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Chaos game representation (CGR), a milestone in graphical bioinformatics, has become a powerful tool
regarding alignment-free sequence comparison and feature encoding for machine learning. The algo-
rithm maps a sequence to 2-dimensional space, while an extension of the CGR, the so-called frequency
matrix representation (FCGR), transforms sequences of different lengths into equal-sized images or
matrices. The CGR is a generalized Markov chain and includes various properties, which allow a unique
representation of a sequence. Therefore, it has a broad spectrum of applications in bioinformatics, such as
sequence comparison and phylogenetic analysis and as an encoding of sequences for machine learning.
This review introduces the construction of CGRs and FCGRs, their applications on DNA and proteins,
and gives an overview of recent applications and progress in bioinformatics.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The chaos game algorithm has been developed by Barnsley [1]
to construct fractals based on random input and was later
extended to DNA as input by Jeffrey [2]. The results are called
chaos game representations (CGR). With the advent of fractal
geometry by Mandelbrot in the 1970s [3], multiple algorithms
emerged to construct fractals. Fractals are recursive, scale-
invariant patterns and their dimension is a fraction [4,5]. Different
algorithms exist to construct fractals, such as L-Systems [6], and
Kronecker powers [7].

CGR is considered as a milestone in graphical bioinformatics
[8,9]. The branch of graphical bioinformatics addresses graphical
representations of sequences as a mathematical invariant of the
sequences [8]. Thus, multiple approaches exist to visually and
numerically represent biological sequences to a broad array of
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Fig. 1. Chaos Game Algorithm.
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applications, such as sequence comparison, visualization, and as an
encoding for machine learning. The underlining concept of the CGR
algorithm is to map a sequence, i.e., a 1D representation to a higher
dimensional space, typically to the 2D space [1]. It was originally
developed to construct the Sierpinski triangle. To this end, num-
bers from one to three are assigned on the vertices of a triangle
(see Fig. 1). Based on a randomly selected start point (S), a vertex
is randomly chosen (V1), and a point P1 is drawn in half the dis-
tance to the vertex V1. This process is repeated, with P1 as the
new starting point. The second point (P2) is drawn at half the
way to the second randomly selected vertex (V2). By repeating this
algorithm, the Sierpinski triangle emerges (see Fig. 1 right). The
CGR is an iterative function system (IFS) [1], which derives the pro-
cess from set theory [10].

In 1990, Jeffrey [2] proposed the application of the CGR algo-
rithm to DNA, leading to broad applications in bioinformatics.
Others all extended CGR to proteins, because of its unique
properties:

� a sequence is represented as a unique pattern
� a sequence is mapped to unique coordinates
� a CGR maps all possible sequences in all possible lengths to 2D
or 3D space

� a single coordinate encodes the complete sequence input
� the starting point does barely influence the outcome

Because of its properties, CGR has already been used, for
instance, in alignment-free sequence comparison, phylogeny, and
as an encoding for machine learning, and has also a huge potential
Fig. 2. Chaos Game Representation and algorithm for DNA. Left: CGR algorithm for fou
coordinates. In CGR the center has the coordinates (0,0) and the CGR spans from (�1,�1
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for future applications in bioinformatics. This review addresses the
concept of CGR and its applications and potential in multiple direc-
tions in bioinformatics.

2. Chaos game for DNA

Jeffrey [2] was the first to apply CGR on DNA. Instead of using a
triangle, the CGR was based on a square, with the four vertices rep-
resenting the four nucleotides, adenine (A), cytosine (C), guanine
(G), and thymine (T). Fig. 2 illustrates the CGR for DNA.

Jeffrey [2] observed that for random sequences no visible pat-
terns emerge (see Fig. 3 upper left). However, for the CGR on a
DNA sequence fractal, non-random patterns emerge. Fig. 3 shows
three examples of CGR patterns for different genomics sequences
of organisms compared to a random sequence. This pattern is the
attractor of the sequence [2], i.e., the points or areas to which a
dynamical system converges to [11]. CGR was also used to examine
visually the quality of random number generators. For random
number generators of high quality, no visible patterns in the CGR
will emerge [1,12,13]. This feature of CGR has led to two applica-
tion directions, namely to tools for visual data analytics, e.g., to
visualize and analyze pseudorandom number generators [12] and
for alignment-free comparisons of sequences [9].

In Fig. 3, we assigned the nucleotides to the CGR coordinates as
follows: A is assigned to (�1,1), T is assigned to (1,1), C is assigned
to (�1,1), and G is assigned to (1,�1). Jeffrey [2] originally used a
different notation with a CGR spanning from (0,0) to (1,1), with a
different assignment of the vertices. A diagonal order of purines
(and likewise pyrimidines) is widely used in the literature
(A-C/G-T). However, a horizontal order of purines and pyrimidines
can also be found (A-T/G-C) in some studies. There are ðn�1Þ!

2 ways to
assign the nucleotides to the vertices, i.e., three different orienta-
tions plus rotations and mirroring. Burma et al. [15] used these
three orientations to analyze different genomes. They could show
that, depending on the orientation of the vertices, different visual
patterns emerged for the genomes, which allows a user to visualize
different motifs or nucleotide concentrations in the CGR. Barnsley
[1] describes the CGR as an iterated function system (IFS), which is
based on set theory [10]. In the recent years, a more compact nota-
tion based on a geometrical approach has been established [9]:

Pj
i ¼ Pj

i�1 þ sf ðVj
i�1 � Pj

i�1Þ ð1Þ
r vertices with corresponding labels, i.e., A, C, G, and T, as well as corresponding
) to (1,1). Right: Division of the CGR space due to the iterative process.



Fig. 3. Chaos Game Representation, order of vertices: A-T/C-G, created with R
package kaos [14]. Upper left: random sequence. Upper right: Hoya carnosa isolate
SZ708 chloroplast, complete genome GenBank: MN781974.1. Lower left: Homo
sapiens neanderthalensis mitochondrion, complete genome GenBank: KY751400.2.
Lower right: Saccharomyces cerevisiae S288c mitochondrion, complete genome NCBI
Reference Sequence: NC_001224.1.
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Pj
0: starting point; either randomly chosen or pre-defined.

j: dimension of the CGR, i.e., 2 for DNA
i: position of the sequence S
sf: scaling factor; 0.5 for DNA
V0

i = 1 if Si T or G, else V0
i = �1

V1
i = 1 if Si A or T, else V1

i = �1
Different adaptations to adjust the CGR have been developed.

For instance, it is possible to change the order and number of the
vertices or their coordinates. Moreover, the CGR is not limited to
a 2D representation. It is also possible to extend the CGR to a
multi-dimensional representation. Furthermore, the scaling factor
can be used and adjust the appearance of the CGR.

Jeffrey [2] showed that clear, visible patterns only emerge for
vertices P7 with a scaling factor of 0.5 (see Fig. 4).

Besides those properties mentioned already, the CGR has some
additional unique properties. The CGR is a representation of all
possible sequences in any length in a continuous space. It can be
considered as a generalization of a Markov model (the next state
depends on the current state [16]), and the complete sequence
can be reconstructed solely from the last coordinates of the CGR
[17]. Burma et al. [15] analyzed the CGR for DNA and identified
the following additional properties of CGR for DNA:
Fig. 4. CGR with a scaling factor of 0.5 for different numbers of vertices (5 to 8 from
left to right), created with R package kaos [14]. With a random input sequence the
possible space within the CGR is covered. A scaling factor of 0.5 with more than 4
vertices leads to overlapping areas in the CGRs.
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� The patterns in the CGRs of long DNA sequences indicate
homology between two sequences.

� The CGR allows the identification of repetitive sequences and
their frequencies.

� The CGR can be used to identify absent or low frequent
subsequences.

� Shorter subsequences show the same characteristic patterns as
the full DNA sequence (e.g., genomes).

3. Generalized Chaos game representation

While the original CGR approach by Jeffrey [2] was developed
for DNA, different approaches for proteins have been developed
later. After the original algorithm based on a Sierpinski triangle
was adapted to a square to take the four nucleotides of DNA into
account by Jeffrey [2], efforts have been made to extend the algo-
rithm for the 20 amino acids to build CGRs of proteins. For more
than four vertices, CGRs get noisy and the points are overlapping
(see Fig. 4). To this end Fiser et al. [18] proposed a so-called Sier-
pinski n-gon, polyflakes, or n-flakes [19] for proteins. In this
approach, the scaling factors are adjusted to avoid overlapping.
The scaling factor for n-flakes is also known as the kissing number
[20]. The coordinates of the vertices for a polyflake can be calcu-
lated using the following equation [14]:

x½i� ¼ r � sin 2pi
n þ h

� �
y½i� ¼ r � cos 2pi

n þ h
� � ð2Þ

x½i�: x-coordinate for vertex i
y½i�: y-coordinate for vertex i
r: radius.
i: vertex.
n: number of vertices.
h: angel of orientation.
Fiser et al. [18] proposed an equation, to calculate the kissing

number for polyflakes. However, this equation is not suitable for
four vertices. In this case, the equation generated a looser packing
with a scaling factor of 0.54 for four vertices [21]. Fig. 5 shows the
impact of the different scaling factors on a squared CGR. Almeida
and Vinga [21] proposed a different equation that can produce a
scaling factor of 0.5 for four vertices. An alternative version with
a compacter notion can be found in Strichartz [22], applied for
CGR in Lochel et al. [14]:

sf ¼ 1� sin p
nð Þ

sin p
nð Þþsin p

nþ2pm
nð Þ

m ¼ n
4

� �
bcfloorfunction

ð3Þ
Fig. 5. Impact of the scaling factor for a CGR (with four vertices). Created with the R
package kaos [14]. Left: sf ¼ 0:5 based on the original CGR [1,2]. Right: sf ¼ 0:54 as
an result of the equation for the kissing number in Fiser et al. [18].



Fig. 6. CGR polyflakes with the kissing number as scaling factor and different
numbers of vertices (from left to right: 5, 6, 7, and 20). Created with the R package
kaos [14].
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with n the number of vertices.
Fig. 6 shows the polyflakes based on the CGR with random

numbers as input and different number of vertices (i.e., 5, 6, 7,
and 20). The CGR with 20 vertices can, for instance, be used for pro-
teins with the twenty proteinogenic amino acids as vertices and
with the kissing number as the scaling factor. The use of polyflakes
enabled the encoding of protein sequences into the CGR and has
been applied in different studies [18,21,14].

Similar to CGRs for DNA, there are also ðn�1Þ!
2 ways to assign

amino acids to the edges of the 20 vertices of the polyflakes. The
algorithm maps the sequence to 2D space, and a loss-less reversal
of the algorithm to the original sequence is possible. From a com-
puting perspective, there is no difference in the CGRs with respect
to the order of the edges. However, to compare different CGRs with
each other in one classification task or phylogeny analysis, the
order of the vertices have to be the same for all samples in the
dataset.

However, alternative strategies have also been developed. For
instance, Basu et al. [23] separated the twenty amino acids based
on their properties into 12 groups and used a CGR with 12 vertices
that has further been separated into a grid of 24 squares, as a rep-
resentation of protein sequences.
4. Frequency matrix chaos game representation

While the original CGR uses exact coordinates for each point, an
discretization called the frequency chaos game representation
(FCGR) enabled a coarse-grained and less noisy CGR abstraction
for sequences. FCGR is based on counting the points of the CGR
based on a pre-defined grid. In Fig. 7 the CGR is separated by a grid
(here 8� 8 cells), and the number of points in each cell is counted.
This procedure results in a matrix representing the frequency of k-
mers (here 3-mers), and thus a visualization in, for instance,
grayscale.

The FCGR, similar to the original CGR, enables the identification
of motifs or missing motifs in a given sequence [15,13]. Addition-
Fig. 7. Complete mitochondrial genome sequence of the Tyrolean Iceman (GenBank:E
visualization. Created with R package kaos [14].
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ally, FCGR allows the visualization of homology between different
genomes as a coarse-grained grayscale visualization Burma et al.
[15]. The plotting of the CGR on a computer screen inevitably leads
to a compression of the image. Thus, Burma et al. [15] used this cir-
cumstance on purpose, by separating the CGR with a grid in reso-

lutions of 2k � 2k, in order to count the frequencies of different k-
mers. They also assigned different colors to the frequencies and
could demonstrate that FCGR can be used to visualize homology
between genomes. Moreover, they found that patterns in CGR are
repeated (i.e., that CGR are fractals), and that underrepresented
sequences are shown as ”white holes” in the image. Additionally,
they proposed to use FCGR to identify repetitive elements in the
genome or gene duplications. In the same year, Hill et al. [24]
and Huynen et al. [25] used CGR to compare frequencies of dinu-
cleotides for human globin and alcohol dehydrogenase genes [24]
and GC content in histones [25]. Huynen et al. [26] further ana-
lyzed FCGRs and demonstrated that the CGR can be considered
as a first-order-Markov chain. Oliver et al. [27] generated entropic
profiles by increasing the resolution of the CGR and calculating the
entropy of the histograms (CGR as frequency plots), which can be
used to clearly show differences between random sequences and
genomes.

The above-described approaches refer to FCGRs based on grids

in 2k � 2k and, therefore, are based on representations of k-mers.
In contrast, Almeida et al. [17] evaluated different non-integer

resolutions. Their approach results in a division of the CGR to
non-integer oligonucleotides (i.e., by division of the grid, where k
is not an integer). The number of quadrants in a grid of an FCGR
can be calculated by Almeida et al. [17]:

q ¼ 22�k ð4Þ
q: number of quadrants
k: k-mer size
For example, to calculate the length of a k-mer of a 10 x 10 grid,

the equation can be rearranged, resulting in a k-mer size of 3.32
[17]:

k ¼ log2ðqÞ
2

ð5Þ

Almeida et al. [17] introduced the usage of non-integer resolu-
tion to address redundancy in genomic structures, which is a major
feature in genomic structures, e.g., for amino acid encoding.
Almeida et al. [17] could show that CGR is a generalized Markov-
Chain and that Markov-models are particular cases of CGR models.
The extension of a CGR to FCGR enabled newmethods for sequence
comparison and phylogeny. Additionally, Almeida et al. [17] sug-
U810403.1). From left to right: CGR; FCGR with count matrix; FCGR as grayscale



Fig. 8. Complete mitochondrial genome sequence of the Tyrolean Iceman
(GenBank:EU810403.1), as 3-D FCGR created with R package kaos [14] and
barplot3d [28].
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gested to calculate the global distance (d) between two FCGRs
based on a weighted Pearson correlation coefficient (rw), using
the following equation:

nw ¼
Xk

i¼1

xi � yi

�xw ¼
Pk

i¼1
x2
i
�yi

nw

�yw ¼
Pk

i¼1
xi �y2i

nw

sx ¼
Pk

i¼1
ðxi��xwÞ2 �xi �yi

nw

sy ¼
Pk

i¼1
ðyi��ywÞ2 �xi �yi

nw

rwx;y ¼
Pk

i¼1

xi��xwffiffiffi
sx

p �yi��ywffiffiffi
sy

p �xi �yi
nw

d ¼ 1� rw

ð6Þ

nw: compounded frequency.
xi; yi: FCGR quadrant.
rwxy: weighted correlation coefficient.
d: distance.
For the comparison of two sequences based on their global dis-

tance d, their FCGRs have to be in the same resolution. d is a num-
ber between 0 and 2, while values greater than 1 indicate a
negative correlation coefficient and 0 indicates similarities of the
sequences [17].

For FCGRs of DNA, the subdivision into squares leads to a sub-
division of k-mers. While for proteins, the subdivision of the 20-
gons into squares does not. To this end, methods applied on DNA
might perform better than on proteins. Moreover, while CGR is
lossless, FCGR as a coarse-grained approach is considered to be
lossy.

5. Extensions of CGR

Besides the generalized CGR and the FCGR, multiple other
extensions of the CGR algorithm exist.

While the aforementioned approaches use CGR as a 2D repre-
sentation of sequences (i.e., 1D representations), other approaches
also use 3D or multi-dimensional CGR. While 2D and 3D represen-
tations can be plotted, higher dimensional representations, are
hard to visualize. Nevertheless, multidimensional CGRs could also
be used as a high-dimensional data representation for subsequent
applications, e.g., machine learning, similar to other methods such
as the PCA. Albeit FCGR is typically represented in grayscale (or
colors), 3D representations have been proposed as well, e.g., by
Korolev et al. [29], Solovyev [30], or Deschavanne et al. [31]. In
these 3D CGRs, the number of k-mers is represented in a third
dimension instead of a gray value (see Fig. 8). This approach can
be used to visualize difference between different scales, however,
it comes with the typical limitations of 3D representations, e.g.,
the possibility of perspective distortion.

Sun et al. [32] developed a three-dimensional CGR for proteins,
in a regular dodecahedron, with promising results regarding pro-
tein classification and phylogenetic analysis.

Hao [33] introduced an alternative approach to construct and
describe the patterns in CGR, based on Kronecker powers. Kro-
necker powers are matrix operations and in connection with
DNA they can be applied as follows:

A T

G C

� �
� A T

G C

� �
¼

AA TA AT TT

GA CA GT CT

AG TG AC TC
GG CG GC CC

2
6664

3
7775 ð7Þ
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This approach allows further investigations of the DNA
sequences, e.g., regarding missing subsequences [34]. It can also
be extended to a hypercube for any alphabet [35].
6. Applications in bioinformatics

Within the different extensions of the CGR algorithm, several
applications in bioinformatics have been developed. The extension
from DNA to larger alphabets also allowed the application of CGR
for proteins as described above. By using the FCGR of DNA,
sequences can be compared based on their image representation
with different metrics. Thus, the CGR can be used for alignment-
free sequence comparisons (see Zielezinski et al. [36] for a detailed
review on alignment-free sequence comparisons), and therefore,
for phylogenetic analyses, but also as an encoding method for
machine learning applications. Alignment-free sequences compar-
isons have some advantages, for instance, the time complexity and
computing power. For alignments, there are multiple underlying
assumptions that all genes have the same arrangement in a gen-
ome, which is, for instance, not the case for viruses [36]. The
advantage of FCGR-based methods for phylogeny is not so much
accuracy but rather the speed and size of data possible to be han-
dled. Thus, one can use an FCGR-based method on a relatively large
data set to get a crude baseline, then use alignment-based methods
on subsets of interest. While massive computational power is now
commonly available, alignment-based methods eventually require
too much computing power to handle, e.g., tens of thousands of
genomes that would need a pairwise comparison. Also, CGR-
based methods do not require that sequences have equal or similar
lengths, which is necessary for certain analyses, e.g., machine
learning.

Depending on the task, CGR/FCGR can be applied in different
ways (shown in Fig. 9). In the first step, the algorithm produces
x- and y- coordinates for each sign (here shown for DNA). These
coordinates can either be plotted or further processed to an FCGR
as a numerical matrix encoding. Additionally, a visualization of
the matrix by gray-values is possible. For CGRs, the numerical
encoding results in two numbers for each sign, so the length of
the encoding depends on the input. While for FCGRs, the transfor-
mation to a matrix enables a fixed input dimension. For instance,
this fixed input dimension makes FCGR attractive as a numerical
encoding for machine learning and sequence comparison. These
images can be used for classification or visualization. Numerical
encodings have the advantage of avoiding information loss and



Fig. 9. Workflow of CGR based analysis. The input sequence (DNA, proteins, or any
one-dimensional sequence) is encoded with the CGR algorithm to x- and y-
coordinates (here shown for DNA). The coordinates can be transformed into an
FCGR matrix as numerical encoding. Depending on the task and the chosen method,
the numerical encoding can be used for applications in bioinformatics or visualized
and then be further processed.
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overhead of reading, writing, and storing images. The images pro-
vide a visualization and the adoption of image-processing meth-
ods. Nevertheless, the visualizations are not easy to interpret
without prior knowledge of CGR. The visualization can be applied
Fig. 10. Comparison of the FCGRs of complete mitochondrial genomes of Human (G
(GenBank: KY751400.2) and chimpanzee (NCBI Reference Sequence: NC_001643.1). Top
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to show the absence or the accumulated occurrence of particular
motifs and for visual sequence comparison.

6.1. Alignment free sequence comparison

Sequence comparisons based on alignments are widely used in
bioinformatics, but have some disadvantages. For instance, they
are computationally complex (typically quadratic runtime, i.e.,
OðnmÞ with n and m the lengths of the two sequences to be com-
pared), particularly for long sequences, and depend on multiple
assumptions (e.g., gap penalties and substitution matrices) [36].

Jeffrey [2] showed that different and unique patterns in the CGR
emerge from different sequences. In combination with the FCGR
approach, the resulting matrices can be used to calculate these dif-
ferences, as demonstrated by Almeida et al. [17] with Eq. 6. Other
strategies exist, for instance, using the euclidean distance [31].
Deschavanne et al. [31] utilized the euclidean distance between
two images based on k-mer FCGR to calculate phylogenetic dis-
tances between genomes. Accordingly, there are two possible ways
to compare two sequences based on CGR, namely (i) the compar-
ison of FCGRs in equal resolutions, and (ii) the direct comparison
of the coordinates of the CGRs [37].

The comparison based on FCGRs is therefore based on the fre-
quency of k-mers (or non-integer k-mers for particular resolutions
of the grid), and has been used by, e.g., Hill et al. [24], Huynen et al.
[25], and Deschavanne et al. [31]. Fig. 10 shows the FCGR of three
mitochondrial genomes (human, Tyrolean Iceman, Neanderthals
and chimpanzee) and the difference between these genomes to
illustrate the genome comparison based on FCGR. We calculated
the differences by subtracting the matrices from each other. While
the higher frequencies in human are indicated in green, the
iceman/neanderthals/chimpanzee are shown in pink. The FCGRs
of the genomes look very similar at the first glance, however, a
simple subtraction reveals significant differences. The difference-
plot of the human and iceman genomes (both homo sapiens) has
less differences compared to the difference-plot of the human
and neanderthals and the interval of the differences is also smaller
enBank:FJ986465.1), the Tyrolean Iceman (GenBank:EU810403.1), Neanderthals
: FCGRs of the mitochondrial genomes. Bottom: Differences between the FCGRs.



Hannah Franziska Löchel and D. Heider Computational and Structural Biotechnology Journal 19 (2021) 6263–6271
(½�3;2� versus ½�3;5�). Both aspects clearly show that the mito-
chondrial genome of the Tyrolean Iceman is closer related to the
human genome than the neanderthals’ genome. The difference
between human and chimpanzee has even a greater interval and
more differences. Besides this visual approach, other methods exist
to calculate the distance between two FCGRs, e.g., the Euclidean
distance. Karamichalis et al. [38] compared six different distance
metrics with respect to the construction of phylogenetic trees
based on FCGRs, namely (i) the Structural Similarity Index (SSI),
(ii) the descriptor distance, (iii) the Euclidean distance, (iv) the
Manhattan distance, (v) the Pearson distance, and (vi) the approx-
imated information distance. They demonstrated that the SSI and
the descriptor distance show a better performance compared to
the other metrics. Other alternatives have been developed in
recent years for genome comparison based on the FCGR images
[39], for instance, the multifractal analysis [40] or the discrete
cosine transformation [41].

The sequence comparison based directly on the coordinates was
proposed later by Joseph and Sasikumar [37]. To compare two
sequences A and B, they used a 2n � 2n FCGR of sequence B and
aligned the coordinates of the CGR of sequence A. To this end,
the alignment algorithm starts with the last coordinate of the last
nucleotide of sequence A and selects the corresponding square in
the grid of sequence B. Based on that principle, they calculated
the distance of the points on a pre-defined metric and could deploy
an algorithm based on CGR for local sequence alignments. Hoang
et al. [42] developed a method for coordinate-based sequence com-
parison based on discrete Fourier-transformation (DFT). The
underlining idea of this method is based on the generation of the
CGRs of the set of sequences. Therefore, a DFT is performed on each
CGR. The power spectra are then computed based on the DFT. The
length of the spectra depends on the input sequence length, thus,
Hoang et al. [42] applied an even scaling method. In the final step,
they used the Unweighted Pair Group Method (UPGM) with the
arithmetic mean to construct phylogenetic trees.
6.2. Encoding for machine learning

Within the scope of bioinformatics, multiple machine learning
techniques, such as artificial neural networks, support-vector
machines, or random forests, have been applied to sequence data
(such as proteins and DNA) to predict, for instance, functional
properties of the sequences [43]. The most common classification
problem is binary classification, where a set of sequences is sepa-
rated into two groups, e.g., positive and negative. For instance,
for the prediction of resistance in pathogens [44–46] or peptide
classification [47,48].

Almost all machine learning techniques have in common that
they need a fixed input dimension. To this end, preprocessing
methods have been developed [49], e.g., sparse encoding or inter-
polation [50].

CGR, especially FCGR, can also be used to create input data with
a fixed input dimension. To this end, different strategies can be
applied. The CGR or FCGR can be directly used as an input image
for machine learning [51–53], as an extended natural vector of
the image [39,32]), or in combination with singular value decom-
position [54]. Moreover, the FCGR can also be used directly as an
input matrix or vector for the machine learning model
[55,14,56]). While the use of the images can lead to lossy compres-
sion, the representation by grayscale only allows values between 0
and 255. The choice of FCGR as an image encoding makes it
mandatory to decide if the highest gray value is assigned to the
highest frequency in the sequence or to the highest frequency in
the dataset. By using the first approach, the FCGR of a sequence
gets normalized to its sequence length. With the second approach,
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the differences between the frequencies of different samples is pre-
served. However, prior knowledge of the complete dataset is
needed. Since the CGR can be applied for DNA and proteins, both
approaches have been used in recent years. For instance, CGR-
images as encoding has been used to predict coding/non-coding
regions in mammals. Emam et al. [57] compared five different
machine learning techniques: Naive Bayes, Logistic Regression, K-
Nearest Neighbor, Perceptron, and support vector machines. The
CGR coordinates themselves can also serve as an encoding for
sequences with equal length (e.g., as applied in Hoang et al. [58]
to predict splice sites). But the most frequent strategy is FCGR as
encoding. Rizzo et al. [51] used FCGRs for taxonomic predictions
of 16S ribosomal RNA. They trained a convolutional neural network
on the FCGR images and reached very high accuracy. Löchel et al.
[14] developed a resistance prediction model based on protein
sequences. In this study, we compared the performance of the orig-
inal scaling factor of 0.5 and the kissing number to produce poly-
flakes within FCGRs in different resolutions. Additionally, we
compared the performance of different machine learning models
(e.g., neural networks, random forests, and support vector machi-
nes), on FCGRs. The neural networks, trained on the FCGR poly-
flakes, showed a superior accuracy compared to the state-of-the-
art models and encodings. Han et al. [55] used vectorized FCGRs
for nucleosome positioning prediction. Zhou et al. [53] used convo-
lutional neural networks to predict essential genes based on FCGR
images. Dick and Green [52] used FCGRs of proteins of different
organisms, either as polyflakes and the corresponding DNA
sequences as FCGRs, to predict the source organism of the protein
with deep convolutional neural networks. The results of these
studies have in common that CGR/FCGR performed very well as
encoding compared to existing alternatives, in most of the cases.
However, the chosen resolution in FCGRs plays a significant role
on subsequent prediction performance. At the moment, there are
multiple open questions regarding FCGR as an encoding. For
instance, Dick and Green [52] investigated the impact of the order
of the vertices and showed that by changing the order of the ver-
tices data augmentation might be feasible. They also compared
the performance of FCGRs as encoding based on proteins and
back-translated amino acids and found that proteins performed
better within their task.The arrangement of the vertices could the-
oretically affect subsequent machine learning. Especially for
FCGRs, the order might impact the result. For FCGRs in DNA, the
CGR is a square, divided into smaller subsquares. An FCGR for pro-
teins divides a 20-gon into smaller squares. The arrangement of the
vertices might therefore have an impact on the encoding, which
could, however, also be compensated by the resolution of the
FCGR. Additionally, there are other questions regarding the resolu-
tion for the FCGRs. Overall, FCGR/CGR can be applied in different
ways as encodings, either as an image or as a matrix/vector. There-
fore it can be used with different machine learning techniques. The
usage of the images enables image classifications. For this proce-
dure, the FCGRs/CGRs have to be stored as images and re-read,
which leads to additional computing time.

6.3. Comparison with other methods

The CGR/FCGR encodes sequences into a numerical encoding
that can be visualized. These encodings can serve as input for
bioinformatics analyses. From a visual perspective, CGRs/FCGRs
are hard to read and prior knowledge is mandatory to understand
the images. To this end, other graphical alternatives might be con-
sidered for visualization. The value of CGR/FCGR is the underlying
numerical encoding. This numerical representation, as a mathe-
matical invariant, transfers sequences into data structures for com-
putational tasks. To this end, there are multiple layers to consider
the performance and value of CGR/FCGR, namely (i) the visualiza-
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tion, (ii) the performance on sequence comparisons, (iii) applica-
tions in phylogeny, (iv) as a numerical encoding for machine learn-
ing, and (v) as an image encoding for machine learning, e.g., deep
learning.

As aforementioned, the visual aspects (i) of CGR/FCGR are only
readable with prior knowledge. Other alternative fractal visualiza-
tions exist, for instance, the Hilbert curve[59]. A visual comparison
based on FCGR (like in Fig. 10) is of some value and easier to under-
stand without prior knowledge. FCGRs as visualization of k-mers
can give some insights into the sequence. While the visualization
on proteins is even harder to read, but can also be of some value
for comparative tasks. Beyond the visual aspects, the true value
of CGR/FCGR is the numerical representation that allows
alignment-free sequence comparison (ii) and, as a result, phyloge-
netic analysis (iii). CGR/FCGR offers the opportunity for alignment-
free sequence comparison. Most analyses are based on sequence
alignments under the assumption of a linear arrangement of genes.
Additionally, alignment-free comparisons have a lower run-time
and some other advantages [36]. As we do not have a ground truth
for phylogenetic analysis, the performance of different strategies is
hard to validate. Additionally, the numerical representation for
proteins/DNA/ or any sequence can be used for machine learning
(iv), as well as the images(v). There are multiple encodings for
Sequences (DNA, proteins, or text). For instance, one-hot encoding
for DNA [60] or structure and sequence-based encodings for pro-
teins [47]. While the performance of the chosen encoding depends
on the dataset and the machine learning technique [48]. To this
end, CGR and FCGR have many use cases and might be the better
choice in some applications, but at this point, more research is
needed.
7. Conclusion and future perspectives

It has been demonstrated that CGR is a powerful method in
bioinformatics in many different applications. It can be applied
for alignment-free sequence comparisons, and it has become a
novel encoding technique for DNA and proteins for machine learn-
ing problems. For instance, multiple questions were addressed
with this algorithm during the SARS-CoV-2 pandemic. For instance
CGR and FCGR were used by Touati et al. [61] and [62], respec-
tively, to build phylogenetic trees of coronaviruses. Sengupta
et al. [63] applied machine learning for taxonomic alignment-free
classification of viruses, based on CGR. Additionally, different
directions can be identified within the CGR-research area, e.g., bio-
metric analyses [64,65]. However, the CGR algorithm has also
applications beyond bioinformatics or biometry, e.g., in the analy-
sis of music and audio signals [66,67], authorship identification
[68], economy [69], or optimization [70]. Due to the fact that the
CGR can map sequences to 2D space, other applications are possi-
ble. For instance, Simplified Molecular Input Line Entry Specifica-
tion (SMILES) or phonetic signals. In both cases, these encodings
can be used either for machine learning or for similarity
comparison.

At first glance, CGRs are fractal images of sequences. But the
value of this representation is the numerical encoding to coordi-
nates or as a matrix. These data structures offer further processing
of the data. Multiple alternative graphical representations exist,
which can also be used as numerical encodings [8].

The unique properties of the CGR algorithm, which allow recov-
ery of the sequence from its last coordinates, have also found some
applications regarding data encoding and compression. While data
compression is not possible by using only the CGR algorithm, the
combination of Huffman encoding and CGR allows compression
of DNA [71,72]. Moreover, applications for encryption based on
CGR exist [73]. The CGR is a powerful method with multiple appli-
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cations. In bioinformatics for instance, it offers the opportunity for
alignment-free sequence comparisons, phylogeny, and encoding
for machine learning.
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