semi-quantitative approach, and the detection of 
predefined transcripts (41). These limitations have been widely 
solved by a new technique, RNA-Sequencing (RNA-Seq), which 
sequences all transcripts in a sample multiple times, obtaining 
a high-resolution and high-quality genome-wide transcriptome 
scan (40). RNA-Seq provides absolute quantification of transcripts 
and includes splice variants, unknown RNAs, and RNAs too short 
to be captured by microarrays. However, RNA-Seq is a more 
expensive technology than microarrays, while it requires large 
data storage and powerful computation resources. Additionally, 
analysis of RNA-Seq data involves complex bioinformatical 
approaches (41, 44).

After performing such genome-wide transcript scans, a well-
established method for verifying individual promising targets 
is the use of a quantitative real-time polymerase chain reaction 
(qPCR). In contrary to microarrays or a genome-wide RNA-Seq 
analysis, it monitors the amplification of a single target DNA 
molecule.

In the research of CVD, transcriptomics approaches have 
already led to the discovery of novel biomarkers, e.g., GDF15 
for acute coronary syndromes, angina pectoris, and heart failure 

(45–47), as well as several circulating microRNAs for coronary 
heart disease and myocardial infarction (MI) (48–50).

Proteomics
Proteins have individual interconnected properties that con-
tribute to the phenotype of a cell. Together, all proteins form 
a complex and dynamic system, the proteome, comprising all 
interconnected and dynamic properties of the proteins, includ-
ing their abundance, isoform expression, subcellular localization, 
interactions, turnover rate, and posttranslational modifications 
(PTMs) (51).

Proteome studies are still rare in relation to CVD, due to 
complex methodology involved. A comprehensive review on 
proteomics in combination with systems biology approaches in 
CVD is given by Langley et al. (52). In proteomic studies, it is 
recommended to use plasma rather than serum due to its more 
stable protein suspension. To avoid masking of low-abundance 
proteins by high-abundance proteins, such as albumin and 
immunoglobulins, immunodepletion techniques or protein 
enrichment tools can be used. Even though protein enrichment 
tools allow to reduce the dynamic range of protein concentra-
tions, they maintain representatives of all proteins. For initial 
protein separation, two dimensional (2-D) gel electrophoresis 
is well established. The introduction of differential in-gel elec-
trophoresis (DIGE) allows separation of two sets of protein 
mixtures by pre-labeling with fluorescent dyes and gives higher 
reproducibility than 2-D gels. After separation, protein spots are 
picked and digested with proteolytic enzymes and subsequently 
analyzed by tandem mass spectrometry (MS/MS) (53). Gel-free 
shotgun proteomics include stable isotope labeling with amino 
acids in cell culture (SILAC), which allows higher protein resolu-
tion but is only operable in cell culture experiments and makes 
quantification more difficult (52).

Although recent advances in mass spectrometry (MS)-based 
proteomics have resulted in a quantitative system-wide analysis 
of the proteome, including PTMs, protein–protein interactions 
(PPIs), and cellular localization, researchers see a next-generation 
proteomics integrating novel approaches to gain further insight 
into the proteome by improving sensitivity, robustness, and high-
throughput of MS-based proteomics. This allows us to discover 
novel disease-related biomarkers and screen molecular targets of 
drugs (54).

Metabolomics
Metabolites are chemical entities transformed during metabo-
lism that can serve as signatures of biochemical activity. Most 
metabolites are lipids (phospholipids, glycerophospholipids, and 
sphingolipids), acylcarnitines, amino acids, biogenic amines, 
hormones, bile acids, or fatty acids. They are detected quantita-
tively from body fluids (e.g., serum) or tissues and are measured 
by nuclear magnetic resonance (NMR) spectroscopy and MS. The 
following factors should be considered when choosing a method: 
cost-effectiveness, coverage of metabolic content, accuracy, and 
throughput. NMR is a quantitative, non-destructive technique, 
allowing the detection of a wide range of diverse metabolites 
simultaneously, while sample storage and preparation are very 
simple. By contrast, MS coupled with ultra-performance liquid 
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chromatography (UPLC-MS) has better resolution power and 
higher sensitivity than NMR. However, the data quality highly 
depends on the sample quality. Mainly, two different chroma-
tographic techniques are used for the detection of metabolites: 
hydrophilic interaction liquid chromatography (HILIC) and 
reversed phase liquid chromatography (RP-LC). RP-LC would be 
the primary choice for the analysis of biofluids due to its unpolar 
stationary phase. HILIC can be complimentary to RP-LC by 
targeting the resolution of polar metabolites (55).

Metabolomics is the study of metabolite profiling to link cellu-
lar pathways to biomolecular mechanisms, and recent advanced 
in NMR and MS technology will provide further applications in 
disease diagnosis, altered metabolic pathways in diseases and 
under drug treatment. Although metabolomics suffers from 
some limitations, including potential confounding effects (i.e., 
gender, age, diet, and environment) or limited reproducibility, it 
has a promising potential in providing both supplementary and 
complementary data important for biomarker identification and 
validation (56, 57), as shown, e.g., by Huang et al. (58).

interactomics
Genes, proteins, or other biological entities should not be seen 
in isolation, rather than dynamically interacting in molecular 
pathways. Such interactions mostly occur on a protein level 
and, thus, are called PPIs. The so-called interactome is highly 
dynamic and can vary between different cell and tissue types 
(59–61), biological or cellular contexts (62, 63), time points, and 
disease conditions (60, 64, 65). Additionally, proteins can interact 
with different partners within different pathways based on their 
function: they can interact on a physical level or within a protein 
complex (66), through regulation (67), or PTMs (62), which 
makes it challenging to understand the underlying biology and its 
molecular mechanistic. For accomplishing this, researchers sug-
gest to systematically map gene and protein interactions (68, 69), 
and there have already been the effort of linking the interactome 
to human diseases (65, 70).

integration of Heterogeneous Omics Data
As omics data are becoming more easily available for different 
data types, they can be combined (i.e., integrated) for a better 
understanding of their relationship and the underlying molecular 
systems. Data integration has been reported as the combination 
of data discovery and data exploitation (71), and recent compu-
tational advances provide methods for addressing the challenges 
of integrating heterogeneous data types. These include the iden-
tification of network scaffolds by delineating existing interactions 
between cellular components, the decomposition of such network 
scaffolds into constituent parts, and the development of system 
models to simulate and predict the network behavior, expressing 
as a particular phenotype. Existing studies have been conducted 
to map cellular pathways on a genome scale to gain insight into 
cellular responses to environmental perturbations, to develop bio-
markers or disease-associated patterns (16). Established methods 
for analyzing the data include Bayesian Networks (63, 71–73), 
self-organizing maps (74), or unsupervised network reconstruc-
tion (75). A recent review describes how visualization tools can 
be used to analyze and interpret integrated protein interactions, 

gene expression, and metabolic profile data (76). Additionally, a 
recent approach suggested a downstream workflow for integrat-
ing heterogeneous data types and procedures for functional 
analysis that focus on biological pathways by emphasizing the 
use of curated knowledge resources coupled with expert-guided 
examination and interpretation of omics data for the selection of 
potential molecular targets (77).

In the context of CVDs, only few studies have been conducted 
that use integrated omics data to understand the mechanisms and 
to identify novel biomarkers. Hou et al. used an omics toolbox with 
proteomics and transcriptomics to identify novel biomarkers and 
drug targets in heart failure (78), while Barallobre-Barreiro et al. 
integrated proteomics and metabolomics to gain mechanistic 
insights and identify novel biomarkers for CVD (79).

Network Biology
The analysis of integrated omics data includes the reconstruc-
tion, understanding, and modeling of networks that control 
the behavior of the cell. Summarizing, biological networks are 
represented as graphs in which components (e.g., genes, pro-
teins, metabolites, reactors, or regulators) are modeled as nodes 
and their interactions (e.g., regulations, enzymatic reactions, or 
physical interactions) as edges. These networks can be derived 
from different types of molecular interactions or on different 
levels, including PPIs, metabolic interactions, signaling, and 
transcription–regulatory interactions. In particular, the group 
of Barabási studied and reviewed the large-scale structure and 
system-scale function of cellular networks (80–82), as well as 
the evolutionary mechanisms that might have shaped their 
development (83).

In systems medicine, we seek to identify the components 
of complex systems and to model their dynamic interactions 
(84). Following Lusis and Weiss systems-based approaches 
involve four logical steps: (a) definition of the system under 
study (e.g., cardiomyocytes), (b) identification of system com-
ponents (e.g.,  proteins regulating a property of interest), (c) 
determination of component interactions (e.g., network), and 
(d) modeling of the network dynamics (e.g., how it changes 
over time or responds to various perturbations) (85). In the 
context of CVDs, systems-based approaches are becoming 
more important as the cardiovascular system is highly complex 
and involves multiple omics data types to be integrated and 
analyzed. Recent advances in this field could demonstrate 
the usefulness of reconstructed networks based on integrated 
omics data. For example, Zhao and Huang reconstructed and 
analyzed a human heart-specific metabolic network based on 
transcriptome and proteome data. The tissue specificity of the 
underlying data was already previously shown to be essential 
for studying diseases and phenotypes (59, 60), and, based 
on heart-specific omics data, Zhao and Huang could detect 
epistatic interactions in the human heart, as well as potential 
biomarkers for CVD (86). A related study reconstructed a 
human metabolic network from human cardiomyocytes to 
accomplish metabolic functions required for maintaining the 
structural and functional integrity of the cell (87). In contrary, 
Ryall et al. reconstructed a signaling network specific to cardiac 
myocyte hypertrophy to identify the most influential species 
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in the cardiac hypertrophy signaling network and demonstrate 
how different levels of network organization affect myocyte size, 
transcription factors, and gene expression (88).

Pathway Analysis
Along with network analysis, a pathway analysis has become a 
useful method for gaining a detailed insight into biomolecular 
mechanisms among genes, proteins, metabolites, etc., as it 
reduces complexity, has increased explanatory power (89) and 
investigates biological pathways rather than genome-scale net-
works. Methods and tools for pathway analysis have been devel-
oped and studied, such as Pathway-Express, an impact analysis 
including classical statistics along with crucial factors such as 
the magnitude of each gene’s expression change, their type and 
position in the given pathways, and their interactions (90). Other 
pathway analysis methods and tools include KEGG, KegArray, 
PathVisio, Ingenuity, and others [for a detailed review, please 
refer to Wheelock et al. (91)]. These methods integrate different 
data types and pathway information and perform subsequent 
pathway analyses, for example, whether certain pathways are 
enriched for genes differentially expressed under certain condi-
tions (75, 91). These analyses will provide more information on 
molecular characteristics in the cell under disease conditions or 
perturbations.

MeTHODOLOGY – ePiDeMiOLOGiCAL 
STUDieS AND eXPeRiMeNTAL SeTTiNGS

One of the main challenges of systems medicine is the investiga-
tion of complex changes and interactions in the human body. In 
particular, epidemiological studies bear an enormous potential 
for studying the underlying CVD pathophysiology and evaluat-
ing environmental and genetic factors. Population-based and 
disease cohorts become increasingly available, e.g., the first being 
the Framingham Heart Study that started in 1948 (92).

Human Samples
When collecting human samples, their suitability and availability 
for future applications should be considered. Gene expression 
and physiology can vary greatly between tissues and cell types, 
depending on time and function. Secretion samples, including 
saliva, tear fluid, urine, or feces, are easily accessible but none of 
them is suitable for all research questions.

In cardiovascular research, blood samples offer a broader range 
for analyses, such as serum, plasma, or blood cells. Red blood 
cells are commonly removed by density gradient centrifugation, 
resulting in the collection of peripheral blood mononuclear cells 
(PBMCs), including lymphocytes, monocytes, and dendritic 
cells. Blood cells are often used for functional analyses, e.g., gene 
expression analyses, while serum and plasma are classical sources 
for biomarker measurements as they include molecules, such as 
miRNAs, from cells and tissues from the whole body (93). By 
contrast, obtaining tissue samples is more challenging, in par-
ticular from tissues that are difficult to biopsy (e.g., heart, brain). 
Especially, cardiac biopsies are extremely invasive and only avail-
able when surgery or heart catheter procedures are performed. 
Major cardiac cell types are fibroblasts, myocytes, endothelial 

cells, and vascular smooth muscle cells. Additionally, transient 
cells, such as immune cells, are present in cardiac tissue and, thus, 
influence gene expression as well (94, 95).

Taken together, epidemiological studies provide the opportu-
nity to study cardiovascular phenotypes over time while obtaining 
various human samples. Sampling should be carefully considered 
to take differences between sampling material and possible future 
applications into account.

Cell Models
A common way to study molecular functions and interactions 
is the use of cell cultures. Although living cells can be isolated 
from fresh biopsies or blood, their life span is limited, which is 
particularly true for cardiac myocytes (94). Various immortal-
ized or modified cell lines are available, such as THP-1 and HL-1 
cells, allowing an easier handling. However, immortalization can 
change physiology and gene expression of the cells. To study the 
effect of differential gene expression, various knockdown and 
overexpression tools are being used, such as RNA interference 
and transcription activator-like effector nucleases (TALENs). The 
recently discovered CRISPS/Cas-9 system revolutionizes gene 
editing by making it faster, easier, available for many species, and 
allowing multiplexing (96). Additionally, invasive tissue biopsies 
could be avoided by differentiating induced pluripotent stem cells 
from skin or PBMCs into cardiac-like cells (97). Collecting these 
cells during sampling will provide numerous options for future 
research.

Animal Models
Animal models are broadly used to study the pathogenesis of 
complex human diseases. They easily enable standardization of 
the environment, genetic background, age, and diet. Careful 
selection of the model has to be done to answer the respective 
question, taking physiology, biochemistry, and pathophysiology 
into account. There are various small animal models to study 
CVD, such as mice, rats, rabbits, and guinea pigs. Mice are by 
far the most frequently used animal models due to their small 
size, fast breeding, cost-effectiveness, and the possibility for 
genetic modifications. However, their cardiovascular system is 
different from humans (98, 99), as their hearts are smaller, their 
blood volume is lower, their heart rate is faster, they have no 
pericardial fat, and a different heart physiology and blood cell 
composition than humans (99, 100). Most importantly, mice 
have high antiatherogenic high-density lipoproteins (HDL) 
and low proatherogenic low-density lipoproteins (LDL), which 
makes wild-type mice almost resistant to atherosclerosis. To 
model the pathophysiology of atherosclerosis, mainly two 
genetically modified mice are being used: ApoE and LDL 
receptor (Ldlr) knockout mice. ApoE knockout mice lack apoli-
poprotein E, leading to hypercholesteremia, and spontaneous 
atherosclerosis development. Even though the lesions resemble 
human lesions, plasma cholesterol levels are considerably higher 
and the predominant circulating lipoprotein is VLDL instead of 
LDL. Additionally, apolipoprotein E influences atherosclerosis 
development in many ways, e.g., via its immunomodulatory 
properties. Ldlr knockout mice slowly develop atherosclerotic 
lesions, similar to humans. High-fat diet increases plasma 
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cholesterol levels and leads to a more rapid lesion develop-
ment. Even though lesion morphology is similar to ApoE 
knockout mice, Ldlr knockout mice are more similar to the 
human pathophysiology as hyperlipidemia is milder and plasma 
lipoprotein profile resembles humans (98). Additionally, various 
heart failure disease models exist, such as transverse aortic 
constriction (TAC) and left anterior descending artery-ligation 
mice (101, 102).

Rats are not as frequently used as mice as they are bigger and 
genetic modifications were not possible until the introduction 
of targeted gene disruption using engineered zinc-finger nucle-
ases (ZFNs) in 2009 (103). Similar to mice, wild-type rats do 
not develop spontaneous atherosclerosis. However, stress can 
lead to myocardial lesions (100). To date, various genetically 
modified rat models as well as models for hypertension, MI, 
and heart failure exist (104–106). Rabbits are well-established 
models for diet-induced atherosclerosis as their lipoprotein 
metabolism is similar to humans but they are lacking hepatic 
lipase. Additionally, there are rabbit models for dyslipidemia, 
heart failure, and transgenic rabbits (104, 107, 108). Guinea pigs 
are not so commonly used for the study of CVD, mainly to study 
arrhythmias and cellular electrophysiology, e.g., with isolated 
hearts (109, 110). Furthermore, guinea pig models of cardiac 
hypertrophy and heart failure exist (111). Besides rodents, 
zebrafish are another comparably new emerging small animal 
model for CVD. Their short reproductive cycles, easy handling, 
and the possibility for genetic modifications made them a widely 
used model for cardiovascular development, regeneration, and 
recently also arrhythmias (112–114).

Not only small but also large animal models are available for 
the study of CVD, and they are more similar to human in terms 
of anatomy, physiology, and size. Pigs have been used as models 
for CVD for years, particularly to study valvular heart disease 
and develop surgical procedures. They are similar to human 
in terms of spontaneous atherosclerotic lesion development, 
blood composition, heart anatomy, lipid profiles, lipoprotein 
metabolism, genome, and RNA (99). Besides from pigs, large 
animal models for CVD include dogs, sheep, goats, and non-
human primates (104, 115). However, large animal models are 
more expensive, need more space and have longer reproductive 
cycles. Consequently, they are not being used so often and trans-
genic models, assays, and antibodies are only limited available. 
Additionally, the number of dogs and non-human primates for 
cardiovascular research is declining due to ethical aspects, even 
though their heart physiology is very similar to humans.

SYSTeMS MeDiCiNe APPROACHeS iN 
CARDiOvASCULAR DiSeASe – eXAMPLeS

The SH2B3 Locus in Relation to Blood 
Pressure
High blood pressure (BP) is a leading cause of CVD worldwide 
with a high prevalence in the general population (116). Using 
large-scale GWASs meta-analyses with up to 200,000 individuals, 
more than 40 BP SNPs were identified so far. However, those vari-
ants explain only 2–3% of BP variation (117), and the molecular 
mechanisms that lead to increased BP are largely unknown. 

To  identify novel candidate genes involved in BP regulation, 
Huan et  al. (118, 119) applied systems approaches by compu-
tationally combining genetic, transcriptomic, and phenotype 
data. Screening for associations between BP traits and overall 
gene expression from whole blood of 7,017 individuals (118), 34 
distinct genes were significantly related to BP, which in aggregate 
explained 5–9% of BP variation.

Furthermore, in order to seek for molecular key drivers of BP 
regulation, Huan et al. (119) and Rotival et al. (120) combined 
SNP data of known genetic BP variants with gene coexpression 
networks. In both studies, BP-related variants (121–123) around 
the gene encoding SH2B adaptor protein 3 (SH2B3) were shown 
to dysregulate highly coexpressed sub-networks. In monocytes, 
this sub-network contained five BP genes (CRIP1, RAB11FIP1, 
MYADM, TIPARP, and TREM1) (120), whereas the sub-network 
identified in whole blood comprised six trans-regulated BP 
genes (ARHGEF40, TAGAP, MYADM, FOS, PPP1R15A, and 
S100A10) (119). In order to validate their findings from network 
analysis, transcriptome profiling was performed in whole blood 
of Sh2b3−/− and wild-type mice (119). A significant overlap of 
dysregulated genes in networks driven by SH2B3 variants and 
Sh2b3−/− was shown. Further examination of the role of SH2B3 in 
the development of hypertension was performed by Saleh et al., 
who investigated BP in Sh2b3−/− mice (124) in response to low-
dose angiotensin II supplementation. In untreated mice, kidneys 
of transgenic mice showed greater levels of inflammation, oxida-
tive stress, and glomerular injury in relation to wild-type mice. 
Such effects were further increased after angiotensin II infusion. 
In addition, aortas from Sh2b3-deficient mice exhibited stronger 
inflammation. Bone marrow transplantation of SH2b3−/− into 
wild-type animals reproduced the hypertensive phenotype, 
strongly indicating that the predominant effect of SH2B3 on BP 
is mediated by hematopoietic cells.

GUCY and CCT7 in Myocardial infarction
Myocardial infarction is a major cause of death in developed 
countries, and it is best predicted for middle-aged adults by 
a positive family history of MI (125), underlining the genetic 
component of MI. Erdmann et al. (13) recruited a family of 32 
members diagnosed with CAD and DNA available in 15 mem-
bers and performed exome sequencing in 3 affected distant family 
members and subsequent two-locus linkage analysis. Four rare 
variants with minor allele frequency below 0.5% were identified 
and validated in the remaining family members. A loss-of-func-
tion mutation in the gene encoding guanylate cyclase 1, soluble, 
alpha 3 (GUCY1A3) and a missense mutation in the chaper-
onin containing TCP1 subunit 7 (CCT7) encoding gene were 
identified. In subsequent experimental settings, the functional 
implications of these variants were characterized. Transfection 
of the GUCY1A3 mutation into human embryonic kidney (HEK 
293) cells and downregulation of CCT7 by siRNA led to a strong 
reduction of soluble guanylyl cyclase (α1-sGC) α1 levels. Next, 
the authors investigated α1-sGC levels and NO-dependent cGMP 
formation in platelets extracted from family members carrying 
single GUCY1A3 or CCT7 mutations, a double mutation, or none 
of the rare alleles. Carriers of the digenic mutation exhibited a 
significant reduction of α1-sGC levels and cGMP formation. 
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Since cGMP was known to inhibit platelet activation, represent-
ing an important feature of thrombus formation in MI, loss of 
Gucy1A3 was tested in mice. Gucy1A3-deficient mice showed 
an increased thrombus formation, indicating an increased risk of 
MI via dysfunctional nitric oxide signaling in rare allele carrying 
family members.

In summary, both examples used OMICs data to screen for 
putative disease-causing genes, which were further characterized 
by in vitro experiments or translation into an animal model.

Cardiac Proteomics and Metabolomics
In a few studies, systems medicine approaches have also been 
used to assess the interplay between cellular proteins as well as 
metabolites and oxidative stress in the context of CVD. Mayr 
et  al. combined proteomics and metabolomics approaches to 
study protein kinase C-mediated cardioprotection by modula-
tion of glucose metabolism (126). A recent study by Chouchani 
et  al. used comparative metabolomics analysis to identify 
conserved metabolic pathways during ischemia reperfusion, 

specifically succinate as a metabolic signature of ischemia 
and subsequently a potential therapeutic target for ischemia– 
reperfusion injury (127).

CHALLeNGeS

As systems medicine is a new, rapidly emerging approach with 
extensive tools and strategies being developed, researchers are 
facing multiple challenges. Figure 2 gives an overview about the 
most prominent challenges to be considered.

OUTLOOK AND APPLiCATiONS

Systems medicine emerged as a powerful tool to study complex 
diseases by the integration of multidimensional “omics” datasets 
with data from human studies and experimental laboratory 
data. CVD is a multifactorial disease and by applying systems 
medicine approaches, clinical translation might be promoted. 
Consequently, risk assessment, prevention, and treatment as well 

FiGURe 2 | Challenges for systems medicine approaches.
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as biomarker and drug development can be improved. Due to 
the interdisciplinary nature, many challenges have to be faced. 
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RNA-Seq from regenerated compared with uninjured tissue 
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gene expression in regenerating tissue, and indicating that LEN 
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Subsequently, in transgenic zebrafish, targeted proliferation of 
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application of LEN was capable to boost injury induced car-
diomyocyte proliferation, suggesting novel ways for dynamic 
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