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Abstract: An analysis of instrumental texture differences between channel (Ictalurus punctatus) and
hybrid (female channel × male blue, I. furcatus) catfish fillets is presented. Factors including cold-
storage type (fresh, frozen, or individually quick frozen (IQF)) and gender were included in the
comparisons. Texture was measured at eight positions per fillet by a texture profile analysis (TPA)
method that provided seven texture attributes: firmness, toughness, cohesiveness, adhesiveness,
chewiness, resilience, and springiness, plus the thickness of the fillets (238 total). All attributes except
adhesiveness were found to be statistically different (p < 0.05) between channel and hybrid fillets,
with channels having the highest value in each attribute. When cold-storage type was included
in the analysis, channels still produced the highest attribute values, but the number of attributes
differed with firmness, toughness, and chewiness most associated with the differences in the type
of catfish, while the other attributes were affected by cold-storage type. Thickness was found to be
a strong covariant to some of the texture attributes, especially toughness, but the determination of
difference between channels and hybrids was not affected and TPA profiles provided high levels of
differentiation between catfish types.

Keywords: channel catfish; hybrid catfish; instrumental texture profile analysis; thickness covariance;
cold-storage type

1. Introduction

Catfish fillet quality is dependent on flavor, odor, color, and texture attributes that
are directly associated with their chemical and nutritional composition. Texture can be a
very important parameter, as a sensory characteristic for consumers and for the mechanical
properties needed by processors [1,2], and is influenced by several factors such as catfish
age, size, growth rate, and species [3,4]. Consumers generally prefer a firm catfish fillet [5,6]
because of the association of loss of firmness with the breakdown of muscle structure due
to poor product quality.

Catfish (species of the order Siluriformes) represents the largest segment of U.S. aqua-
culture [7,8], where channel catfish (Ictalurus punctatus) has been the primary cultured
species. However, as the industry was pressured to increase productivity since 2012, and
higher-performing hybrid catfish lines (♀channel catfish, I. punctatus × ♂blue catfish,
I. furcatus) were adopted that had a faster growth rate, a high tolerance to crowding and
stress, and a better tolerance to low oxygen levels [9]. The crowding tolerance allowed
hybrids to be stocked at higher levels, and with the implementation of new pond system
technologies with increased capacity, such as intensive aeration and partitioned split-ponds,
the productivity (yield) of catfish farms substantially increased from 4000 kg/ha in 2014
to 6000 kg/ha in 2019 [7]. Hybrid catfish has now surpassed channel catfish as the pre-
dominant U.S. aquaculture catfish type, comprising greater than 60% of catfish processed
in 2020 [10].
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In addition to the hybrid/channel genotype-environment interaction of crowding
associated with stocking density, other stress factors that commonly affect cultured fish,
especially in more intense culture practices, could cause differential side-effects and stress
responses between channel and hybrid catfish, resulting in texture differences [11]. Stressors
include changes in environmental temperature, dissolved oxygen levels, light intensity,
water quality, handling, and transport [12].

Acute and chronic stress is correlated with increased metabolism, measured commonly
as hyperglycemia, resulting in changes in growth rate, condition factors, or food conversion
efficiency [13]. A 42% growth rate reduction was found from a 20% increase in metabolic
rate for largemouth bass (Micropterus salmoides) [14]. High stocking density has been
shown to induce a stress response in grass carp with reduction in weight and survival [15].
Increased metabolism can also reduce blood oxygen content, thus crowding stress could
amplify low pond oxygen levels. Environmental and handling stress has also been shown
to cause changes in the catfish muscle proteome with increases in structural and metabolic
proteins but variable changes in texture [16]. A correlation between texture and muscle
fiber size has also been demonstrated [17–20].

With increased aeration in ponds with hybrid catfish, there can also be an increased
water flow rate, current, or mixing within the pond or the fish containment area [21,22].
This could raise the swimming activity for hybrids, causing changes in the muscle proteome
structure and/or fat content of the resulting fillet, and thus textural changes.

With the advent of hybrid catfish, which are usually harvested as a single-batch, as
compared to multiple-batch systems more common with channel catfish, the year-round
harvest of hybrids can only be managed by stocking with different sizes/ages of catfish
or extending the harvest through winter. This could affect the nutrient and chemical
composition, such as the fatty acid or amino acid profile of the fillet, or protein and fat
composition could be altered and affect texture. Kim and Lovell [23] found that channel
catfish not fed during the winter lost 10% of their weight and significantly reduced fat
content, condition factor, and muscle fiber size.

Catfish fillets are processed for cold storage as fresh fillets on ice or treated with
polyphosphate prior to being individually quick frozen (IQF). Otherwise, fillets can be
transferred to a freezer and frozen without polyphosphate treatment. A quick-freezing
method, such as IQF, results in less cell damage from ice crystal growth and results in the
retention of texture quality [24,25].

We have previously compared instrumental analysis of catfish fillets with sensory
analysis [26], where predictive equations were developed for sensory attributes from
various texture profile analysis (TPA) attributes. However, the study did not account for
potential differences between channel and hybrid catfish. In the present study, we examined
the instrumental textural differences between baked channel and hybrid catfish fillets in
addition to effects of cold-storage type on TPA profiles by combining measurements from
94 previous fillets [26] with those from an additional 144 experimental units. The objectives
of this research were to provide a thorough analysis of texture-related differences between
channel and hybrid catfish fillets, the influence of cold-storage type (fresh, frozen, or IQF)
on these physical differences, and the ability of TPA profiles to differentiate channel and
hybrid catfish fillets.

2. Materials and Methods
2.1. Samples

Catfish fillet samples designated as frozen (25 channel and 25 hybrid) were obtained
from catfish harvested from an experimental pond in Stoneville, MS. The catfish included
a variety of families resulting from multiple spawns of both channel and hybrid (male
blue x female channel) catfish. Hybrids were produced by strip spawning on two different
days, while the channels were from pond spawning. Fish were reared as fry in separate
family tanks for about 10 months and fed a fingerling diet (35% protein, Fishbelt Feeds
Inc, Moorhead, MS, USA) to satiation once daily. They were then tagged with individually
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coded pit tags on the left fillet and stocked communally in an earthen pond. They were fed
a commercial foodfish diet (32% Delta Western Research Center, Indianola, MS, USA) daily
from April through October, then fed once a week until harvest the following January. With
an average age of 592 ± 9 days, the fish were seized from the pond and held in a cement
raceway overnight at 11–16 ◦C (52–61 ◦F). The fish, with an average weight of 771 ± 129 g
(1.7 lb), were electrically stunned by a 40V electric pulse (Sylvesters, Inc., Louisville, MS,
USA), gender determined, beheaded (Baader 166, Baader North America, Indianola, MS,
USA), gutted by hand, filleted (Baader 184) and trimmed by hand. Both fillets from each
fish were weighed and stored individually in a low-density polyethylene (LDPE) storage
bag. All fillets were quickly placed in a −20 ◦C freezer overnight, before being transported
on ice to the research facility and stored at −20 ◦C. Because of the increased control on
processing, the stocking weight, whole weight at processing, headed gutted weight, percent
carcass (skin, guts, and headed removed percent of whole weight), and age at processing
were also recorded.

Individually quick frozen (IQF) fillets were obtained in two seasons, winter and
summer. The winter-harvested IQF catfish fillets (30 channel and 30 hybrid) were obtained
from catfish harvested from multiple commercial ponds (within 4 miles apart in Alabama)
in January and transported to a commercial processing plant by truck (<15 miles). They
had been fed a commercial diet (32% AL Catfish Feed mill, Uniontown, AL, USA). After
netting the previous night, they were socked, loaded, and shipped within a 2-hr span
on the morning of processing. Fish were weighed, and those from 600 to 900 g were
used for the study. Fillets were processed, including polyphosphate treatment (vacuum
tumble marination), and IQF in a mechanical blast freezer. Both fillets from each catfish
were collected from the processing line and stored individually in a LDPE storage bag,
transported on ice to the research facility, and stored at −20 ◦C. The left fillets were used
for instrumental texture profile analysis.

Summer-harvested IQF fillets (19 channel and 19 hybrid) were from a June harvest
in Mississippi and processed by a separate processing plant in a similar manner to the
winter-harvested IQF fillets, but with an injection polyphosphate treatment.

Fresh (not-frozen) catfish fillets (30 channel and 30 hybrid) were obtained from the
same batch of fillets as the winter IQF fillets but were removed from the processing line
before phosphate and IQF treatment. Samples were transported on ice to the research facil-
ity, refrigerated, and used for instrumental texture profile analysis (TPA) within 3–4 days.
A portion of this batch (an additional 15 channel and 15 hybrid) was frozen for TPA analysis
in combination with the frozen samples from the experimental Stoneville, MS pond.

2.2. Texture Profile Analysis (TPA)

Frozen and IQF fillets were thawed overnight in a refrigerator, weighed, and a middle
rectangle, of dimensions 8.3 cm × 6.2 cm (head to tail × dorsal to ventral), was cut from
the fillet (Figure 1, shaded area) to reduce variance in texture and cooking time. Each fillet
section was weighed and a temperature probe (1/16” diameter, Pro-Series Needle Probe, cat
#TX-1002X-NP), connected to a DOT alarm thermometer (ThermoWorks, American Fork,
UT, USA), was inserted into the center of the fillet. The fillet was wrapped in aluminum
foil that was perforated to allow steam to escape, placed on a cooking pan, and baked in a
professional convection oven (Cyclone series, Bakers Pride Oven Co., Cheyenne, WY, USA)
at 300 ◦F to an internal temperature of 165 ◦F (approx. 10 min). The fillet was removed
and cooled to a surface temperature of approx. 86 ◦F (approx. 12 min) and placed on the
texture analyzer (TA.XT plus, Texture Technologies, Hamilton, MA, USA).

Parameters for texture analysis were: texture profile analysis sequence of two com-
pressions, 30 kg load cell, 1/2” diameter ball probe (TA-18), 5 g trigger force, 50% strain,
3mm/s pre-test speed, 1 mm/s test speed, 1 mm/s post-test speed, 5 s pause time be-
tween cycles. Eight positions (four on the dorsal side and four on the ventral side of the
lateral line, 1.8 cm apart, as seen in Figure 1) on each fillet were tested. Force−time graphs
(Figure 2) for each test point were analyzed with Exponent 32 software (Stable Micro
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Systems, Surrey, UK) using a self-written macro that determined the thickness of the fillet
before and after compression, the maximum force of both compressions, the compression
upstroke and downstroke energy, or work, as measured by area. Seven texture attributes
and fillet thickness were calculated by the formulas provided in Table 1.
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Figure 2. TPA force−time graph showing anchor points used to measure attributes. This was a
non-representative sample that showed a separation between anchors 2 and 3.

Table 1. Texture profile analysis attributes, with formula and description.

Attribute Formula a Description

Thickness 2 × Distance 1 Fillet thickness—twice the 50%
compression distance.

Firmness Force at anchor 2 Maximum force of a 50% compression.
Toughness Area 1/5 1st peak compression work, divided by 5.

Cohesiveness Area 4/Area 1 2nd compression work relative to 1st
compression work.

Springiness Distance 2/Distance 1 × 100 Relative recovery from 1st compression.

Chewiness Firmness × Cohesiveness × Springiness Work required to chew sample to a state
ready for swallowing.

Resilience Area 2/Area 1 × 100 Decompression work relative to
compression work.

Adhesiveness Area 3 Negative work at end of decompression.
a See Figure 2 for formula descriptors.

2.3. Proximate Analysis

Proximate analysis was performed on the frozen fillet samples. Moisture and ash
content of catfish fillets were determined using AOAC (1990) methods #950.46, modified
with lyophilization, and #923.03 [27], respectively. Chopped fillets were lyophilized in
a VirTis Genesis 35EL freeze-dryer (SP Industries, Warminster, PA, USA), using a 7-day
program and moisture content determined gravimetrically. Dried samples were placed
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in ceramic crucibles and incinerated in a muffle oven at 500 ◦C, followed by weighing
to determine ash content. Nitrogen content was determined by pyrolysis with an FP628
nitrogen analyzer (Leco Co., St. Joseph, MI, USA). Protein content was calculated as
6.25 times the percent nitrogen. Total lipid content was determined gravimetrically by
a modification of the Folch procedure [28] using a Dionex ASE 350 accelerated solvent
extractor (Thermo Fisher Scientific, Waltham, MA, USA) where the lyophilized samples
were transferred to 34 mL ASE cells and extracted with methylene chloride at 100 ◦C and
1500 psi into pre-weighed 60 mL vials. The solvent was removed in vacuo at 35 ◦C using a
RapidVap Vacuum Evaporation System (Labconco Co., Kansas City, MO, USA). Moisture,
ash, and lipid contents were determined in duplicate, and protein content was determined
in triplicate for each replicate sample.

2.4. Statistical Analysis

For every fillet measured, an average value for thickness and each of the seven TPA
attributes of interest (Table 1) was calculated from the eight compression positions and
used for subsequent statistical analyses. Shapiro–Wilk tests were used to test normality of
response variables. Due to deviations from normality when comparing overall instrumental
texture differences between channel and hybrid fillets (without accounting for cold-storage
type), a nonparametric Wilcoxon two-sample test was employed. When TPA data were
sorted by cold-storage type (fresh, frozen, or IQF), the sub-sets became more normally
distributed and two-sample t-tests were used to compare channel and hybrid fillets. An
unbalanced analysis of variance (ANOVA) with Tukey’s HSD post-hoc test was used to
identify differences in TPA attributes due to cold-storage type across all fillets (without
separating channel and hybrid), as lack of balance does not present the same issues for
single factor analysis as with factorial designs [29,30]. Canonical discriminant analysis
was used to reduce the dimensionality of the response set and provided correlations
of each TPA attribute with the overall variability between hybrid and channel texture
profiles. Fisher linear discriminant analysis was used to create equations to predict group
membership (channel or hybrid) based on TPA profiles. Pearson’s correlation coefficients
were determined to evaluate linear relationships between fillet thickness and firmness, and
for toughness and firmness between channel and hybrid fillets. The means of proximate
analysis data and catfish production data were compared using ANOVA with Holm-Sidak
post-hoc tests. Microsoft Excel (2019), SAS (Copyright© 2016 SAS Institute Inc., Cary, NC,
USA), and SAS Enterprise Guide (Copyright© 2017 SAS Institute, Inc., Cary, NC, USA)
were used for analyses. A significance level of α = 0.05 was used for all analyses.

3. Results

Channel and hybrid fillet samples were obtained from multiple sources and preserved
using different cold-storage types prior to testing (fresh, frozen, or IQF). Eight positions
on the fillet were tested using a 1

2 inch spherical probe to account for fillet location differ-
ences and differences in fillet thickness. The results of the texture profile analysis (TPA)
produced seven instrumental texture metrics of interest, calculated as shown in Table 1.
The firmness texture attribute, also termed as hardness in many TPA studies and the
most prevalent texture attribute reported, was measured as the maximum force (g) of the
first compression [31]. For the present discussion, the term firmness was chosen, as this
descriptor may be more aligned with language used to describe sensorial texture of fish
fillets [26]. For the same reason, toughness was used to describe the work required dur-
ing the compression and has been considered a more useful measurement for correlation
to sensory-determined firmness [32]. The other attributes measured were cohesiveness,
springiness, chewiness, resilience, and adhesiveness. Additionally, the thickness of the
fillets was measured from the first compression. In recent studies, hardness, cohesiveness,
chewiness, resilience, and springiness have been considered the most relevant properties
for instrumental fish texture analysis [31].
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Comparing baked channel and hybrid catfish fillets across all three cold-storage types
combined, six of the seven TPA attributes measured (firmness, toughness, cohesiveness,
chewiness, resilience, and springiness) were significantly different between the two catfish
types based on Wilcoxon two-sample tests (p < 0.05; Table 2). Values for channel fillets were
greater than those for hybrid fillets for all attributes except adhesiveness. Firmness values
have been reported elsewhere for hybrid and two strains of channel catfish with no clear
patterns of differences [33]. In that study, baked hybrid fillets were significantly less firm
than one strain of channel fillet, but not another. For fresh raw fillets, the hybrid was firmer
than both strains of channels, and for frozen-thawed fillets, no significant difference was
found. In another study, Johnson [34] reported TPA values for baked hybrid and channel
catfish fillets, showing hybrids to be less firm than channels. Presently observed overall
differences (Table 2) went beyond those related to peak force (i.e., firmness, toughness, and
chewiness) and also indicated differences in textural properties (cohesiveness, resilience,
and springiness) which have shown to behave independently of the firmness parameter in
catfish products [35].

Table 2. Overall instrumental textural differences 1 between cooked Channel and Hybrid catfish
fillets. 2 Values expressed as mean ± standard deviation (n = 119).

Firmness
(g)

Toughness
(g × s) Cohesiveness Adhesiveness

(g × s)
Chewiness

(g)
Resilience

(%)
Springiness

(%)

Channel 249.6 ± 35.3 187.6 ± 40.6 0.48 ± 0.03 −1.1 ± 0.3 85.8 ± 15.3 21.5 ± 1.8 71.0 ± 3.1
Hybrid 175.2 ± 21.9 124.6 ± 24.1 0.46 ± 0.03 −1.1 ± 0.3 56.6 ± 10.2 20.6 ± 1.8 68.4 ± 3.9

1 Differences in TPA attributes were based on Wilcoxon two-sample test, at a significance level of α = 0.05. Values
that differed between channel and hybrid, within columns, are in bold font. 2 TPA profiles were compared
between cooked channel and hybrid catfish fillets, not accounting for raw fillet storage method (fresh, frozen,
or IQF).

As fillet samples were processed and stored differently prior to analysis, TPA at-
tributes were also compared between channels and hybrids for each cold-storage type using
two-sample t-tests (Table 3). This analysis revealed how each cold-storage-type contributed
to differences (or lack thereof) in texture-related physical properties between channel and
hybrid fillets. For certain attributes, fresh fillets had the largest percent difference between
channel and hybrid, with toughness, followed by chewiness, and firmness being more
than 60% greater for channels. Among the fresh fillets, channels and hybrids significantly
differed in five attributes, firmness, toughness, chewiness, resilience, and springiness. As
opposed to the combined data (Table 2) and frozen fillet comparisons (Table 3), the signifi-
cance of cohesiveness as a differentiating property was not found in fresh or IQF samples.
Frozen fillet comparisons produced the same list of significant differences as the combined
data, with six attributes being significantly different. This agreed with what had been re-
ported by Johnson [34] on frozen fillets with a similar TPA method, even though samples in
that study were refrigerated overnight after cooking. When alternative methods of Krammer
shear force measurements were used, Park [36] and Bosworth et al. [33] showed channels to
be statistically similar to hybrids in firmness, although slightly larger numerically.

However, among IQF processed fillets, only firmness, toughness, and chewiness were
significantly different between channels and hybrids (Table 3). It is important to note that
these three attributes all depend on the peak force measurement of the first compression.
That is, they are all related to the primary TPA property hardness/firmness [31]. It had been
reported that polyphosphate, and even the type of polyphosphate used in IQF fillets caused
a reduction in firmness for channel catfish fillets [37]. IQF fillets in this study were only
about 5% less firm than frozen fillets for both catfish types. Adhesiveness showed a larger
percent decrease, especially for hybrids. IQF processing resulted in the fewest significant
differences between channel and hybrid fillets among the three cold storage-types tested.
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Table 3. Instrumental textural differences 1 between cooked channel and hybrid catfish fillets
according to cold-storage type. Values expressed as means ± standard deviations.

Fresh (n = 30) Frozen (n = 40) IQF (n = 49)

Channel Hybrid Channel Hybrid Channel Hybrid

Firmness (g) 274.6 ± 35.5 167.22 ± 18.7 248.3 ± 30.0 183.1 ± 24.2 235.3 ± 31.0 173.6 ± 20.0
Toughness (g × s) 216.3 ± 36.8 118.2 ± 19.6 178.8 ± 35.4 131.0 ± 32.1 177.2 ± 39.1 123.2 ± 17.3

Cohesiveness 0.47 ± 0.03 0.46 ± 0.03 0.47 ± 0.03 0.44 ± 0.02 0.49 ± 0.02 0.48 ± 0.02
Adhesiveness (g × s) −1.2 ± 0.3 −1.4 ± 0.3 −1.1 ± 0.3 −1.1 ± 0.3 −1.0 ± 0.2 −0.9 ± 0.3

Chewiness (g) 93.4 ± 17.8 51.7 ± 8.4 84.7 ± 14.4 56.9 ± 10.3 81.9 ± 12.8 59.3 ± 10.2
Resilience (%) 22.5 ± 1.9 20.1 ± 1.8 21.3 ± 1.7 19.1 ± 1.1 21.0 ± 1.7 21.5 ± 1.9

Springiness (%) 71.1 ± 2.6 65.9 ± 2.3 71.5 ± 3.14 69.0 ± 4.2 70.6 ± 3.1 69.4 ± 3.8

1 Differences in TPA attributes were based on t-tests, at significance level of α = 0.05. Values that differed between
channel and hybrid, within each cold-storage type, are in bold font.

Combing data from both channel and hybrid fillets, we were able to examine the
effects of cold-storage type alone (not biological type) on the textural properties them-
selves (Table 4). The three firmness-related attributes firmness, toughness, and chewiness
significantly differed between hybrid and channel fillets both overall and within each
cold-storage condition (Tables 2 and 3, respectively). However, when combining data
from both catfish types, cold-storage type did not account for the observed differences in
any of these three texture properties, whereas cohesiveness, adhesiveness, resilience, and
springiness did differ as a result of cold-storage treatment, based on ANOVA (Table 4).
Therefore, the present analyses suggested that differences in firmness and its secondary
texture properties toughness and chewiness are more related to catfish type (channel vs.
hybrid) than cold-storage type, where channel catfish fillets were instrumentally firmer,
tougher, and chewier.

Table 4. Effects of cold-storage type on TPA attributes of catfish fillets. Values expressed as
means ± standard deviations (n = 30 for fresh, n = 40 for frozen, n = 49 for IQF).

Firmness
(g)

Toughness
(g × s) Cohesiveness Adhesiveness

(g × s)
Chewiness

(g)
Resilience

(%)
Springiness

(%)

Fresh 220.9 ± 61.0 167.2 ± 57.5 0.46 ± 0.03 b −1.3 ± 0.32 a 72.5 ± 25.2 21.3 ± 2.2 a,b 68.5 ± 3.6 b

Frozen 215.7 ± 42.6 154.9 ± 41.3 0.46 ± 0.03 b −1.1 ± 0.28 b 70.8 ± 18.7 20.6 ± 1.6 b 70.3 ± 4.0 a

IQF 204.5 ± 40.4 150.2 ± 40.5 0.48 ± 0.02 a −1.0 ± 0.25 c 70.6 ± 16.2 21.3 ± 1.8 a 70.0 ± 3.5 a

a–c Values in the same column followed by different superscripts were significantly different based on ANOVA
with Tukey’s post-hoc test (α = 0.05).

Overall, firmness, chewiness, and toughness were the most discriminating TPA at-
tributes among channel and hybrid fillets, having pooled within canonical correlations of
0.95, 0.84, and 0.71, respectively, with the first and only canonical dimension (Can1; Table 5).
Reducing the overall dimensionality of the data to Can1 accounted for 80% of variability
in the between-catfish type TPA dataset (Table 5, Figure 3). Considering the entire texture
profiles (all seven attributes) as predictors, Fisher linear discriminant analysis (FLD) was
able to correctly classify fillets as hybrid or channel with a high success rate (high hit rate;
Table 6), although it should be noted these estimates may be overly optimistic when the
same data used to create the FLD equation are also used to test the results [38]. The overall
hit rate, or proportion of fillets correctly classified as channel or hybrid, was 0.921 overall.
For fresh fillets, the model was able to successfully predict between channel and hybrid
for 59 of 60 fillets (hit rate of 0.983). This high level of differentiation between fresh fillets
may be related to the large corresponding differences in attribute magnitudes (Table 3).
While human sensory data would be needed to determine whether observed statistical
significance relates to differences in perception, and how such differences affect fillet ac-
ceptability, the current results have shown that TPA profiles can successfully differentiate
baked channel and hybrid fillets within and across the three cold-storage types.
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Table 5. Pooled within canonical structure (n = 119) 1.

TPA Attribute Can1

Firmness 0.95
Toughness 0.71
Cohesiveness 0.18
Adhesiveness −0.01
Chewiness 0.84
Resilience 0.19
Springiness 0.28

1 Because the variable catfish−type had two levels (Channel and Hybrid), the canonical discriminant analysis
resulted in one canonical dimension (Can1), which accounts for 80% of the total variance explaining overall
treatment differences.
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the variable catfish−type had two levels (channel and hybrid), the canonical discriminant analysis
resulted in one canonical dimension (Can1) which accounts for 80% of the total variance explaining
overall treatment differences.

Table 6. Proportion of correct classifications (channel or hybrid; n-119) based on TPA.

Hit Rate 1

Overall 2 0.912
Fresh 0.983
Frozen 0.875
IQF 0.888

1 Proportion of correct grouping between channel and hybrid fillets based on TPA profiles. 2 Not accounting for
cold-storage type.

TPA data from the eight individual compression positions can be analyzed in several
forms. Since fillets were not paired in this study, direct correlation of parameters, such
as channel and hybrid, IQF and fresh, or cooked and raw, could only be meaningfully
accomplished through the connection of the eight positions or the positional averages, as
seen in Figure 4 for the toughness and firmness attributes. It was noteworthy that the
correlation for toughness (Pearson’s correlation coefficient (r) = 0.94; Figure 4) was stronger
than for firmness (correlation not significant at α = 0.05). The position-5 was known to be
problematic, positioned at the edge of the nugget section of the fillet, and can be seen to
have the maximum offset from the regression line. This correlated to position-5 having the
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largest standard deviation for all attributes. Indirect comparison of parameters could be
obtained through correlation of two TPA attributes (e.g., thickness and firmness) for each
of the two parameters. The attribute correlation can be accomplished with all data points
(8 points per fillet × number of samples), the 8-point fillet averages, the fillet linear regres-
sion slopes, or the positional (1–8) averages (Figure 5).
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Pearson’s correlation coefficient (r) = 0.61 for Channel, and r = 0.33 for Hybid; (B) Fillet averages:
r = 0.54 for Channel, and no significant correlation for Hybrid; (C), Fillet 8-point regressions; (D) Position
averages: r = 0.94 for Channel and r = 0.80 for Hybrid.

The statistical comparisons of the texture attributes were found to be complicated with
a covariance between fillet thickness and many of the TPA attributes, as seen in Figure 5
for the firmness attribute. If channels and hybrids were combined into a single model
which fit the effects of thickness and of catfish type on firmness, and an interaction between
the two, a large effect of thickness and of catfish type, plus a significant interaction were
found, where the effect of thickness is greater for channel and less for hybrid. From the 95%
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confidence intervals of the model fit, a Johnson-Neyman (JN) point for the model could
be calculated to determine the range of the significance of difference. However, because
the regressions and CI converge below the thickness range, the JN point was undefined,
indicating the whole range of data was significantly different, with channel being larger
than hybrid. Alternatively, when the covariance of thickness and toughness was examined,
the JN point was calculated to be 11.9 mm in thickness. Above this thickness, the predicted
toughness for channel is higher than for hybrid. Since most of the data are above 11.9 mm
thickness, the region of significance encompasses almost all the data. These low JN points
assisted the previously discussed calculations of significance for the combined data and the
cold-storage type data without considering the thickness covariance.

The channel and hybrid catfish used for the frozen fillet samples were obtained from
special circumstances with both being stocked in the same experimental pond where they
would be under identical environmental conditions and be harvested identically. Therefore,
many variables associated with collecting channels and hybrids from different ponds
would be eliminated and give rise to correlations with much less error. Moreover, the
gender of the fish was determined for this sample type and information on the stocking,
harvest, and processing weights and ages was available (Table 7). No significant differences
were found between sample types except for Carcass percent, where channel and hybrid
were significantly different and although male and female were not different, in total, the
channel male or female significantly differed from the corresponding hybrid. Additionally,
proximate data were obtained on the frozen samples (Table 8). The channel fillets had
significantly less lipid than the hybrid, with the moisture and protein being slightly larger.
When gender was included in the comparison, channel males had significantly more
fillet moisture and protein and less lipid than comparable hybrid fillets. Channel and
hybrid catfish normally have similar proximate levels with the average moisture, protein,
and lipid content of channel catfish fillets being reported as 76.4%, 15.6%, and 6.9%,
respectively [39], and hybrids with 77.8%, 16.7%, and 5.7%, respectively [40], both similar
to the hybrid values in Table 8. It is unknown how channels and hybrids produced in the
same pond for the frozen samples had such large differences in lipid content. Feeding
competition or differences in fat loss during reduced feeding schedules may account for
the differences. Higher fillet muscle lipid and moisture content has been associated with
softer fish texture [41,42], or conversely, the reduced lipid levels in the channels of the
frozen sample should be associated with an increase in firmness. This may be a factor in
the observed 36% higher firmness value found for the channel frozen fillet compared to the
hybrid (Table 3), but similar or larger firmness differences were found for the IQF and fresh
samples that were not produced communally.

Table 7. Catfish production and processing data for frozen hybrid and channel fillets.

Samples
(No.)

Age
(Days) STWT (g) WT

(g)
HGWT

(g)
Carcass

(%) Fillet (g)

total 98 592.3 90.2 771.2 507.7 65.4 b 260.5
male 52 592.3 91.4 803.0 527.7 65.0 a,b 268.3
female 46 592.2 88.8 735.2 485.0 66.0 b,c 251.9

Channel 49 590.4 96.3 764.2 490.5 64.3 a 256.4
C-male 26 590.5 99.6 793.8 504.4 63.7 a 261.8
C-female 23 590.3 92.7 730.8 474.8 65.0 a,b 250.3

Hybrid 49 594.2 84.0 778.1 524.8 66.6 c 264.7
H-male 26 594.2 83.3 812.2 551.0 66.3 b,c 275.0
H-female 23 594.2 84.9 739.6 495.3 67.0 c 253.4

STWT = Stocking weight. WT =Whole weight at processing. HGWT = Headed gutted weight. Carcass = percent
whole weight after removal of skin, gut, and head. Fillet = Combined fillet weight. a–c Values in the same column
followed by different superscripts were significantly different based on ANOVA with Holm-Sidak post-hoc
test (α = 0.05).
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Table 8. Proximate compositions (wet weight basis) of raw frozen catfish fillets.

Moisture Protein Lipid Ash

Channel (n = 25) 76.1 (±1.6) b 19.7 (±1.1) b 3.7 (±1.2) a 1.10 (±0.07) a

C-male (n = 13) 76.6 (±1.5) b 19.7 (±1.1) b 3.3 (±1.1) a 1.11 (±0.07) a

C-female (n = 11) 75.5 (±1.6) b 19.7 (±1.2) b 4.3 (±1.1) a 1.10 (±0.06) a

Hybrid (n = 25) 74.6 (±1.4) a,b 18.8 (±0.7) a,b 5.8 (±1.3) b 1.05 (±0.07) a

H-male (n = 11) 74.9 (±1.1) a 18.7 (±0.8) a 5.6 (±1.0) b 1.07 (±0.44) a

H-female (n = 14) 74.4 (±1.7) a 18.9 (±0.7) a,b 6.0 (±1.6) b 1.04 (±0.29) a

Total frozen (n = 48) 75.3 (±1.7) 19.3 (±1.0) 4.8 (±1.6) 1.08 (±0.07)
T-male (n = 24) 75.8 (±1.5) 19.2 (±1.1) 4.4 (±1.5) 1.09 (±0.06)
T-female (n = 25) 74.9 (±1.7) 19.3 (±1.0) 5.2 (±1.6) 1.07 (±0.08)

a,b Values in the same column followed by different superscripts were significantly different based on ANOVA
with Holm-Sidak post-hoc test (α = 0.05).

4. Conclusions

Channel and hybrid catfish fillets were well distinguished by the texture profile analy-
sis method. Firmness, toughness, and chewiness texture attributes were most associated
with the differences between channels and hybrids, while resilience, cohesiveness, adhe-
siveness, and springiness were associated with differences in the cold-storage types, fresh,
frozen, and IQF. For all texture attributes, channels had higher values than hybrids, with
fresh fillets having the largest percent difference. IQF fillets, containing polyphosphates,
had the fewest number of texture attribute differences between the two catfish types. Thick-
ness covariance was also detected for most of the texture attributes to varying degrees, but
statistical analysis demonstrated that differences between channel and hybrid catfish fillets
were significant for most of the sample thickness range encompassed by the data. Future
sensory analysis should be conducted to investigate the effects of physical differences
between channel and hybrid fillets on product acceptability.
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