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Abstract: Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly
contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV
emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first
reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for
many pork producers in 2013–2014. Vaccination of pregnant sows/gilts with live attenuated vaccines
(LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a
passive protection via the colostrum and milk to suckling piglets against PED. However, there are
still no safe and effective vaccines available after about one decade of endeavor. One of the biggest
concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize
the status and the major obstacles in PEDV LAV development. We also discuss the function of
the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and
possible strategies to prevent the reversion of LAVs. This article provides insights into the rational
design of a promising LAV without safety issues.
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1. Introduction

Porcine epidemic diarrhea virus (PEDV) is a major porcine enteric pathogen causing
severe intestinal infection in neonatal pigs, resulting in acute diarrhea, vomiting, dehydra-
tion, and mortality. The disease, porcine epidemic diarrhea (PED), was initially discovered
in the United Kingdom in 1971 and then spread to multiple pork-producing countries
in Europe [1], when the pathogen behind it remained veiled. In 1978, PEDV was first
identified as the causative agent for the disease by researchers from Belgium [2,3]. It caused
widespread infections in European farms, leading to severe losses in suckling pigs in the
1970s and 1980s. Then, it became rare in Europe in the 1990s, with sporadic outbreaks
in adult pigs or mild symptoms in suckling pigs. The first case of PED in Asia was re-
ported in 1982 and outbreaks continued through the 1990s. Then, it became endemic until
2010, when the highly virulent PEDV strains emerged in China [4]. PEDV was introduced
into the United States in 2013 and rapidly spread throughout the country [5–8]. During
the 2013–2014 epidemic, over 50% of sow farms tracked in the Swine Health Monitoring
Project had new outbreaks with an estimated USD 900 million to USD 1.8 billion economic
loss [9,10]. PEDV is a member of the Alphacoronavirus genus in the Coronaviridae family
of the Nidovirales order. It is one of the largest RNA viruses, carrying an approximately
28,000-nucleotide-long, positive-sense, single-stranded RNA genome with a 5′ cap and a
3′ polyadenylated tail [2]. Due to the large RNA genome, coronaviruses (CoVs) including
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PEDV has adapted to having a proofreading enzyme and can balance the conflict between
replication fidelity and genetic diversity [11]. PEDV undergoes an evolutionary path by
accumulating mutations and going through recombination events that enable increased
viral fitness. Two large ORFs, ORF1a and ORF1b, are encoded at the 5′ two-thirds of
the PEDV genome, followed by the ORFs for four structural proteins and one accessory
protein: spike (S), ORF3, envelope (E), membrane (M), and nucleocapsid (N) proteins [12].
During viral replication, ORF1a and ORF1b are translated into two polyprotein precursors
that are post-translationally further processed into 16 nonstructural proteins (nsp1–nsp16)
by viral proteases. Among all proteins encoded by PEDV, the S glycoprotein forms the
trimeric projections on the virion surface and is responsible for attachment to host re-
ceptors and mediates virus entry to the cell by membrane fusion, initiating the infection
process. Moreover, the S gene is a hypervariable region among PEDV strains. Therefore,
it serves as a phylogenetic marker for determining the genetic diversity of PEDV [13–15].
Based on genetic diversification of S proteins, PEDV can be genetically separated into two
genogroups: genogroup 1 (G1) and genogroup 2 (G2), which can be further divided into
subgroups G1a, G1b and G2a, G2b, and G2c [16–18]. PEDV G1a includes the prototype
strain, CV777, identified in Belgium, and all strains sharing high genetic identity with
CV777 [19,20]. The emerging highly virulent strains are classified as G2 [8,16,21]. Since a
set of sub-genomic RNAs (sgRNAs) sharing identical 5′ end is synthesized during CoV
replication, homologous recombination rates among different strains are relatively high
in CoVs, including PEDV [22]. Consequently, the potential recombination events between
the G1a and G2 strains led to the emergence of the S-INDEL strains, G1b, and one recently
defined G2c [8,16,23,24], suggesting complex and rapid evolution of PEDV. Although herd
immunity and biosecurity remain the most efficient ways for preventing PED, the constant
emergence of new variants, including strains derived from recombination events, has led
to vaccine failure, and hinders the prevention and control of PEDV [25,26]. This review
focuses on the molecular basis of viral transcription, and the rational design of safe and
effective live attenuated vaccines (LAVs) for PEDV.

2. PEDV Replication and Functional Elements in Transcription

The initial step of PEDV infection is recognizing and binding to host receptors through
the S protein. The host receptor usages have been identified for several CoVs. Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) recognizes dipeptidyl peptidase
4 (DPP4) for receptor binding [27,28]. Severe acute respiratory syndrome coronavirus
(SARS-CoV) and SARS-CoV-2 bind to angiotensin-converting enzyme 2 (ACE2) to initiate
infection [29,30]. While some CoVs, including transmissible gastroenteritis virus (TGEV)
as well as its variants, porcine respiratory coronavirus (PRCV), porcine deltacoronavirus
(PDCoV), human coronavirus (HCoV)-229E, and feline CoV type II, utilize aminopeptidase
N (APN) as receptors [31–34]. APN is a 150 kDa transmembrane proteolytic enzyme that
cleaves neutral or basic NH2-terminal residues from peptides [35]. It is a ubiquitously
expressed protein on epithelium cells, macrophages, and granulocytes. APN is involved
in extensive biological processes, including cell proliferation, motility, adhesion, and en-
docytosis [36,37]. Previous studies suggested APN as a co-receptor for PEDV infection.
The S protein of PEDV can efficiently bind to both human and porcine APNs. Then, one
non-permissive canine kidney cell line MDCK, exogenously expressing human or porcine
APN (pAPN), could support PEDV infection and serial viral passaging [38,39]. Conversely,
pretreatment of the susceptible and permissive cells with anti-pAPN antibodies blocked
the productive infection of PEDV [39]. Meanwhile, PEDV replicated in a transgenic mouse
model expressing pAPN [40]. However, because the APN-deficient cell line, Vero, and
pAPN-knockout pigs supported PEDV replication, there must be unknown receptors for
PEDV [41–43].

Following entry into host cells, the PEDV genome is released into the cytoplasm
and gets access to the cellular machineries for viral replication. PEDV has a positive-
sense RNA genome that serves as the mRNA for initial viral protein translation. The
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ORF1a and ORF1b encode two polyproteins, pp1a and pp1ab, which are polyprotein
precursors and self-processed into 16 nonstructural proteins (nsps) by two viral proteases,
the papain-like protease (PLpro) and the 3C-like protease (3CLpro) within nsp3 and nsp5,
respectively (Figure 1). During viral replication, nsp1 is generated and released rapidly
from the polyproteins upon translation [44]. It targets host translation machinery and
the interferon (IFN) response system to induce host mRNA degradation and antagonize
IFN responses [45–48]. The replication–transcription complex (RTC), responsible for viral
RNA synthesis, consists of multiple viral nonstructural proteins [49–51]. Among the
proteins involved in the RTC, nsp3–nsp6 are responsible for modulating intracellular
membranes and assembling double-membrane vesicles (DMV), where viral RNA synthesis
occurs [52,53]. Further, the remaining nsps contain the core enzymatic functions involved
in RNA synthesis. For examples, heterodimers of nsp7 and nsp8 initiate the nascent
RNA synthesis and generate short RNA primers for replication, forming the minimal
core for the CoV replication complex with nsp12 [54,55]. Nsp12 is an RNA-dependent
RNA polymerase (RdRp) for RNA synthesis within the replication complex. During the
elongation of nascent RNA, the RNA-binding protein nsp9 and helicase nsp13 are also
involved. Moreover, the bifunctional protein nsp14 has both 3′–5′ exonuclease (ExoN) and
N7-methytransferase (MTase) activities [11,56]. The exonuclease domain is responsible for
proofreading activity by removing mis-incorporated nucleotides during RNA elongation
to keep high replication fidelity. Further, the N7-MTase domain, along with a 2′-O-MTase,
nsp16, mediates the capping process of viral RNAs, with the involvement of nsp10 as a
co-factor [57,58]. Moreover, nsp15, a uridine-specific endoribonuclease (EndoU) conserved
across CoVs, processes viral dsRNA to evade the detection by host defense systems [59,60],
contributing to immune evasion.
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Figure 1. The genomic organization of a PEDV and its structural (S, E, M, and N), non-structural
(nsp1–16), and accessory (ORF3) proteins. The green and red bars located at the 5′ UTR or up-
stream of each ORF represent the leader TRS and body TRS regions. Abbreviations: a number
for pp1a and pp1ab indicate the non-structural proteins 1–16. PLpro: Papain-like protease; 3CL-
pro: chymotrypsin-like protease; RdRp: RNA-dependent RNA polymerase; ExoN: Exoribonuclease;
N7-MTase: N7-methyltransferase; EndoU: endoribonuclease; 2′-O-MTase: 2′-O methyltransferase;
S: spike; E: envelop; M: membrane; and N: nucleocapsid.

Viral RNA synthesis following the initial translation and assembly of RTC includes
viral genome replication and transcription. For viral genome replication, RTC can recognize
the PEDV positive-sense RNA genome to copy it and produce a complimentary negative-
sense genome continuously. Then, the negative-sense genomic copies serve as templates
and more nascent positive-sense genomic RNAs are synthesized and eventually incorpo-
rated into progeny virions. Unlike the continuous genome replication, PEDV utilizes a dis-
continuous strategy for its transcription. There is a set of 5′ and 3′ co-terminal sub-genomic
RNAs (sgRNAs) produced upon the discontinued mechanism during negative-sense RNA
synthesis [61] and the negative-sense sgRNAs subsequently serve as the templates to
produce positive-sense sub-genomic messenger RNAs (sgmRNAs). All sgmRNAs share
an identical 5′ region, called a leader sequence, which is located at the beginning of the
CoV genome, while during the synthesis of sgmRNAs, a set of cis-acting elements, called
transcriptional regulatory sequences (TRS), is required. TRSs are short sequences with high
homology and located upstream of each body ORF (called “body TRS”) and downstream
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of the 5′-leader sequence (called “leader TRS”) (Figure 1). In the process of negative-sense
RNA synthesis, the elongation of the nascent strand is interrupted when RTC encounters
body TRSs of N, M, E, ORF3, and S genes in the 3′ one-third of the viral genome. In this
case, the body TRSs work as a “slow-down” or “stop” signal for RTC, which will either
read through to transcribe the next ORF or switch the template to leader TRS, generating a
sgRNA, carrying the reverse complementary sequence of the 5′ leader sequence (Figure 2).
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Figure 2. A discontinued replication model for PEDV. When RTC encounters TRS region, it will either
“read through” or “template switch” to generate discontinued sgRNAs. Modified from Baker, S.C.,
2008 [62].

The template switch event at body TRSs involves interaction between the reverse
complementary TRSs (negative-sense body TRS or nascent anti-body TRS) of the nascent
negative RNA strand and the 5′ UTR of genomic RNA (positive-sense leader TRS). Within
the TRS region, there is a conserved core sequence (CS) that consists of 6 to 8 nucleotides
and is flanked by variable sequences at its 5′- and 3′ ends. Based on systematic analysis,
Yang et al. found that leader TRS-CS is conserved within a genus but different between
genera, except embecoviruses in the Betacoronavirus genus, whose TRS-L CS is like that of
alphacoronaviruses but not betacoronaviruses [63]. For example, all alphacoronaviruses,
including TGEV, swine acute diarrhea syndrome coronavirus (SADS-CoV), and PEDV,
share identical leader TRS-CS (5′-CUAAAC-3′). As for body TRS-CS, even viruses within
the same genus show diversity. TGEV has nine highly conserved body TRS-CSs with the
sequence of 5′-CUAAAC-3′, including one at the 5′ end of each ORF (1a, S, 3a, 3b, E, M, N,
and 7) and an internal CS in the S gene [64]. For PEDV, the body TRS-CS of CV777 strain E,
M, and N genes have been experimentally determined to be 5′-CUAGAC-3′, 5′-AUAAAC-
3′, and 5′-CUAAAC-3′, respectively [65], and the putative TRS-CSs of S and ORF3 are
5′-GUAAAC-3′ and 5′-CCUUAC-3′, respectively. The body TRS-CSs can differ by up to
three nucleotides from the leader TRS-CS in PEDV. Previous studies reported a critical
role of the CS in guiding base pairing and duplex formation between nascent negative
strands and the leader TRS site at the 5′ end of the genome [66,67]. In most cases, except
internal initiations observed in murine hepatitis virus (MHV), infectious bronchitis virus
(IBV), and bovine coronavirus (BCoV), only the 5′-most ORF within sgmRNAs is translated.
Therefore, the homology of the leader-body TRS-CS was a key factor regulating sgmRNA
transcription and subsequent translation [68]. Body TRS-CSs, governing the expression
of different ORFs, exhibit diverse similarities to leader TRS-CS in PEDV and this may be
another strategy to control the abundance of different sgmRNAs, as well as viral proteins.

In addition to the sequence similarity, RNA secondary structures are also consid-
ered as cis-acting elements required for RNA synthesis. The structural function of 5′

UTR in viral genome replication was first validated in a defective interfering RNA (DI
RNA)-based system in BCoV. Four stem-loops (SLs), SL I, II, III, and IV, were predicted
within BCoV 5′ UTR and mutation analysis suggested that those structures are essential
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for viral replication [69–71]. Later, three conserved SLs (SL1, SL2, and SL4) were identi-
fied from alphacoronaviruses (HCoV-NL63, HCoV-229E, and TGEV), betacoronaviruses
(HCoV-OC43, HCoV-HKU1, SARS-CoV, and MHV), and gammacoronaviruses IBV [72,73].
MHV has served as a model to demonstrate that those conserved structures are critical
for viral replication. SL1 was proposed to exist in an equilibrium with partially unfolded
conformers. The structural destabilization of the SL1 by diminishing base pairing proved
to be lethal or resulted in viruses with decreased replication, while compensatory muta-
tions re-establishing the base pairing of SL1 restored viral replication to a similar level to
wild-type virus [74]. Among the conserved SLs, SL2 has the highest consistency across
all genera of CoVs. It has a U-turn motif, which may be responsible for RNA–RNA in-
teractions. Mutagenesis analysis reported that mutations destabilizing the stem of SL2
significantly impaired MHV replication, resulting in decreased peak infectious titers and
much smaller plaque sizes compared with wild-type MHV. Furthermore, the amount of
RNA synthesized by the mutants with a destabilized SL2 was significantly lower than
wild-type virus. Conversely, compensatory mutations that restored the base pairing can
recover viral replication of those destabilized mutants to a comparable level with wild-
type virus. In addition, mutants carrying transversion mutations, which disrupted the
stem, were unviable [73]. It revealed that the SL2 is crucial for viral replication by regu-
lating RNA synthesis. SL4 is a long hairpin structure located downstream of the leader
TRS. It is proposed that the basal part of SL4 is in a flexible state that may be respon-
sible for the establishment of transient long-range RNA–RNA interactions, leading to
template switching during sgRNA synthesis [66]. Based on our analysis using Mfold
[http://www.unafold.org/mfold/applications/rna-folding-form.php (accessed on 26 May
2022)], four secondary structures, SL1, SL2, SL4, and SL5, are predicted within the 5′ UTR
of the PEDV CV777 strain (Figure 3). Besides the conserved SLs, an additional SL5 is
mapped between nucleotide (nt) residues 123 and 305. It is a large structure containing
three hairpin-loops that extend to ORF1a. To date, functions of these secondary structures
adjacent to the leader TRS within the 5′ UTR remain veiled and further experiments are
needed to confirm their role in the context of PEDV RNA replication.
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3. Status of PEDV Vaccine Development

Productive infection will be initiated based on the collaboration of various viral
proteins and functional elements within the genome and the infection triggers host systemic
and local mucosal immune responses against viral infection. An earlier study suggested that
the immune response induced by prior exposure protects against re-infection in weaned
pigs [26]. In addition, PEDV-exposed gilts can passively transfer maternal immunity via
the gut-mammary-gland-secretory IgA axis and provide the piglets up to 100% protection
against PED after challenge [75]. These results suggested that viral-replication-induced host
immunity, especially lactogenic immunity, is an effective way to prevent PED. Won et al. [76]
and Lv [77] et al. reviewed PEDV vaccines, including LAVs, and inactivated, vectored, and
subunit PEDV vaccines. Prior to 2010, the G1a PEDV-based vaccines, including inactivated
and live-attenuated types, effectively controlled PEDV outbreaks in Asian countries. Ma
et al. prepared one inactivated vaccine based on a cell-adapted CV777 strain in 1994, which
can provide a protection rate of 85.19% in 3-day-old pigs, and a passive immunization
protection rate of 85.0% in piglets when the sows were vaccinated [78]. Later, the same
group successfully developed an inactivated bivalent TGEV and PEDV vaccine and made
it commercially available in 1995 in China [79]. In addition to the inactivated vaccines,
Tong et al. reported one LAV generated through serial passage of CV777 in vitro [80]. It
exhibited a 95.52% protection rate and a 96.2% passive immunization protection rate in
three- to six-day-old piglets [80]. In 1999, one bivalent LAV for PEDV and TGEV was
successfully developed and provided active and passive protection rates against PEDV as
high as 97.7 and 98%, respectively [81,82]. The two bivalent vaccines were widely used in
China and effectively controlled the spread of PEDV and TGEV before the emergency of
the highly virulent PEDV variants in 2010. Vaccines have also been developed by Japan
and South Korea. One Japanese strain, PEDV 83P-5, was attenuated upon serial passages in
Vero cells and is commercially available as an LAV [83]. Importantly, the 83P-5 inoculation
of sows passively protected 80% of piglets from death against G2 PEDV challenge [84].
Two South Korean virulent strains SM98-1 and DR-13 were also passaged in vitro and
attenuated. The SM98-1 strain has been used as an intramuscularly administrated LAV
or inactivated vaccine, and the DR-13 strain is available as an oral LAV [85,86]. Song et al.
showed that orally administration of DR-13 to late-term pregnant sows passively protected
87% of suckling piglets after homologous challenge [86].

Since late 2010, China experienced severe PED outbreaks with devastating damage to
the swine industry due to the emergence of highly virulent PEDV variants falling into the
G2 branch [4], which spread to other Asian and North American countries and to Europe
(Ukraine) [87,88]. Two multivalent vaccines were officially approved and launched on the
market in China in 2015 [89]. One is a trivalent vaccine developed from attenuated TEGV,
PEDV (CV777 strain), and porcine rotavirus and a bivalent attenuated vaccine containing
TGEV and PEDV (ZJ08 strain, G1b), but their efficacy is questionable for the poor cross-
protection between the G1 and G2 strains. A comparative study evaluated the efficacy
of the G1b- and G2b-based vaccines against G2b strain challenge in 2-week-old weaned
pigs. It suggested that an inactivated G2b-based vaccine provided sufficient protection
against G2b challenge, as evidenced by a reduction in PEDV RNA in feces for 3–4 logs
during peak shedding and a shorter viral shedding duration, but the G1b strain-derived
vaccine failed [90]. A similar phenomenon was observed from South Korea and Thailand,
where commercially available vaccines, derived from G1 strains, failed to provide complete
protection against the currently circulating strains belonging to the G2 group [4,88,91,92].
To date, the highly virulent PEDV is one of the major swine viral pathogens in China
(containing > 50% of the world’s pig population) [93,94]. Therefore, effective vaccines
targeting G2 strains are in urgent need to prevent and control this deadly viral infection
in piglets.

Most of the licensed PEDV vaccines are inactivated or LAVs consisting of entire
pathogens that have been killed or fully attenuated. Such whole-pathogen vaccines can
elicit strong protective immune responses. Collin et al. developed an inactivated vaccine
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based on the isolated US variant NPL-PEDV 2013 P10.1 strain, belonging to G2b [95].
The vaccine elicited a considerable level of humoral immunity against PEDV through
intramuscular administration, according to cell-based viral neutralization assays. However,
inactivated vaccines do not replicate and can only induce a less-broad immune response.
Furthermore, the immunity induced by inactivated vaccines is not as long lasting as LAVs,
leading to requirements for multiple doses for boosting. Further, strong passive lactogenic
immunity triggered by LAVs is the most promising and effective way to protect neonatal
suckling piglets from enteric diseases, including PEDV [96].

Serial passaging in non-natural host tissue culture leading to attenuation is a con-
ventional approach to develop LAVs. To date, several cell-attenuated G2 strains have
been reported, including the US isolate PC22A, Asian strains YN, Pingtung-52, and KNU-
141112 [97–100]. Hou et al. thoroughly reviewed the mutation patterns and molecular mech-
anisms of the four attenuated strains [101]. In general, the cell-adapted strains are attenu-
ated in piglets and highly immunogenic by eliciting a high level of neutralizing antibodies.

However, there are several concerns about protective efficacies of these reported G2
PEDV-based LAV candidates. First, as the most vulnerable population is sucking pigs
and there is no enough time to induce active immunity in them before they encounter
the virus, the ideal strategy for PEDV vaccination is inducing protective lactogenic im-
mune responses in sows/gilts. Since PEDV-challenge study in sows/gilts is costly and
labor intensive, scientists utilize cell-based viral neutralization assays to test the protective
immune responses induced by vaccination, which may serve as an indicator for protec-
tion. Additionally, a neonatal pig model is used in testing virus attenuation and nursery
(or weaned) pigs are used to evaluate immunogenicity of viruses and screen promising
candidates. For example, in the study of the cell-culture-adapted PC22A strain, viruses
at the 100th passage (P100) and P120 were fully attenuated in weaned pigs, but partially
attenuated in neonatal piglets. However, the P100 of PC22A induced better titers of serum
PEDV IgA, IgG, and viral neutralization (VN) antibodies and higher numbers of PEDV
IgA antibody-secreting cells after the virulent strain challenge than the P120 virus [102].
These results suggest that attenuation of PEDV is a double-edged sword. LAV candidates
that were complete attenuated in piglets could not induce enough lactogenic immunity
in sows. Older pigs are more resistant to PEDV infection and disease than piglets [103].
Therefore, the full attenuation of a PEDV in piglets often causes inefficient replication
of the attenuated virus and decreased viral immunogenicity in older pigs, resulting in
inefficient protective immunity. Secondly, low cross-protection between G1 and G2 groups
has been described before, and the cross-protective efficiency between G2a and G2b is also
a concern in vaccine development. Liu et al. demonstrated that both CH/HBXT/2018 (G2a)
and CH/HNPJ/2017 (G2b)-inactivated vaccines induced significantly lower VN antibody
titers against heterologous strains than homologous strains [104]. Thus, challenge with
heterologous strains is important to elucidate cross protection in further vaccine studies.

4. Risk and Prevention of Virulence Reversion of PEDV Live Attenuated Vaccines

In addition to the protection efficiency, one of the biggest concerns hindering the
application of PEDV LAVs is the safety issue. The attenuated strains carry mutations, intro-
duced by serial passage or molecular engineering, making them devoid of pathogenicity.
However, some vaccine strains exhibit reversion to virulence during passage in the primary
vaccine recipient through (1) accumulation of mutations within the viral genome, and
(2) recombination. In this section, we will review strategies counteracting the reversion
events for PEDV LAV development.

There are two approaches to generate promising attenuated vaccine candidates: (1) the
classical approach by serial passaging viruses in a non-natural host or environment, leading
to adaptation in the new conditions and attenuated replication in the natural host, or (2) the
reverse genetics approach by genetically modifying a variety of genes that are dispensable
for viral viability for decreased pathogenicity. However, due to the immunocompromised
conditions of hosts or the genetic instability for less-vigorous viruses, both reversion of
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attenuating mutations and compensatory mutations elsewhere in the genome may lead
to virulence reversion. The 2′-O-MTase of nsp16 is highly conserved among CoVs and
mediates the capping process of viral genomic RNA and sgmRNAs during replication
and transcription. One SARS-CoV nsp16 mutant (dNSP16) demonstrated efficacy as a
vaccine candidate following heterologous challenge in an aged mice model. However, in a
mice model lacking functional B and T cells (RAG−/−), following inoculation with the
dNSP16 mutant, 62.5% (5/8) of the immunocompromised mice showed weight loss and
lethality, which was absent in the aged mice model, suggesting a reversion to virulence [105].
Meanwhile, although the introduced mutation targeting nsp16 was retained in the revertant,
six mutations were found in nsp3, nsp12, and nsp15, which may potentially function as
compensatory mutations. A previous study demonstrated that one PEDV nsp14-ExoN
mutant, E191A, was significantly attenuated but of high genetic instability, and back
mutations were observed both in vitro and in vivo [11]. Similar stories were reported for
the recombinant MHV and SARS-CoV carrying disrupted nsp14 ExoN domains. Upon
serial passage in vitro (250 times), although no back-mutations were found at the ExoN(-)
active site, the MHV mutant with engineered ExoN (MHV-ExoN(-)-P250) accumulated
eight-fold-more mutations than wild-type MHV and demonstrated increased replication
fidelity, suggesting the emergence of compensatory mutations for ExoN function during
viral replication [106].

To mitigate this mutation-driven reversion, multiple mutations targeting separate
genes and attenuating the virus via distinct mechanisms can be combined into the viral
genome. For example, we generated a recombinant PEDV icPC22A-KDKE4A-SYA carrying
inactivated nsp16 2′-O-MTase and the endocytosis signal of S protein [58]. As mentioned
above, dysfunction of nsp16 2′-O-MTase attenuated SARS-CoV [105,107], MHV [108], and
MERS-CoV in mice [109]. The conserved motif YxxΦ at the cytoplasmic tail of the S protein
regulates the level of S proteins on the infected cell surface and functions as a virulence
factor [110]. The recombinant mutant icPC22A-KDKE4A-SYA retained the introduced
mutations after passaging three times in pigs, indicating its genetic stability in vivo. A
similar approach counteracting reversion was used in SARS-CoV LAV development by
combining inactivated nsp14-ExoN and nsp16-2′-O MTase to generate dNSP16/ExoN [105].
Unlike the dNSP16 mutant, dNSP16/ExoN did not cause significant diseases and was
cleared in the immunocompromised mice model without reverting to a virulent form after
30 days post inoculation. Collectively, the combination of multiple mutations to attenuate a
virus through various pathways provides an answer to combat mutation-driven reversion
of CoV LAVs.

Furthermore, recombination is an important evolutionary factor for many RNA viruses,
especially CoVs [111] that have high recombination rates approaching 20% during a mixed
infection of closely related strains [112]. Recombination-driven reversion, when a vaccine
strain recombines with field-virulent strains giving novel variants, poses an obstacle to the
application of LAVs. Vaccine failures caused by recombination-driven reversion occurred
for several LAVs for animal viruses, including canine parvovirus [113], infectious bursal
disease virus [114], bovine herpesvirus 1 [115], as well as members from CoVs, IBV [116],
and PEDV [117]. PEDV-recombinant variants were observed from several major pig-
farming provinces in China [117–119]. One variant exhibiting high pathogenicity in the
field was derived from a recombination event between low-pathogenic vaccine and virulent
field strains [117]. Virus genomes recombine by one of three general mechanisms: (i) break
and repair in DNA genomes, (ii) polymerase template switching in RNA genomes, and
(iii) reassortment of segments in segmented RNA genomes [120]. As a non-segmented
RNA virus, CoVs readily perform both inter-molecular recombination between two distinct
molecules and intra-molecular recombination within the same molecule via template
switching. The intra-molecular recombination is defined when the replicase switches
between the leader and body TRS regions, generating a set of sgmRNAs, while the inter-
molecular recombination occasionally gives recombinant virus progenies when replicase
jumps from donor to acceptor templates of different parent strains, sharing homologous
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sequences during RNA synthesis. Systematic analysis for TRS sites and recombination
events in CoVs suggested that nearly 10% body TRS regions are involved in breakpoint
hotspots and the recombination hotspots are frequently correlated with body TRSs [62,121].
Thus, the TRS circuit becomes a main target to disable the inter-molecular recombination
during CoVs replication. One recombination-resistant SARS-CoV was engineered by the
introduction of 3-nt into the rewired TRS that differed from the wild-type TRS sequence
at three nucleotides [122]. The rewired TRS circuit was incompatible with the wild-type
one and was responsible for the failure of rescue chimeric viruses carrying mixed wild-
type and rewired TRSs. Later, researchers from the same group further optimized the
regulatory circuit and designed a 7-nt rewired TRS that showed enhanced genetic stability
and the genome can serve as an effective recombination-resistant platform for SARS-CoV-
attenuated vaccine development [123].

For PEDV, there are two difficulties in rewiring the TRS circuit: (1) unlike the high
identity of TRS-CSs observed in most CoVs, the TRS-CSs of PEDV exhibited incredible
diversity, among which the body TRS-CSs can differ by three nucleotides from the leader
TRS-CS (described in Section 2); (2) within the PEDV genome, all the body TRS-CSs overlap
with the upstream ORFs. Therefore, the introduction of mutations into the TRS regions
may alter amino acid sequences in the upstream ORFs, leading to unfavored mutations.
New approaches instead of directly recoding TRS-CSs are needed to prevent TRS-related
recombination-driven reversion. The first possible approach is re-designing the TRS-CSs
overlapping with upstream ORFs by introducing silent mutations to retain the original
amino acid sequences. Besides silent mutations, a conservative amino acid replacement
strategy, in which an amino acid in a protein is replaced by another amino acid with
similar biochemical properties, can also be employed to design TRS-CSs. In addition
to the aspect of sequence similarity, RNA secondary structures of the TRS regions are
considered as cis-acting elements, regulating RNA transcription as well. As we discussed
in Section 2, the secondary structure of the 5′ UTR of PEDV genome plays an important
role in viral replication. However, limited information is available to accurately predict
the secondary structure, especially for the body TRSs. Researchers reported dynamics of
secondary structures of a CoV genome during its life cycle according to SARS-CoV-2 [124].
For example, an RNA genome within virion undergoes major conformation alteration and
shows intensive compaction compared to the viral RNAs in the infected cells. Although
the secondary structure of 5′ UTR of the PEDV CV777 strain was predicted (Figure 3), more
approaches to recode the PEDV TRS system by targeting the critical structural elements
within the body TRS regions will benefit from illustration of the dynamics of PEDV genome
structures during viral replication. Structural changes in the regions may also modulate
the template switch event of RTC, leading to an altered transcription circuit. Using these
approaches, the recoded body TRS-CSs will be incompatible with wild-type ones but retain
the conservative substitutions of upstream ORFs. At last, we can disrupt the original TRS
sites and reorganize the genome of PEDV by artificially introducing gaps to separate the
TRS regions from the upstream ORF. Thus, the introduced gaps are expected to serve as
functional elements regulating PEDV transcription and we can rewire the transcription
circuit as previously described in SARS-CoV [122,123]. Currently, we are working on the
design of a remodeled TRS that barely changes the secondary structure of the original 5′

UTR. A remodeled PEDV mutant RMT has been rescued that replicated efficiently in vitro
and in vivo. The RMT showed a partially attenuated phenotype and induced partial
protection in neonatal piglets (unpublished data). It also showed decreased recombination
with a wild-type S-INDEL PEDV strain. Thus, it can be used as a platform to develop
recombination-resistant PEDV LAVs in the future.

5. Conclusions

The emerging highly virulent PEDV caused massive outbreaks with high mortality
in suckling piglets, leading to major losses to the pork industry, but few vaccines provide
effective protection against the disease. Because of the vulnerability of newborn pigs, the
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most effective vaccination strategy is inducing strong lactogenic immunity in pregnant
sows, which can passively transfer the protective neutralizing antibodies to suckling piglets
via colostrum and milk. Meanwhile, active mucosal immunity protecting the gut of sows is
critical in that process [96]. Previous studies on another porcine enteric coronavirus, TGEV,
showed that only immunization with live virus, but not inactivated or subunit vaccines,
triggered sufficient lactogenic immunity [125]. Therefore, LAVs for use in sows readily
triggering lactogenic immunity are a promising approach for the prevention and control
of PED. In the future, homologous and heterologous challenging is needed to show cross-
protection of the vaccines against field-circulating strains. Additionally, the safety issue for
virulent revertants of attenuated strains remains unsolved and hinders the application of
LAVs. Using reverse genetics and newly developed approaches, the combination of several
attenuation mutations that do not decrease the viral immunogenicity (e.g., mutations in
nsp1) and rewired TRSs, can help increase genetic stability of the vaccine candidates that
may become more resistant to mutation- and recombination-driven reversion.
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