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Abstract

Motivation: Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into
gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are
developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed
R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from
DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner.

Results: To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named
‘‘Differential Regulation Analysis’’ (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank.
DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription
factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest.
DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In
addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential
regulation analysis is able to capture the regulators relevant to the biological subject.

Conclusions: With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to
a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0
can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet
been documented as critical.

Availability: DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project
home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.
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Introduction

In the transcriptome analysis domain, differential co-expression

analysis (DCEA) is emerging as a unique complement to

traditional differential expression analysis. Rather than calculating

expression level changes of individual genes, DCEA investigates

differences in gene interconnection by calculating the expression

correlation changes of gene pairs between two conditions. In the

past few years, a large variety of DCEA methods have been

developed, such as Log Ratio of Connectivity (LRC) [1], Average

Specific Connectivity (ASC) [2], Weighted Gene Co-expression

Network (WGCNA) [3,4], Differential Co-expression profile

(DCp) [5,6], Differential Co-expression enrichment (DCe) [5,6],

ROS-DET [7], Gene Set Co-expression Analysis [8], and others.

These methods vary in how they specify expression correlations

and quantify differential co-expression; they also differ in the levels

they address: genes or gene sets. As a promising alternative to

differential expression analysis, DCEA is drawing increasing

attention from computational biologists and, thus, is undergoing

rapid methodological improvement.

The rationale behind differential co-expression analysis is that

changes in gene co-expression patterns between two contrasting
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phenotypes (e.g., healthy and disease) provide hints regarding the

disrupted regulatory relationships or affected regulatory subnet-

works specific to the phenotype of interest (in this case, the disease

phenotype). Therefore, among the many growing directions of

DCEA, there is the so-called ‘‘differential regulation analysis’’

(DRA), which integrates the transcription factor (TF)-to-target

information to probe upstream regulatory events that account for

the observed co-expression changes. Recently, researchers have

integrated differential co-expression and differential expression

concepts to propose a novel Regulatory Impact Factor (RIF) that

can be used to prioritize disease-causative TFs [9,10]. In addition,

researchers have begun to perform differential co-expression

analyses of microRNAs [11,12]. These studies are expected to lead

to DRA at the post-transcription level. While the algorithm/

theory facet of DRA is on the rise, the tool/application facet is

lagging. The few existing tools, such as CoXpress [13] and

DiffCorr [14], are fine-tuned at the DCEA stage but have not been

expanded to the DRA front. Recent DRA methods, such as the

RIF metric mentioned above, have not been implemented as

practical tools. Currently, a software tool that implements the

frontier DRA methods would fill this gap and consequently

propagate DRA methods to many more biomedical research

fields.

Three years ago, we released the R package DCGL (referred to

as DCGL v1.0 hereafter) [6], which was designed to identify

differentially co-expressed genes and links (DCGs and DCLs,

respectively). The DCGL package facilitated the application of our

DCEA algorithms DCp and DCe [5] in a diverse array of disease

studies [15–18]. In our current work, we introduce an upgraded

version of DCGL (referred to as DCGL v2.0 hereafter), in which

we added ample functions to facilitate differential regulation

analyses. Specifically, we incorporated the human TF-to-target

library into the package, achieved the identification of differen-

tially regulated genes and links (DRGs and DRLs, respectively),

enabled a network display of intertwined regulation links and

differential co-expression links, and implemented the RIF metric

as well as two additional novel regulator prioritizing metrics. We

have managed to turn the DCGL package into a comprehensive

DRA tool. Our case study in hepatocellular carcinoma gene

expression studies demonstrated the usage and applicability of

DCGL v2.0 in human diseases.

Methods and Implementations

Modification of the Existing Modules in DCGL v1.0
As illustrated in Figure 1, the previous DCGL package [6],

DCGL v1.0, has three functional modules: Gene filtration, Link

filtration, and DCEA (short for differential co-expression analysis).

The ‘‘Gene filtration’’ module provide two functions, expressionBa-

sedfilter [19] and varianceBasedfilter [20], to filter out genes whose

expression values are extremely low or notably invariable across

samples/conditions. The ‘‘Link filtration’’ module includes three

functions, qLinkfilter, percentLinkfilter and systematicLinkfilter, which are

designed to construct gene co-expression networks. The ‘‘DCEA’’

module has three algorithms previously proposed by others (LRC

[1], ASC [2], and WGCNA [3,4]) and two methods (DCp and DCe

Figure 1. Overall design of DCGL v2.0. Boxes in light grey are modules/functions common to both DCGL v1.0 and v2.0.
doi:10.1371/journal.pone.0079729.g001
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[5,6]) we developed to identify differentially co-expressed genes

(DCGs) and differentially co-expressed links (DCLs). These

existing modules were improved in DCGL v2.0 as follows. 1)

The source codes were re-organized to a more logical and efficient

level. 2) A stand-alone function, rLinkfilter, was added to the ‘‘Link

filtration’’ module, which cuts off links according to their

expression correlation value. SystematicLinkfilter, used to be in

DCGL v1.0, was removed from the update because it is extremely

time-consuming [21], and its results require manual interpretation

before they are applied to downstream functions. 3) A DCsum

function was attached to module DCEA in order to summarize a

final set of DCGs and DCLs (see the companion vignette for more

details, Text S1).

DRA: a New Module in DCGL v2.0
In DCGL v2.0, we designed and implemented a new module,

DRA, specifically for differential regulation analysis. The human

gene regulatory relationships were developed from the ‘‘tfbsCons-

Sites.txt’’ and ‘‘tfbsConsFactors.txt’’ files extracted from UCSC

hg19 (http://genome.ucsc.edu/), and were compiled as the data

library TF2target. TF2target includes 214,607 binary tuples

involving 215 human TFs and 16,863 targets (see the companion

vignette for more details, Text S1). In order to keep abreast of

developments in human regulatory data analysis, we will continue

to tidy and promote our TF2target library. The DRA module is

comprised of three major functions, DRsort, DRplot, and DRrank.

Briefly, DRsort sorts differentially regulated genes (DRGs) and

differentially regulated links (DRLs) from the DCsum-outputted

DCGs and DCLs. DRplot visualizes the networks of intertwined

regulation links and DCLs. DRrank prioritizes candidate causal

regulators using three alternative metrics.

DRsort: Sorting Out Potential DRGs & DRLs
As the foremost function of the DRA module, DRsort is designed

to sift differentially regulated genes (DRGs) and differentially

regulated links (DRLs) from the DCsum-outputted DCGs and

DCLs. In this function, we scrutinize the DCGs and DCLs against

the TF-to-target information and highlight a subset of the genes

and links that are potentially highly related to the putative

differential regulation mechanisms. If a DCG coincides with a TF

(A and B in the left table in Figure 2), it is regarded as a

differentially regulated gene (DRG, or TF DCG) based on the

implication that a differential co-expression of this type of DCGs

could be attributed to disrupted regulatory relationships between

the TF and its targets. If a DCG is not a TF by itself, but its

regulator(s) is/are traceable in TF2target (C and D in the left table

in Figure 2), this DCG, though not regarded as a DRG, is reserved

in a DRsort output to ease downstream analyses.

Among all DCLs, we obtained two types of DRLs, namely

TF2target_DCLs and TF_bridged_DCLs. ‘‘TF2target_DCLs’’

refers to DCLs that coincide with TF-to-target relations (for

example, the edge between A and B in the DRL table in Figure 2),

while ‘‘TF_bridged_DCLs’’ refers to DCLs for which both genes

share common TF(s) ((B, C) in the right table in Figure 2). Our

rationale here is that the disruption of regulatory relations can

affect not only the co-expression links between a regulator and its

targets (TF2target_DCL), but also the co-expression links among

the multiple targets of a TF (TF_bridged_DCL).

DRplot: Visualizing Differential Co-expression and
Regulatory Relationships

Given the DRGs’ and DRLs’ output from DRsort as well as the

TF-to-target regulatory relationships in TF2target, we developed a

DRplot function to visualize a DRG-highlighted, DRL-centered

network. By definition, our DRLs involved differential co-

expression links and transcriptional regulation links, consequently

leading to a heterogeneous network display. We offer two network

plotting options to present the two types of DRLs separately:

TF2target_DCLs (Figure 3A) and TF_bridged_DCLs (Figure 3B).

In addition, we allow users to delimit a sub-network according to

predefined gene(s) of interest, where the predefined genes

involving DRLs and regulation links are extracted from the whole

network (Figure 3C).

We utilized dataset GSE17967 [22] from GEO (http://www.

ncbi.nlm.nih.gov/geo/) to demonstrate the function of DRplot.

This dataset was also used in the subsequent steps for DRrank

illustration. The details of data processing and analyses can be

found in the section ‘‘Results: Assessment of DCGL v2.0.’’

DRrank: Ranking Regulators
Finally, in DRrank, we implemented three alternative metrics for

prioritizing regulators that are putatively causative to the

phenotype of interest. The TED and TDD scores, short for

‘‘Targets’ Enrichment Density’’ and ‘‘Targets’ DCL Density,’’

respectively, are novel inventions in light of our DRsort analysis. In

addition, the ‘‘Regulatory Impact Factor’’ (RIF score) established

earlier [9,10] was also implemented in our package.

Similar to the inferences made in previous works regarding the

relationship between TFs and differentially expressed genes

(DEGs) [23–25], we speculate that a TF must be more subject-

relevant or even causative if more of its targets are DCGs. Based

on this speculation, TED evaluates the enrichment of a particular

TF’s targets in DCGs using the binomial probability model. While

an overall set of K DCGs are determined from a total of N genes

with available expression data, out of which N0 genes (K0 DCGs)

are covered by TF2target library, a TF (TFi) with Ti targets out of

N0 genes should by chance have Ti*K0/N0 targets fall within the K0

DCGs. If the actual number of its DCG targets, Ti’, is significantly

larger than the expected number, Ti*K0/N0, as judged by the

cumulative density function of the binomial probability model (Eq.

1), we tend to rank TFi higher in the regulator prioritization list.

That is, if more DCGs are enriched in the targets, then the

regulator is more prioritized. Of note, TED is applicable to any

TF as long as the expression level of its targets are measured,

which means its own expression information is not required.

TED(TFi)~{ log2 (CDF :pbinom(N,K,Ti,Ti
0))

~{ log2 (
XTi

x~Ti
0
(
Ti

x
)(

K

N
)x({

K

N
)Ti{x)

ð1Þ

Still using GSE17967 as an example, this dataset tested a total of

12,632 genes, out of which 1,052 genes were identified as DCGs.

Taking the simplified scenario of 13 genes and 23 links in

Figure 3C as an example, the TF EGR1 (Egr-1) has four regulatory

targets covered by GSE17967. By chance, EGR1 should have

4*1,052/12,632 DCG targets; however, EGR1’s real number is

three. According to Eq. 1, we have TED(EGR1) =

{ log2 (
P4

3

(
4

3
)(

1052

12632
)3(1{

1052

12632
)4{3) = 14.34351.

TDD is designed to prioritize TFs whose targets form DCLs

(i.e., ‘‘common TFs’’ of the TF_bridged_DCLs). Bearing the same

heuristic approach as in TED, we speculate that a TF of higher

importance should have more of its targets forming DCLs. Based

on this speculation, we borrowed the ‘‘clustering coefficient’’

DCGL v2.0 for Differential Regulation Analysis
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formula [26] to measure the relevance of a TF(Eq. 2). For TFi, if

we identify N targets that have available expression data, among

which k DCLs are formed, then TDD is essentially a normalized

number of TFi-bridged DCLs (Eq. 2). As with TED, TDD can

rank those TFs that are not tested in an expression dataset as long

as their targets’ expression information is available.

TDD(TFi)~CC(TFi)~
2k

N(N{1)
ð2Þ

Again, based on GSE17967, EGR1 has four targets with

expression data, among which three DCLs are formed (Figure 3C).

According to Eq. 2, we have TDD(EGR1) = 2*3/4(4–1) = 0.5.

The regulatory impact factor (RIF) was recently proposed and

demonstrated as efficient in a proof-of-concept study of bovine

Piedmontese myostatin mutants [9,10]. The RIF measurement

simultaneously integrates three sources of information: (i) the

extent of differential expression; (ii) the abundance of differentially

expressed genes; and, (iii) the differential co-expression between a

TF and its differentially expressed target genes (Eq. 3). In other

words, the RIF algorithm assigns a high score to those TFs that are

‘‘cumulatively most differentially wired to the abundant most

differentially expressed genes’’ [9]. In combination, these factors

are assumed to contribute to the relevance of a TF in relation to

the phenotype under research.

RIFi~
1

nde

Xj~nde

j~1

½(e1j|r1ij)
2{(e2j|r2ij)

2� ð3Þ

In Eq. 3, nde is the number of the differentially expressed gene

(DEG); e1j or e2j denotes the expression value of DEGj in an

experimental condition (1 or 2); r1ij or r2ij designates the

correlation between TFi and DEGj [27].

To evaluate the statistical significance of TED and TDD scores,

we implement a permutation test to provide p-values as well as

false discovery rate (FDR) values in conjunction with the TED/

TDD scores. We randomly designate an unchanged number of

pseudo targets to each TF and calculate a pseudo TED or TDD

score. The number of repeated permutations can be chosen by the

user (0 by default). A large number (e.g., 1,000) of pseudo TED or

TDD statistics form an empirical null distribution from which the

p-value can be estimated and FDR value can be obtained

accordingly.

Results: Assessment of DCGL v2.0

Validation of Differential Regulation Analysis Methods
We utilized dataset GSE17967 [22] to demonstrate the utility of

the new functions in DCGL v2.0. GSE17967 was designed to

detect gene expression in cirrhotic tissues with (sample num-

ber = 16) and without (sample number = 47) hepatocellular carci-

noma (HCC). First, a total of 1,052 DCGs and 787,150 DCLs

were summarized by DCsum based on DCp and DCe results. The

787,150 DCLs involved 7,533 genes. These DCGs and DCLs

were then used as inputs for the differential regulation analysis

(DRA) pipeline, and we obtained the following major results.

DRsort identified 10 DRGs, 751 TF2target_DCLs (i.e. Type I

DRLs), and 215,897 TF_bridged_DCLs (i.e. Type II DRLs). The

total 216, 648 DRLs involved 6,068 genes. We found that DRsort

here achieved a significant enrichment of the human cancer-

related genes (obtained from ‘‘Cancer Gene Census,’’ http://

Figure 2. DRsort functionality: sifting the DRGs and DRLs with regulation knowledge. Given the TF-to-target knowledge (top left) as a
reference, DRsort highlights a subset of differentially co-expressed genes and links (top right) as either differentially regulated genes (bottom left) or
differentially regulated links (bottom right). As they are sorted, some DCGs/DCLs are discarded (dark grey rows with double strikethrough), while
some DCGs, though they are not termed DRGs themselves, are reserved to ease downstream analysis (light grey rows in the bottom left table).
doi:10.1371/journal.pone.0079729.g002

DCGL v2.0 for Differential Regulation Analysis
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www.sanger.ac.uk/genetics/CGP/Census/) when it sifted DRGs/

DRLs from DCGs/DCLs (Table 1).

DRplot plotted two types of networks, TF2target_DCL-centered

(Figure 3A) and TF_bridged_DCL-centered (Figure 3B). A sub-

network of the TF_bridged_DCL-centered network is displayed in

Figure 3C, which was determined using an HCC relevant gene,

A2M [28].

Of the total 215 TFs included in the TF2target library, 131 had

expression data available in our expression dataset. As a

consequence, TED and TDD produced rankings of all 215 TFs,

Figure 3. Example DRL-centered heterogeneous networks produced using the DRplot function. GSE17967 was used as the sample
dataset. Nodes denote genes, and edges denote DCLs or TF-to-target links (see symbol illustration). A, TF2target_DCL-centered network contains 663
genes and 751 links. B, TF_bridged_DCL-centered network contains 6,207 genes and 294,117 links. C, A subnetwork out of the TF_bridged_DCL-
centered network surrounding the predefined gene A2M.
doi:10.1371/journal.pone.0079729.g003

Table 1. Numbers of DCsum/DRsort result items and the enrichment of cancer genes from DCsum result to DRsort result.

Comparison Result items Total Number Cancer Gene Total
Cancer Gene
Enrichment*

From DCGs to DRGs DCGs 1,052 27 1.261024

DRGs 10 3

From DCLs to DRLs Genes in DCLs 7,533 216 7.161024

Genes in DRLs 6,068 191

*Cancer Gene enrichment is shown as a p-value resulting from a binomial probability model using the four total numbers in the left columns.
doi:10.1371/journal.pone.0079729.t001

DCGL v2.0 for Differential Regulation Analysis
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while RIF gave its ranking of the 131 TFs with available

expression data.

According to the heuristic approach underlying DCEA, it is

assumed that the following TFs are more likely to be implicated in

the putative differential regulation mechanisms: Type I TFs, i.e.

TFs that are DCGs by themselves (DRG, or TF DCGs); Type II

TFs, i.e. TFs that change co-expression links with their targets

(regulators involved in TF2target_DCLs); and Type III TFs, i.e.

TFs whose targets form DCLs (‘‘common TF’’ involved in

TF_bridged_DCLs). In this case, we found 10 Type I TFs, 72

Type II TFs, and 215 Type III TFs. The 10 Type I TFs were

MYC, EP300, LMO2, FOXO1, EGR1, ZIC1, NR3C1, FOSB, GCGR,

and STAT6. Of them, MYC, EP300, and LMO2 are annotated as

cancer genes in ‘‘Cancer Gene Census’’ (http://www.sanger.ac.

uk/genetics/CGP/Census/). Literature mining informed us that

FOXO1 [29] and EGR1 [30] have been implicated in HCC, and

ZIC1 is down-regulated in gastric cancer [31] and has been proved

to be a tumor suppressor gene in colorectal cancer [32,33]. NR3C1

is identified as an epigenetically deregulated gene in colorectal

tumorigenesis [34]. As for the 72 Type II TFs, they were shown as

significantly enriched for ‘‘KEGG_PATHWAY:hsa05200:path-

ways in cancer’’ by DAVID [35] (FDR = 4.76 6 1027) (see Text

S3 for KEGG enrichment analysis result of Type II TFs). The

high bias of Type I and Type II TFs towards cancer genes in this

case study supported our heuristic assumption regarding these

particular TFs. Since Type III TFs spanned all 215 TFs included

in TF2target, they were ignored in the functional enrichment

analysis.

Next, we investigated the ranks of the above plausibly relevant

TFs in the prioritization lists by TED, TDD, and RIF, respectively

(see Text S2 for DRrank results for Type I, II and III TFs). It was

found that Type I TFs and Type II TFs were significantly highly

ranked in the 215-gene list when utilizing TED and TDD, yet this

was not the case using RIF (column ‘‘Type I TF’’ and ‘‘Type II

TF’’ in Table 2). Since Type III TFs cover all 215 TFs, it is

impossible to carry out a comparative evaluation of the three

regulator-ranking metrics based on them.

We then extracted the 27 cancer genes from the 215 TFs and

discovered that these 27 genes were also significantly highly ranked

in the 215-gene list when utilizing TED and TDD, yet this was not

the case using RIF (column ‘‘Cancer Genes’’ in Table 2). These

observations establish the validity of the TED and TDD designs.

Evaluation of Computational Efficiency Promotion
In DCGL v2.0, the source codes of pre-existing functions were

refined/re-organized into a more logical and efficient form. We

tested to see if the coding optimization enhanced computational

efficiency. For the convenience of backward comparison, dataset

GSE3068 [36], adopted as the benchmark dataset in DCGL v1.0,

was utilized to demonstrate the promoted computational efficien-

cy. We performed a series of numerical experiments over varied

subsets of GSE3068 using the shared functions from DCGL v1.0

and v2.0, respectively. The computation time used by DCGL v2.0

functions was significantly reduced (Table 3).

Discussion

Identifying the regulators that are relevant or even causative to

a phenotypic change is a challenging and worthwhile goal for both

experimental and computational biologists. Unfortunately, this

problem cannot be solved using differential expression analysis

alone. The first reason for this limitation is that causal signals are

always submerged within a large amount of differentially

expressed genes. More importantly, however, a causal regulator

is not necessarily differentially expressed. For example, if a

mutation occurs to the activation domain of a TF, the TF, while at

its original expression level, can no longer activate its target genes.

Another similar case is the regulation of a TF at the post-

translational level, which can hamper the TF’s functionality but

not its expression level. In either a TF’s missense mutation or its

post-translational modification, the expression correlation between

the TF and its targets can be affected; this phenomenon might be

captured using the Differential Co-Expression Analysis (DCEA)

and Differential Regulation Analysis (DRA) methodologies [1–7].

Table 2. Wilcox test p-values of particular genes’ top-ranking in alternative regulator prioritization lists.

Prioritization
Metrics Type I TFs (10) Type II TFs (72) Type III TFs (215)a Cancer Genes (27)

TED 0.026* 0.004* – 0.007*

TDD 0.041* 0.040* – 0.006*

RIF 0.076 0.375 – 0.489

Investigated was the positioning of four types of important genes in three Prioritization lists (by metrics TED, TDD, and RIF). Numbers of considered genes are shown in
brackets.
*Statistical significance (p,0.05).
aSince Type III TFs coincide with all TFs, they are ignored in this analysis.
doi:10.1371/journal.pone.0079729.t002

Table 3. Computing time of shared functions implemented
in DCGL v1.0 and DCGL v2.0, tested on different subsets of
gene expression datasetGSE3068.

Number of genes

Function 1,000 2,000 3,000 4,000 5,000 6,000 7,000

DCp.percent.v1.0 0.27 1.35 2.50 4.05 5.23 8.62 12.02

DCp.percent.v2.0 0.27 0.79 1.79 3.83 4.97 7.29 10.29

DCp.qth.v1.0 0.40 2.06 3.78 6.55 8.74 13.78 19.89

DCp.qth.v2.0 0.38 1.32 3.66 5.89 7.72 13.33 19.28

DCe.percent.v1.0 0.54 2.45 4.81 9.65 13.40 18.27 25.10

DCe.percent.v2.0 0.29 1.42 4.34 6.73 9.62 15.90 18.13

DCe.qth.v1.0 0.46 1.46 3.74 6.73 11.95 15.27 25.93

DCe.qth.v2.0 0.12 1.03 3.11 5.67 9.62 11.22 16.67

Different subsets, with a gradually increasing number of genes, were taken
from GSE3068 by selecting the upper rows of the full dataset. The computing
platform was a Linux system with five nodes, each of which had a dual quad-
core Intel Xeon 2.33GHZ CPU and a RAM of 16 GB. Execution time was averaged
over three repetitive runs each.
doi:10.1371/journal.pone.0079729.t003

DCGL v2.0 for Differential Regulation Analysis
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Indeed, a differential wiring analysis of expression data succeeded

in identifying the gene containing the causal mutation in bovine

Piedmontese myostatin mutants [9]. Although we cannot routinely

identify those causal regulators at the current stage, differential co-

expression analysis has gained wide acknowledgement as a

promising method to solve this problem [37]. From a practical

viewpoint, developing efficient differential regulation analysis

methods and implementing the currently available algorithms is

crucial.

The present package DCGL v2.0, upgraded from the earlier

version DCGL v1.0 [6], has realized a differential co-expression

analysis and, furthermore, a differential regulation analysis

pipeline. This upgrade enabled the identification of DCGs and

DCLs, the scrutinization of DRGs and DRLs, and, more

importantly, the prioritization of potential causal regulators in

terms of their relevance or causativeness to a specific phenotype.

We have implemented not only the recently proposed RIF method

[9], but also two other self-proposed novel ones, TED and TDD.

Last, but not least, we created a user-friendly graphic view of the

differential co-expression/differential regulation networks. To the

best of our knowledge, DCGL v2.0 is the first R package that

provides convenient and practical DRA functionalities.

The prioritization of candidate regulators, or the identification

of critical regulators, is the toughest and most intriguing part of

differential regulation analysis. If one can properly integrate the

expression information and regulatory knowledge in a biologically

relevant manner, there will be a greater chance to identify true

causal factors. Taking the RIF measure as an example [10], by

combining the extent of differential expression, the abundance of

differentially expressed genes, and differential co-expression

between TFs and differentially expressed targets, this approach

could capture those regulators that are cumulatively most

differentially wired to the abundant most differentially expressed

genes. As an efficiency-validated metric, RIF is implemented in

DCGL for users’ convenient utilization.

In our design of DRG/DRL selection and regulator prioritiza-

tion approaches, we also aimed to make full use of the expression

information and regulatory knowledge available between TFs and

targets. On one hand, the plausibly relevant TFs, TF DCGs, TFs

in DCLs, and TFs shared by DCL gene pairs were catalogued in

our DRsort output for potential intensive examination, as

demonstrated in our hepatocellular carcinoma case study. On

the other hand, when prioritizing the candidate regulators, TED

and TDD examine different aspects of differential regulation.

TED assigns a high score to those regulators that regulate more

DCGs, while TDD attributes a high score to those whose targets

form more DCLs. In our case study, our novel metrics TED and

TDD seemed to outperform RIF since they were better at

prioritizing phenotype (cancer) related genes. Additionally, our

two novel metrics are unique in that they can work on any TFs as

long as their target genes’ expression information is available. In

contrast, RIF requires the expression information of the regulator

itself. A systematic comparative evaluation of the regulator-

prioritization metrics remains for future continuous study.

However, we decided to implement all of these three measures

in DCGL v2.0 since different approaches identify different sets of

genes that may contribute to different parts of the process of

interest.

In conclusion, DCGL v2.0 implements valuable differential co-

expression analysis and differential regulation analysis methodol-

ogies. It has universal applicability and is suitable for both

microarray data and RNA-seq data. With the present update,

DCGL could be used to systematically identify novel TFs

contributing to phenotypic change that have not yet been

documented as critical, thereby significantly increasing the

biological knowledge that could be derived from expression data.

Availability and Requirements
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