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Abstract. Gentianella acuta (G. acuta) has been widely used 
as a traditional medicine by Chinese Mongolian populations 
for the treatment of heart diseases and has also been tested 
in modern pharmacological experiments. However, the effects 
of G. acuta on cardiovascular damage and inflammation 
under conditions of hypercholesterolaemia remain unclear. 
The present study investigated the effects and mechanisms 
of the water extract of G. acuta on cardiovascular damage 
and inflammation caused by a high‑cholesterol diet. Male 
Sprague‑Dawley rats were fed a high‑cholesterol diet for 
4 weeks to establish the hypercholesterolaemia rat model, 
and they were administered physiological saline or 1.2 g/kg 
of G. acuta by gavage starting from the 15th day. After the 
last administration, the blood, heart and thoracic aorta 
samples were collected and examined. It was revealed that 
G. acuta treatment could ameliorate cardiomyocyte disorder 
and thoracic aortic vessel wall damage, reduce serum lipid 
levels and inflammatory factors and improve heart function. 
Compared with the Model group, the serum levels of 
triglycerides, total cholesterol, low‑density lipoprotein and 

tumour necrosis factor‑α were decreased, and the high‑density 
lipoprotein and interleukin‑10 levels were increased in the 
Model‑G group. Moreover, in both the heart and thoracic 
aorta, G. acuta reduced the expression and phosphorylation of 
inhibitor of nuclear factor kappa‑B kinase β (IKKβ), inhibitor 
of NF‑κB‑α (IκBα) and p‑nuclear factor kappa‑B (NF‑κB). 
Therefore, G. acuta may exert an inhibitory effect on the 
IKK/IκB/NF‑κB signalling pathway to protect the heart and 
thoracic aorta in hypercholesterolaemic rats.

Introduction

Cardiovascular disease (CVD) is an important health concern 
and has been the focus of considerable research. In China, 
there are an estimated 330 million patients with CVD, and 
CVD accounts for >40% of all disease‑related resident deaths 
and has been identified as the leading cause of mortality (1). 
The mortality, incidence and prevalence rates of CVD 
continue to increase globally (1). Atherosclerosis (AS) is a 
major cause of CVD and the result of several factors, among 
which lipid metabolism disorders are the leading contributor. 
In modern society, lipid metabolism disorders are caused by 
hypercholesterolaemia and induce an inflammatory response 
that is involved in all processes of AS (2,3). The nuclear tran‑
scription factor controlling their release is phosphorylated 
(p)‑nuclear factor κB (NF‑κB), which has been revealed to 
induce an increase in the production of inflammatory and 
adhesion factors (4‑6). Usually, NF‑κB and the inhibitory 
protein inhibitor of NF‑κB‑α (IκBα) exist as a complex and 
are inactive. However, when cells are stimulated or activated, 
the inhibitor of NF‑κB kinase β (IKKβ) phosphorylates and 
degrades IκBα, thus activating NF‑κB. p‑NF‑κB translocates 
into the nucleus, binds to related genes and regulates their 
transcription (7‑10). In addition, numerous studies have 
reported that oxidative stress is an important cause of AS 
and is closely associated with NF‑κB (11‑13). Therefore, the 
occurrence of AS is closely linked to the IKK/IκB/NF‑κB 
pathway.
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Gentianella acuta (Michx.) Hulten (G. acuta) belongs 
to the Gentianella genus of the Gentianaceae family, also 
known as the bitter gentian (14). The Elunchun people have 
been using G. acuta to treat arrhythmias and other heart 
diseases for thousands of years (15,16). Previous studies 
on G. acuta mainly have focused on traditional efficacy, 
such as liver protection, and anti‑arrhythmic, antioxidant 
and hypoglycaemic effects; however, further discoveries 
have been made in other fields (17); for example, the bioac‑
tive substances of G. acuta have been revealed to exert a 
beneficial effect on aberrant intestinal motility (18‑20). 
Li et al (18) reported treatment with water extract of 
G. acuta could ameliorate cardiac structural disorders, 
excessive collagenous fiber accumulation in the heart and 
cardiac malfunction by regulating the NF‑κB pathway in a 
model of myocardial fibrosis. Wang et al (21) indicated that 
xanthones from G. acuta exerted cardioprotective effects 
on myocardial ischemia/reperfusion (I/R) injury through 
its antioxidant and anti‑apoptosis properties. Yang et al (22) 
indicated that the aqueous extract of G. acuta may improve 
isoproterenol‑induced myocardial fibrosis through the inhibi‑
tion of the tumour growth factor (TGF)‑β1/Smads signalling 
pathway. Numerous studies (16,18,23‑25) have reported that 
G. acuta exerted a protective effect against injury of the 
heart and the aorta of rats under various conditions, such as 
I/R. However, the effect and specific mechanism of action of 
G. acuta in cardiovascular damage and inflammation under 
hypercholesterolaemic conditions remain unclear. The aim of 
the present study was to explore the potential role of G. acuta 
in mitigating cardiovascular damage and inflammation in 
diet‑induced hypercholesterolaemic rats.

Materials and methods

Collection and preparation of plant materials. G. acuta was 
purchased from The Darhan Muminggan Joint Banner mongo‑
lian medicine plantation, Hulunbeier district of Inner Mongolia 
and was identified and authenticated by Professor Yu‑Ping 
Yan in the field of medicinal plants (College of Pharmacy, 
Hebei University of Chinese Medicine, Shijiazhuang, China). 
The plants were air‑dried and then chopped. G. acuta (64.51 g) 
was soaked in 1,400 ml 25˚C distilled water for 30 min. The 
mixture was boiled in two batches and combined twice with 
the filtrate. The mixture was used at a quantity of 537 ml 
to obtain a suspension of G. acuta with a concentration of 
0.12 g/ml.

Animals and experimental design. The Ethics Committee 
of Hebei University of Chinese Medicine (Shijiazhuang, 
China) approved and supervised the present study (approval 
no. DWLL2018016). A total of 32 specific‑pathogen free 
male Sprague‑Dawley (SD) rats, aged 6‑7 weeks, weighing 
160‑180 g, were purchased from Beijing Vital River 
Laboratory Animal Technology Co., Ltd. (license no. SCXK 
2016‑0006) and all rats had free access to food and water. 
They were kept at room temperature with 60% humidity and 
12‑h light/dark cycle. After 1‑week adaptive feeding, the rats 
were randomized into four groups (8) as follows: i) Control 
group (Control); ii) control administration group (Control‑G), 
iii) model group (Model); and iv) model administration group 

(Model‑G). While animals in the Model and Model‑G groups 
received a high‑fat diet (high‑fat feed ratio, 80.4% basic feed 
+ 2% cholesterol + 10% lard + 0.5% sodium cholate + 0.1% 
propylthiouracil + 5% sugar + 2% yolk powder) to induce 
preliminary hypercholesterolaemia, Control and Control‑G 
animals received normal feed (100% basic feed: 248.48 g/kg 
crude protein + 65.18 g/kg crude fat). Normal and high‑fat 
feed were provided and prepared by Hebei Medical University 
(Shijiazhuang, China). On the basis of the previous study, a 
1.2 g/kg G. acuta dosage solution was designed (26). After 
the third week of modelling, the rats of the Control‑G and 
Model‑G groups were administered water extract of G. acuta 
and the other groups were treated with the same 10 ml/kg of 
physiological saline for 2 weeks.

At the end of the experiment, all rats were only admin‑
istered water for the final 12 h. All rats were anesthetized 
with 50 mg/kg pentobarbital sodium (Merck KGaA) and 
euthanized using cervical dislocation. Following anaesthesia, 
blood was collected from the inferior vena cava for analysis of 
blood indicators. The serum was separated by centrifugation 
at 12,000 x g for 15 min at 4˚C and stored in a refrigerator at 
‑80˚C for further analysis. The heart was weighed and fixed 
with the thoracic aorta in 10% (v/v) formalin 24 h at room 
temperature for histopathological studies, and the rest of heart 
and thoracic aorta were stored at ‑80˚C.

Blood biochemical index test. The serum levels of total 
cholesterol (TC; cat. no. OSR6216; Beckman Coulter, Inc.), 
triglycerides (TG; cat. no. OSR61118; Beckman Coulter, Inc.), 
low‑density lipoprotein (LDL; cat. no. A113‑1‑1; Nanjing 
Jiancheng Bioengineering Institute), high‑density lipoprotein 
(HDL; cat. no. A112‑1‑1; Nanjing Jiancheng Bioengineering 
Institute), lactate dehydrogenase (LDH; cat. no. A020‑1‑2; 
Nanjing Jiancheng Bioengineering Institute), creatine kinase 
(CK; cat. no. A032‑1‑1; Nanjing Jiancheng Bioengineering 
Institute), tumour necrosis factor‑α (TNF‑α; cat. no. SXR063; 
Shanghai Senxiong Biotech Industry, Co., Ltd.) and 
interleukin‑10 (IL‑10; cat. no. SXR035; Shanghai Senxiong 
Biotech Industry, Co., Ltd.) were assessed strictly according to 
the manufacturer's instructions.

Histopathological examination of the heart and thoracic 
aorta. The heart and thoracic aortas isolated from each 
group were fixed in 10% (v/v) formalin in 50 mm potassium 
phosphate buffer (pH 7.0) for 24 h at 4˚C. The tissues were 
subsequently embedded in paraffin, cut into 4‑µm sections, 
and stained 5 min at room temperature with hematoxylin and 
then 1 min with eosin at room temperature. The sections were 
observed and images were captured using a light microscope 
with a Leica DFC 320 digital camera (magnification, x400; 
Leica Microsystems, Inc.).

Immunohistochemical analysis of IKKβ, p‑IKKβ, IκBα and 
p‑IκBα in the heart and thoracic aorta. Each section was 
dewaxed with a dimethylbenzene gradient and dehydrated 
using an alcohol gradient. The sections were then incubated 
with 3% H2O2 for 15 min in the dark, blocked with 100% goat 
serum for 20 min at room temperature (cat. no. ZLI‑9056; 
ZSGB‑BIO; OriGene Technologies, Inc.), and then rinsed 
three times with PBS. The primary antibodies [IKKβ (1:100; 
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cat. no. A2087; ABclonal Biotech Co., Ltd.), p‑IKKβ (1:400; 
cat. no. bs‑5398R), IκBα (1:800; cat. no. bsm‑33441M) and 
p‑IκBα (1:200; cat. no. bs‑5515R; all from BIOSS)] were incu‑
bated with the sections at 4˚C overnight. Next, rabbit two‑step 
HRP‑secondary antibody polymers (cat. no. PV‑6001; 
ZSGB‑BIO; OriGene Technologies, Inc.) were added for 
60 min at room temperature and then the avidin‑biotin‑ 
peroxidase complex (cat. no. PK‑6200; Vector Laboratories, 
Inc.; Maravai LifeSciences) was added for 120 min at room 

temperature. The sections were stained with diaminobenzidine 
(DAB) reagent 10 min at room temperature, dehydrated with 
alcohol gradient and DAB and finally mounted using neutral 
balsam. The sections were viewed under a light microscope 
(magnification, x400) and analyzed using ImageJ software 
(v. d1.47; National Institutes of Health).

Western blot analysis for p‑IKKβ, p‑IκBα and p‑NF‑κB in the 
heart and p‑NF‑κB in the thoracic aorta. The protein extract 

Figure 2. Effects of G. acuta on TNF‑α and IL‑10 levels in the serum. Serum (A) TNF‑α and (B) IL‑10 levels following treatment with G. acuta. Data are 
presented as the mean ± SD. *P<0.05 vs. the Control group; #P<0.05 vs. the Model group (n=8 per group). G. acuta, Gentianella acuta; TNF‑α, tumour necrosis 
factor‑α; IL‑10, interleukin‑10.

Figure 1. Effects of G. acuta on serum lipid levels. Serum (A) TG, (B) TC, (C) HDL and (D) LDL levels following treatment with G. acuta. Data are presented 
as the mean ± SD. *P<0.05 vs. the Control group; #P<0.05 vs. the Model group (n=8 per group). G. acuta, Gentianella acuta; TG, triglycerides; TC, total 
cholesterol; HDL, high‑density lipoprotein; LDL, low‑density lipoprotein.
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from the frozen tissues of the heart and thoracic aorta were 
determined using a BCA Protein Assay Kit (cat. no. P0010; 
Beyotime Institute of Biotechnology) to ensure 20 µg protein 
per lane and were separated by 10% SDS‑PAGE and then 
transferred onto polyvinylidene difluoride membranes. 
Membranes were blocked 4˚C for 5 h with 5% non‑fat dry 
milk in Tris‑buffered saline with 0.05% Tween‑20 and left 
overnight. The blots were incubated with primary antibodies 

for GAPDH (1:1,000; cat. no. bs‑0755R; BIOSS), IKKβ 
(1:100; cat. no. AF6013; Affinity Biosciences), p‑IKKβ 
(1:400; cat. no. bs‑5398R), IκBα (1:800; cat. no. bsm‑33441M), 
p‑IκBα (1:200; cat. no. bs‑5515R; all from BIOSS), NF‑κB 
(1:1,000; product no. 8242; Cell Signaling Technology, Inc.), 
p‑NF‑κB (1:250; cat. no. ab247871; Abcam) overnight at 4˚C 
and then incubated with a secondary antibody (1:10,000; 
cat. no. ZB2301; ZSGB‑BIO; OriGene Technologies, Inc.) 

Figure 4. Effects of G. acuta on the histopathological changes in the heart. Heart tissues obtained from the (A) Control, (B) Control‑G, (C) Model and 
(D) Model‑G groups. The arrows indicated histopathological changes in the Model group. Scale bar, 50 µm. G. acuta, Gentianella acuta.

Figure 3. Effects of G. acuta on CK and LDH levels in the serum. Serum (A) CK and (B) LDH levels following treatment with G. acuta. Data are presented 
as the mean ± SD. *P<0.05 vs. the Control; #P<0.05 vs. the Model group (n=8 per group). G. acuta, Gentianella acuta; CK, creatine kinase; LDH, lactate 
dehydrogenase.
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conjugated to horseradish peroxidase (1:6,500; Biosharp 
Life Sciences) for 2 h at room temperature. After the treat‑
ment of Super ECL Detection Reagent (cat. no. 36208ES60; 
Shanghai Yeasen Biotechnology Co., Ltd.), the protein bands 
were quantified by transmittance densitometry using ImageJ 
software (v. d1.47; National Institutes of Health). The relative 
protein band intensity was expressed as the ratio of each 
protein to the reference GAPDH.

Statistical analysis. All statistical analyses were completed 
using SPSS 22.0 software (IBM Corp). The data are presented 
as the mean ± SD. Differences among the four groups were 
assessed using one‑way analysis of variance followed by 

Tukey's post hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Effects of G. acuta on serum lipids. Compared with the 
Control group, the TG, TC and LDL levels of the Model and 
Model‑G groups were significantly increased, while the HDL 
level was significantly decreased (P<0.05). In addition, the 
levels of TG, TC and LDL were significantly decreased, and 
those of HDL were significantly increased in the Model‑G 
group compared with those in the Model group (Fig. 1; 
P<0.05).

Figure 5. Effects of G. acuta on p‑IKKβ, IKKβ, p‑IκBα, IκBα and p‑NF‑κB expression levels in the heart. (A) Immunohistochemical staining for p‑IKKβ, IKKβ, 
p‑IκBα and IκBα in the heart (magnification, x400). Heart tissues were obtained from the Control, Control‑G, Model and Model‑G groups. (B) Expression 
of p‑IKKβ/IKKβ in the heart. (C) Expression of p‑IκBα/IκBα in the heart. (D) Typical western blot bands. (E) Expression of p‑IKKβ/IKKβ in the heart 
was quantified by densitometry. (F) Expression of p‑IκBα/IκBα in the heart was quantified by densitometry. (G) Expression of p‑NF‑κB/NF‑κB in the heart 
was quantified by densitometry. Scale bar, 200 µm. Data are presented as the mean ± SD. *P<0.05 vs. the Control group and #P<0.05 vs. the Model group 
(Immunohistochemistry: n=8 per group; western blot: n=3 per group). G. acuta, Gentianella acuta; p‑, phosphorylated; IKKβ, inhibitor of NF‑κB kinase β; 
IκBα, inhibitor of NF‑κB α; NF‑κB, nuclear factor κB.
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Effects of G. acuta on IL‑10 and TNF‑α in the serum. 
Compared with the Control group, the TNF‑α levels in the 
Model group were increased >2‑fold (P<0.05). Compared 
with the Model group, TNF‑α was significantly decreased in 
the Model‑G group (P<0.05). The IL‑10 levels in the Model 
group were significantly decreased compared with those in the 
Control and Model‑G groups (Fig. 2; P>0.05).

Effects of G. acuta on CK and LDH in the serum. The CK 
and LDH levels of the Model group were significantly higher 
compared with those of the Control and Model‑G groups 
(P<0.05). Compared with the Model group, the level of CK 
and LDH were significantly decreased in the Model‑G group 
(P<0.05; Fig. 3).

Effects of G. acuta on morphological and histological changes 
in the heart. The cardiomyocytes in the Control group were 
arranged in an orderly manner with uniform nuclei, uniform 
H&E staining of the cytoplasm and obvious striations. The 
arrangement of cardiomyocytes in the Model group was 
disordered, with burrs, slightly blurry striations, and certain 
sections were revealed to have lipid droplets. The arrangement 
of cardiomyocytes in the Model‑G group was improved and 
appeared orderly (Fig. 4).

Effect of G. acuta on IKK/IκB/NF‑κB in the heart. The IKKβ, 
p‑IKKβ and p‑IκBα protein expression levels of the Model 
group were markedly higher compared with those in the other 
three groups. While changes in the expression of IκBα were not 
significant among the four groups, the levels of p‑IKKβ/IKKβ 

and p‑IκBα/IκBα in the Model group were significantly higher 
than the other groups (Fig. 5A‑C). Compared with the Control 
and Model‑G groups, the protein levels of p‑IKKβ/IKKβ, 
p‑IκBα/IκBα and p‑NF‑κB/NF‑κB in the Model group were 
significantly increased (Fig. 5D‑G).

Effects of G. acuta on morphological and histological changes 
in the thoracic aorta. The arterial intima in the Control 
group was relatively smooth, with clear boundaries between 
the intima, media and adventitia, and endothelial cell layer 
continuity. The intima of the arteries of the Model group was 
uneven, and some endothelial cells had lost their continuity. 
Intimal concavity was improved in the Model‑G group. The 
intima of the Control‑G group was damaged (Fig. 6).

Effect of G. acuta on IKK/IκB/NF‑κB in the thoracic aorta. 
The IKKβ, p‑IKKβ and p‑IκBα protein expression levels of the 
Model group were significantly higher compared with those in 
the other three groups. While the changes in the expression of 
IκBα were not significant among the four groups, the levels 
of p‑IKKβ/IKKβ and p‑IκBα/IκBα in the Model group were 
higher than the other three groups (Fig. 7A‑C). Compared 
with the Model group, the levels of p‑NF‑κB/NF‑κB in the 
Control and Model‑G groups were significantly decreased 
(Fig. 7D and E).

Discussion

Several studies have reported that hypercholesterolaemia is not 
only a risk factor for AS development, but also an important 

Figure 6. Effect of G. acuta on histopathological changes of the thoracic aorta. Thoracic aorta samples obtained from the (A) Control, (B) Control‑G, (C) Model 
and (D) Model‑G groups. The arrows indicate histopathological changes in the Model group. Scale bar, 50 µm. G. acuta, Gentianella acuta.
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cause of the exacerbation of AS (27,28). It has been revealed 
that G. acuta exerts a protective effect against myocardial 

ischemia (19). On this basis, its anti‑AS effects and mecha‑
nism were studied herein. In the present study, a rat model 

Figure 7. Effects of G. acuta treatment on p‑IKKβ, IKKβ, p‑IκBα, IκBα and p‑NF‑κB expression levels in the thoracic aorta. (A) Immunohistochemical 
staining for p‑IKKβ, IKKβ, p‑IκBα and IκBα in the thoracic aorta (magnification, x400). Thoracic aorta samples were obtained from the Control, Control‑G, 
Model and Model‑G groups. (B) Expression of p‑IKKβ/IKKβ in the thoracic aorta. (C) Expression of p‑IκBα/IκBα in the thoracic aorta. (D) Typical western 
blot bands. (E) Expression of p‑NF‑κB/NF‑κB in the thoracic aorta was quantified by densitometry. Scale bar, 200 µm. Data are presented as the mean ± SD. 
*P<0.05 vs. the Control group; #P<0.05 vs. the Model group (Immunohistochemical: n=8 per group; western blot: n=3 per group). G. acuta, Gentianella acuta; 
p‑, phosphorylated; IKKβ, inhibitor of NF‑κB kinase β; IκBα, inhibitor of NF‑κB α; NF‑κB, nuclear factor kappa‑B.
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of hypercholesterolaemia was established using a high‑fat 
diet (29) to explore the effect and mechanisms of G. acuta in 
mitigating cardiovascular damage and inflammation.

Hypercholesterolaemia model rats exhibited increases in 
serum lipids and inflammatory factors, aortic muscular layer 
thickening and widespread myocardial structural disruption. 
These histopathological changes in the body were impor‑
tant formative indices of hypercholesterolaemia, with some 
beneficial changes appearing in the Model‑G group, such as 
improved aortic wall structure and neatly arranged myocar‑
dial cells. Lipid deposition has been identified as an important 
cause of AS, which can lead to the increase of free radicals, 
thereby damaging endothelial cell function (30‑32). Thus, the 
release of protective factors is reduced, leading to a reduction 
in the tightness of endothelial cells and increased permeability, 
which in turn results in increased lipid deposition, forming a 
vicious circle (33). As a consequence of a continuous high‑fat 
diet, LDL is elevated and deposited in the endothelial cells of 
the arteries in which it is oxidized to ox‑LDL, which can cause 
necrosis and disintegration of macrophages, release of lipids 
from atheromatous necrosis and plaque formation (34). When 
comparing the Model‑G and the Model groups, it was revealed 
that G. acuta could effectively reduce the serum lipid level 
with further increasing the level of HDL.

A change in TNF‑α and IL‑10 levels in the serum of hyper‑
cholesterolaemic rats was also observed. TNF‑α and IL‑10 are 
important inflammatory factors leading to AS. TNF‑α has been 
reported to promote the production of various inflammatory 
cytokines through T cells and has been identified as an impor‑
tant indicator of inflammation (35). Conversely, IL‑10 has been 
reported to inhibit mononuclear macrophages from performing 
specific immune functions, such as the release of inflammatory 
mediators (36). Compared with the Control group, the levels 
of TNF‑α were significantly increased, and those of IL‑10 
were decreased in the Model group. Following treatment with 
G. acuta, TNF‑α and IL‑10 levels were significantly altered in the 
Model group. These results demonstrated that the inflammatory 
response induced by the high‑fat diet was inhibited by G. acuta.

CK and LDH have been revealed to be important indices 
reflecting functional heart status (37). Compared with the 
control group, the levels of CK and LDH in the blood vessels of 
the Model group were significantly decreased, indicating the 
protective effect of G. acuta in the heart. It was also revealed 
by H&E staining that the arrangement of cardiomyocytes in 
the Model‑G group was improved and appeared orderly. These 
results further demonstrated that G. acuta effectively alleviated 
cardiovascular damage and inflammation in diet‑induced 
hypercholesterolaemic rats.

NF‑κB has been identified as an important nuclear factor that 
controls inflammatory cytokines and is normally bound to IκB 
in the cytoplasm. After NF‑κB has been activated and translo‑
cated to the nucleus, several downstream inflammation‑related 
factors, such as TNF‑α and IL‑6, promote its synthesis and 
release. Such factors are important causes of the occurrence 
and deterioration of AS (38‑40). As a pattern recognition 
receptor, activated IKK is a major upstream target for NF‑κB 
regulation. Multiple members of the IKK family, such as IKKα 
and IKKβ, have important regulatory effects on the activity of 
NF‑κB. Both of these have been revealed to phosphorylate the 
IκB protein at different serine residues, while the main function 

has been assumed by IKKβ (41). Thus, IKKβ is an important 
indicator of NF‑κB activation. When G. acuta was adminis‑
tered, the expression of p‑IKKβ/IKKβ and p‑IκBα/IκBα both 
in the heart and thoracic aorta in the Model‑G group were 
significantly decreased. Compared with the Model group, the 
phosphorylation ratio of IKKβ, IκBα, NF‑κB in the heart and 
NF‑κB in thoracic aorta was decreased in the Model‑G group. 
In addition, G. acuta significantly decreased the expression 
levels of IKKβ, p‑IKKβ and p‑IκBα in endothelial cells of 
the thoracic aorta, indicating its protective role. These results 
demonstrated that the anti‑inflammatory effect of G. acuta may 
be mediated by inhibiting the IKKβ/IκBα/NF‑κB pathway in 
the heart as well as the thoracic aorta.

In conclusion, G. acuta mitigated cardiovascular damage 
and inflammation in diet‑induced hypercholesterolaemic rats, 
possibly through the inhibition of the IKK‑β/IκB/NF‑κB 
pathway. Thus, G. acuta may prove useful in the treatment of 
hypercholesterolaemia.

A limitation of the present study was that it lacked direct 
assessment of physiological parameters and immunohisto‑
chemical analysis could reveal the expression levels but was 
weaker in protein comparison than western blotting in thoracic 
aorta. In addition, G. acuta water extract was selected, but 
water extract is comprised of numerous components and these 
were not fractionated and explored individually.
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