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Abstract: A rare and valuable Palaeolithic wooden point, presumably belonging to a hunting weapon,
was found in the Ljubljanica River in Slovenia in 2008. In order to prevent complete decay, the
waterlogged wooden artefact had to undergo conservation treatment, which usually involves some
expected deformations of structure and shape. To investigate these changes, a series of surface-
based 3D models of the artefact were created before, during and after the conservation process.
Unfortunately, the surface-based 3D models were not sufficient to understand the internal processes
inside the wooden artefact (cracks, cavities, fractures). Since some of the surface-based 3D models
were taken with a microtomographic scanner, we decided to create a volumetric 3D model from the
available 2D tomographic images. In order to have complete control and greater flexibility in creating
the volumetric 3D model than is the case with commercial software, we decided to implement our
own algorithm. In fact, two algorithms were implemented for the construction of surface-based 3D
models and for the construction of volumetric 3D models, using (1) unsegmented 2D images CT and
(2) segmented 2D images CT. The results were positive in comparison with commercial software and
new information was obtained about the actual state and causes of the deformation of the artefact.
Such models could be a valuable aid in the selection of appropriate conservation and restoration
methods and techniques in cultural heritage research.

Keywords: computer vision; computed tomography; 3D surface-based models; 3D volumetric
models; Palaeolithic wooden point; conservation; waterlogged wood; archaeological documentation;
heritage science

1. Introduction

Our interest in reconstructing 3D solid models using computed tomography was
piqued when we were confronted with the deformation changes of a Palaeolithic wooden
point [1] (Figure 1). The 40,000-year-old wooden point was found underwater in the
Ljubljanica River close to Sinja Gorica (Figure 2) in 2008 [2]. The Ljubljanica River flows in
that part on the Ljubljana Moor, which is dotted with numerous prehistoric pile dwellings,
some of which are also on the UNESCO World Heritage List. The entire moor is under
the special protection by the state authorities and the wooden point was found during
a protection survey in the Ljubljanica River. Near the wooden point a flat-bottomed
shipwreck from the Roman period was also found [3].

Additional laboratory investigations of the artefact (age and type of wood; unnatu-
ral/manual processing of the wood with other tools or fire) were carried out. Radiometric
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analysis (AMS14C) places the point in the Palaeolithic period. Two datings have been made.
The first (Miami–USA) showed yew wood (Taxus sp.) to be older than 43,970 years (Beta-
252943), and a re-dating in Oxford gave a maximum age of 38,490 ± 330 BP (OxA-19866).

Figure 1. The 40,000 years old Palaeolithic wooden point, only one out of eight wooden artefacts of
such age known in Europe, was found in 2008, submerged in the river Ljubljanica at Sinja Gorica [2].
As any waterlogged wooden artefact it had to undergo a conservation process to prevent it’s complete
deterioration once taken out of water [4]. The wooden point before conservation (photo by Arhos
d.o.o.).

Figure 2. Northeastern area of Vrhnika (Slovenia) with the Nauportus area (a; b) and the location (3)
where the Paleolithic wooden point was found in the river Ljubljanica.

Since the discovery, special attention and care have been taken to ensure conditions
for the permanent preservation of the point in its natural environment. Underwater
archaeologists suggested sinking the point in a special capsule in the deeper sediments
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of the site in the riverbed of the Ljubljanica. In this way, the point would be optimally
protected from the danger of rapid decay. The 3D model and the virtual replica would
be presented to the public. However, a different view prevailed. This envisaged the
conservation and public presentation of the Palaeolithic remains as a valuable museum
exhibit. The lace was kept for five years under artificial conditions (in distilled and regularly
changing water). In 2013, the lace was sent to the Römisch–Germanisches Zentralmuseum
in Mainz (Germany), which carried out the conservation with melamine resin (C3 H6 N6)
in the years 2013–2015. The conservation was completed in 2017. In 2018, the artefact was
returned to the Ljubljana City Museum, where it is kept. The wooden point is now one of
only eight Palaeolithic wooden artefacts in Europe. However, no other artefact was made
in such a beautiful leaf-like shape.

A visual inspection of the point after conservation revealed that it had changed. The
point was smaller, lighter in colour and more clearly curved in the area of the planting.
A computerised volumetric and geometric deformation analysis of the point cloud of
five 3D models (CloudCompare computer software) confirmed this finding. Significant
deterioration and deformation was found during the conservation phase. In 2018, we
conducted a comparison of five 3D surface models of the Palaeolithic wooden point [5]. The
artefact was scanned in 2009–2018 using optical scanners and microtomographic scanners,
i.e., before, during and after the consevation process (Figure 3). The comparative analysis
of the 3D surface models was performed with the Iterative closest point (ICP) algorithm
and the open-source software CloudCompare, which showed that the deformation process
had slowed down but was still present. These circumstances prompted us to conduct an
additional microtomographic examination of the anatomical structure of the artefact. The
ability to compare several 3D models of the same object is very important for broader
conservation treatment and the cultural heritage community [6].

Figure 3. 3D scanners used to capture the five 3D models of the palaeolithic wooden point in
different years.

Based on computer volumetric analysis of the five 3D surface models recorded in
different years [4,7], it was found that there were significant changes and deviations after
conservation (Tables 1 and 2 and Figure 4). The artefact was visibly bent in the longitudinal
direction (Figure 5). Strong bending was also observed in the plant part of the artefact.
A slight bending of the artefact point was also confirmed by computer comparison. Its
volume decreased considerably. The prevailing assessment was that the resulting surface
changes were mainly due to the conservation process (swelling of the wood followed by
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rapid drying). A volumetric 3D model, which would reveal the internal structure of the
wooden point, should answer the open questions about the changes detected in the analysis
of the 3D surface models, such as bending, reduction in volume, change in shape, etc.

Table 1. Comparison of volumetric values of 3D models of The Palaeolithic. wooden point (Deforma-
tion 2009/2013–2019). * — Manually measured and visually estimated. ** — Digitally measured with
CloudCompare computer program. *** — Change (+ − µm) of volumetric value with CloudCompare
by measurement before conservation procedure. **** — Change (+ − µm) of volumetric value with
CloudCompare by measurement after the first phase of the conservation procedure (irrigation) with
melamine resin (C3H6N6). PP0—Palaeolithic wooden point. PP3D—Palaeolithic wooden point (3D
surface-based model).

In Situ Ex Situ

3D Models

PP0
2008

PP3D
2009

PP3D
2013

PP3D
2015

PP3D
2017

PP3D
2018

PP3D
2019

0 * 1 ** 2 ** 3 ** 4 ** 5 ** 6 **

3D Dimensions
and

Volume
µm µm µm µm µm µm µm

Lenght 160,000 155,606 160,958 152,709 151,768 150,435 149,171

+/− % *** 100 +3.44 −1.86 −2.47 −3.32 −4.10

+/− % **** 100 −5.13 −5.71 −6.54 −7.32

Width 51,000 50,014 52,274 50,594 50,348 48,359 50,705

+/− % *** 100 +4.52 +1.16 +0.67 −3.31 +1.38

+/− % **** 100 −3.21 −3.68 −7.49 −3.00

Thickness 25,000 25,579 28,810 23,856 23,585 22,689 23,793

+/− % *** 100 +12.63 −6.74 −7.79 −11.30 −6.98

+/− % **** 100 −17.20 −18.14 −21.25 −17.41

µm3 µm3 µm3 µm3 µm3 µm3 µm3

Volume 70,653.6 80,404.1 66,382.8 65,238.9 63,871.9 63,289.4

+/− % *** 100 +13.80 −6.04 −7.66 −9.60 −10.42

+/− % **** 100 −17.44 −18.86 −20.56 −21.29

C3H6N6

CONSERVATION

BEGIN END

A comparative study of 3D surface models of the Palaeolithic wooden point has
shown [5] that the 3D models recorded with optical scanners and reconstructed with
conventional computer vision algorithms did not contain the necessary information to fully
assess the condition of the artefact. The changes to the surface-based 3D models did not
answer the question of what state the artefact was in after the conservation process, nor
the question of the influence of internal deformations on the surface of the object. These
shortcomings can be remedied with a volumetric 3D model that can be reconstructed from
2D tomographic images using computed tomography or computer vision algorithms.
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Table 2. Volumetric changes of the artefact In situ and Ex situ (conservation with melamine resin).
* In our case study there was an increase due to intensive irrigation of the artefact in an aqueous
solution (the preparation phase for the conservation process). ** Confirmed using a CT scanner.

Protection In Situ Ex Situ

3D Model PP-2009 PP-2013 PP-2015 PP-2017 PP-2018

∆ ∆ ∆ ∆

Length − Enlargement + * Reduction − Reduction − Reduction −
Width − Enlargement + * Reduction − Reduction − Reduction −

Thickness − Enlargement + * Reduction − Reduction − Reduction −
Volume − Enlargement + * Reduction − Reduction − Reduction −

Deformation − No Bending Bending

Degradation − No Crack Crack
FE0000

Crack/Fracture
/Shrinkage/Crumbs

/Hole/ **

Volumetric
parameters

+/−

Ovality − No Change Change Change

Figure 4. Index of change in volumetric data after the first scan (2009—index 100). The polar diagram
shows the dynamics of volumetric changes (length, width, thickness and volume) between five 3D
models of the Palaeolithic wooden point recorded between 2009 and 2018. The red line represents the
volumetric state of the point at the first 3D scan (2009—index 100), which reflects the approximation of
the state of the artefact under In situ conditions. The diagram clearly shows the changes that occurred
at the beginning of the conservation process (2013—black line), when the artefact was subjected to
intensive soaking and the addition of melamine resin (conservation). Thickness and volume increased
significantly during this phase. After the drying process, the volumetric values (grey, yellow and
blue line) decreased, especially the volume and thickness. However, slight dimensional changes in
length and width were observed.
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Figure 5. The deformation changes of the Palaeolithic wood point between the beginning and the
end of preservation (volumetric changes, volume reduction and shape change) were calculated with
the C2M (ICP) algorithm in the graphical software tool CloudCompare. The left image of the point
shows the volumetric changes (red—bending of the upper and plant part; green—shrinking of the
middle part) of the surface-based 3D model of 2017 compared to the reference 3D model (2013). The
image on the right visualises a change in the shape of the 3D model of 2017 compared to the reference
3D model (2013). The colourimetric scale was created using an algorithm (C2M—CloudCompare)
to statistically process the volumetric changes between the 2013 and 2017 models. The red-orange
values represent the diffraction of the artefact from +3.6 mm to + 1.2 mm. The blue-green values mark
the shrinkage of the artefact between 10.4 mm and 1.9 mm. The data confirms the bending of the
handle part and the top of the artefact. However, the shrinkage was more pronounced in the middle
part. The cause of this deformation remains unclear. The unclear causes for the changes during the
conservation process were the basic motivation for the creation of the anatomical 3D model of the
Palaeolithic wooden point. By reconstructing the 3D model from 2D micro-CT images, we wanted to
obtain volumetric data on the changes in the anatomical structure of the archaeological object.

A comparison of the amount of information contained in point clouds or triangulation
meshes of 3D surface models acquired with optical scanners and tomographs illustrates
the qualitative advantage of tomographs (Table 1). This also represents an important
difference between the point clouds of the surface-based and volumetric models that
can be reconstructed from tomographic images. Optical scanners provide only a small
percentage of the information contained in the volumetric model compared to a tomography
scanner. This fact is also confirmed by the finding that 3D surface models do not contain
comprehensive information about an object. The difference between the two models is
also that we can reconstruct both the surface-based and the volumetric 3D model from the
point cloud obtained with a tomographic scanner. In contrast, only a surface-based 3D
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model can be reconstructed from the point cloud obtained with optical scanners (Table 2,
Figures 4 and 5).

Depending on the 3D scanner, the technique for reconstructing the 3D model is also
different. In the traditional 3D surface model, we reconstruct the model by combining
surface images (texture, volume, colour, etc.) in three-dimensional space. In the volumetric
3D model, we reconstruct a 3D model from the greyscale values (HU or RGB) of 2D
tomography images. Such models are more accurate, of higher quality and with less noise
compared to conventional computer vision models. They also provide optimal conditions
for objective evaluation of the scanned object—volumetric analysis, qualitative analysis of
the material, deformation analysis, etc.

1.1. Motivation

The Palaeolithic wooden point, which we have been studying since 2008, was scanned
with a microtomographic scanner (Micro XCT 400) in 2018 and 2019. This provided
2D tomographic images that allowed us to look inside the artefact to better understand
the reasons for the various deformations that occurred, especially after the conservation
process. Analysing and understanding the changes in a waterlogged artefact over a period
of 10 years is very valuable knowledge for scientists and conservators. Therefore, we
decided to reconstruct surface-based and volumetric 3D models from the available 2D
tomography slices. In this way, we were able to investigate the internal cracks, fractures,
pores, inclusions and deformations of the wooden point. Since we wanted to have complete
control over the tomographic reconstruction of the 3D model from CT sections, we decided
to design and implement our own algorithm.

Reconstructing 3D models from CT images is a particular challenge for further research
in computer vision, where rendering 3D models with open-source algorithms from images
captured by DSLR cameras, structured light scanners, laser and other scanners is widely
used for surface and remote sensing. This technique still belongs to the field of computer
graphics. A number of segmentation algorithms are adapted to the specific objectives
of the users. It is no coincidence that the primary application of noninvasive computed
tomography is not the reconstruction of 3D models in the sense of computer vision. The
focus is on the interest in noninvasive graphical insights, visualisations and analyses of 2D,
3D or 4D information in a three-dimensional coordinate system for the purpose of visual
support in medical diagnostics, measurement technology, analysis and quality control of
materials in industry and science.

Most algorithms for processing and reconstructing CT images have not received
special attention from computer vision in general or its application in cultural studies due
to the emphasis on commercialisation, closed code, specialisation (medicine or industry),
radiation risk and intellectual property protection. With this novelty, i.e., the 3D anatomical
model and the proposed algorithmic solution, we wanted to present a new challenge to
traditional research and applied work in the field of computer vision in heritage sciences.
The 3D anatomical model not only enriches the digitised cultural heritage and knowledge
about the artefacts, but at the same time expands the possibilities for their analytical
treatment, holistic visualisation and augmentation.

Since the background of our research team is in 3D computer vision [8] and we entered
the heritage science by helping underwater archaeologists in documenting underwater
sites [3,9], this foray into 3D models and tomography seemed promising. We aim to expand
the research branch of computer vision with new experiences and insights—using CT,
MRI and other depth imaging recording devices—from already-established surface 3D
models to the reconstruction of anatomical 3D models and to the use of depth imaging
recording devices, which are becoming increasingly affordable on the threshold of the
fourth industrial revolution. We aim to complement traditional machine vision, machine
and deep learning and artificial intelligence algorithms with noncommercial algorithms
and software tools for reconstructing 3D models from CT images.
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To reconstruct the 3D model from 2D images CT, we selectively used some time-limited
open-source and commercial software tools (VolPack, ImageJ, Visualisation Toolkit, InVesal-
ius, 3D Slicer, 3DimViewer and commercial software Avizo Fire, etc.) for 3D rendering and
visualisation of tomographic images during the preparatory phase. However, we were not
satisfied with the initial results. Our research objective was a comprehensive volumetric
reconstruction of the internal (anatomical) structure of a 3D and 4D model of a selected
archaeological object. Commercial 3D image processing programmes usually use special
segmentation algorithms to process specific 2D image file formats and are designed for
specific work and research goals in medicine or industry. However, they are not suitable for
use in cultural studies. We often faced limited use of converted files, additional procedures,
inaccurate volumetric data and substitution of 3D graphics for 2D graphics in analytical
procedures. These circumstances were the reason why we decided to develop a special
segmentation algorithm for reconstructing a 3D model from microtomographic images.
The algorithm was adapted to the work requirements of archaeological and conservation
treatment of smaller archaeological objects.

Archaeologists and conservators occasionally come across CT images of artefacts in
their work, but they do not have the appropriate software tools and solutions for noninva-
sive reconstruction and analysis of 3D models. Since working with expensive hardware
and commercial algorithms is not designed for the goals, interests, needs and problems of
archaeological or conservation research, the vast amount of data and information contained
in 3D anatomical models remains unused and undocumented. At the same time, the use of
a customised segmentation algorithm also pointed to new challenges and opportunities
in the reconstruction of 3D models in computer vision, where work is still based on more
affordable hardware for reconstructions of only surface 3D models. Conventional 3D
models of computer vision, compared to 3D models reconstructed from 2D images CT, are
of lower quality, highly noisy, volumetrically unreliable and limited both graphically and
in terms of data. We have successfully overcome these shortcomings with new, simple and
undemanding segmentation algorithms for reconstructing a 3D model from 2D images CT.

1.2. Structure of the Article

The rest of the article is structured as follows: Section 2 gives an overview of the
use of 3D modelling and computed tomography in archaeology, Section 3 deals with the
state of the art in computed tomography in general, Section 4 deals with tomographic
reconstruction in the context of considerations in archaeology, Section 5 describes the
development of our own software for tomographic reconstruction. We have developed
two versions of our software, the first with whole 2D slices CT and the second with
segmented 2D slices CT. Section 6 presents the results of tomographic reconstruction with
both versions of the software. The software was not only tested on the wooden point,
but also on some other archaeological artefacts for which tomographic measurements (CT
slices) were available. The internal structure of the wooden point was analysed in detail
and various visualisations of this structure are given. The article ends with a discussion
and conclusions.

2. Background

The London Charter [10] and the Seville Principles [11] recommended 3D models
as the standard for archaeological documentation at the beginning of the 21st century.
The introduction of new information technologies has fundamentally changed attitudes
towards cultural heritage remains. The managers of archaeological collections are increas-
ingly opting for 3D modelling, 3D visualisation or 3D augmentation of archaeological
objects. In this way, archaeological objects are protected from the negative effects of ex
situ conservation and public display. Archaeologists and conservators receive a more
comprehensive professional treatment of the artefacts.

3D models reconstructed with traditional computer vision algorithms have become
permanent digital carriers of artefact information that archaeologists can later examine,
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evaluate, compare and analyse without damaging or destroying the original objects. How-
ever, 3D surface models only contain information about the surface properties of artefacts.
This information limitation can be improved by developing and using specialised algo-
rithms to reconstruct volumetric 3D models of archaeological objects from image recordings
of deep scanners (CT, MRI, PET etc.) to reveal their internal structure or anatomy as well.

The use of volumetric 3D models represents a qualitative advance in the integration of
increasingly affordable computer technologies and software solutions into the regular pro-
fessional and research work of archaeologists and conservators. The AGORA 3D Heritage
Project has also been working towards this (The Belgian Federal Agora3D Project/BELSPO
AG /00/164/—Royal Museum of Central Africa—Tervuren—Belgium) [12,13]

Surface-based and volumetric 3D models would greatly enrich archaeological docu-
mentation, improve work in archaeological laboratories and enable conservation science to
deal comprehensively with cultural heritage remains. However, volumetric 3D models can
provide conservators and restorers with additional useful information for planning the use
of appropriate methods and techniques to protect critical cultural heritage remains.

Computed Tomography for Archaeological Documentation

The number of scientific papers dealing with the use of computed tomography (CT) is
very extensive in the international research environment. The number of bibliographic units
has increased in recent years. This is due to the fact that investment in the development and
use of CT technologies is increasing year by year and is becoming one of the most important
areas of Industry 4.0 [14]. At the forefront is research into the use of CT in medicine, biology,
chemistry, genetics and industry. Interest is also growing in the fields of civil engineering,
materials analysis, cultural heritage protection and archaeology. A broader overview of
the work of CT shows that the use of CT still raises a number of open questions that also
directly affect its place and role in archaeology. These questions indirectly touch on the
theoretical basis of our research, such as: optimisation of algorithms [8] for segmentation
of CT images [15], development of specific protocols to achieve higher image contrast [16],
revival of interest in the use of iterative algorithms in the reconstruction of 3D surface
models [17,18], special control, steering and reverse engineering techniques in industry and
additive manufacturing [19,20], inconsistent and poor standardisation of CT files [21–23], etc.

A review of published sources shows that the use of nondestructive CT or µCT
technology in archaeology has so far focused mainly on the study of very delicate objects
from the Palaeolithic and early civilisations. For example, CT scanners have been used
to examine mummies [24], Ötzi [25] and The Venus from Willendorf [26], to read scrolls,
to study the structure of clay tiles, pottery [27] and Etruscan bronze statues [28], to study
textiles, wooden, bone and metal objects, the contents of sarcophagi, the forensic evaluation
of art paintings, the technologies used to produce various objects and the mummification
process, etc. Archaeologists still predominantly used the technologies, procedures and
algorithms of medical computer tomography. It was only after 2015 that there was an
awakening of interest in the development of special algorithms and in the use of specially
adapted industrial CT readers for mapping earth layers at archaeological sites [29].

After 2019, industrial µCT scanners and specialised commercial software will be in-
creasingly used in archaeological studies (Figure 6). The first steps have already been taken
to develop specialised µCT scanners suitable for [30,31] archaeological work. Archaeolo-
gists increasingly prefer the use of noninvasive computed tomography methods. With their
help, archaeologists can analytically assess the internal structure and properties of smaller
archaeological objects.

Current research interests in the noninvasive use, reconstruction, visualisation and
processing of 2D µCT images include: analysis of all types of materials [32], analysis of the
condition and production method of ancient Egyptian statues for restoration [31], morpho-
logical odontometric analysis of dental artefacts [33], visualisation of alloy composition
and corrosion exposure of ancient Greek coins [34], evaluation of the suitability of µCT
for the study of ceramic manufacturing technology [35], visualisation of the condition of
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clothing fabrics [36], analysis of manufacturing techniques and porosity levels of model
samples of selected building materials (mortar) in historical objects [37], determination
of the condition of the artefact before restoration [38], etc. An interesting example is the
development of a system for the simultaneous use of computed tomography and pho-
togrammetry [39] hardware for the visualisation of a 3D model. Important development
and research work is being carried out in the computed tomography laboratory of the
University of Bologna [30] and in the Centro Conservazione e Restauro “La Venaria Reale”
to develop special tomographic devices for archaeological research. (CCR—Turin) [31].

Figure 6. Number of articles indexed in Google Scholar and published in MDPI journals during
2015–2021/11 that represent the use of computed tomography in the field of cultural heritage science
and are directly or indirectly related to the topic of 3D rendering from 2D tomography images or
3D slices. No article was dedicated to the problem of direct reconstruction of 3D models from 2D
tomography images. The 3D models were reconstructed using commercial industrial tomography
software (VGStudio MAX [31,34,35,37], Amira Avizo 9.0 [32,33], Simpleware—Synopsys, Inc, Drag-
onfly Pro—Carl Zeiss) and in most cases analysed from 2D slices in different layers. In no case did
we record the use of any of the open source programmes to represent a 3D anatomical model. Open
source programmes do not currently provide data for advanced statistical and geometric analyses.

The current importance and applicability of computed microtomography in ana-
lytical archeology is confirmed by the microtomographic treatment of the Venus from
Willendorf by the Department of Evolutionary Anthropology and the Core Facility for
Micro-Computed Tomography, University of Vienna, which researched and microtomo-
graphically processed the approx. 30,000 year old figurine made out of oolitic limestone
using commercial computer software Amira. The research offered important new insights
into the origins and methods of making this valuable archaeological artifact [26].
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3. State of the Art in Computed Tomography

The original dilemma of algorithms for processing 2D images for CT at “low-level”
was solved decades ago in the framework of Marr’s “high-level” paradigm [40], although
computed tomography algorithms for processing X-ray signals and 2D images still have to
deal with the problem of optimising edges and segmenting 2D images. The problem of
robustness is obvious. Algorithms should primarily be based on the paradigm of active
detection [41], i.e., they must be targeted at specific goals of detecting certain features, such
as edge detectors, region growers, 3D recovery methods, etc.

The use of computed tomography and tomographic sensors is increasingly expanding
the field of robotic surgery [42–44], artificial intelligence [45], computer graphics (e.g., 3D
Geometry Generator Algorithm [46]) and computer vision (e.g., PT2PC model [47,48]).

In computed tomography we distinguish two types of algorithms, depending on the
type of reconstruction. Figure 7 shows the process diagram of algorithms for spatial and
surface imaging:

1. algorithms for the reconstruction of 2D tomographic images from tomographic projec-
tions and

2. algorithms for the reconstruction of volumetric 3D models from 2D tomographic
images. For the reconstruction of 3D models from CT images, the terms “volume
rendering” and “surface rendering” are often used synonymously in computer graph-
ics [49,50].

However, the use of both terms requires some caution as they are often used un-
critically and indiscriminately in professional articles, even in cases that do not involve
reconstruction of 3D surface or volumetric models from CT, MRI or PET images and are
based on attenuations or RGB matrices of grey values. The term “volumetric imaging” has
not yet gained acceptance in computer vision methods and techniques for reconstructing
3D models. However, it is accepted in computer graphics methods and techniques for 3D
visualisation of tomographic images [51].

While in the first case, the algorithms are adapted and specialised for processing image
signals based on attenuation values or HU numbers, in the second case various specialised
algorithms are used to represent the 3D surface model. These include algorithms from
computer vision and computer graphics [52,53], such as the Marching Cubes algorithm,
the dividing cubes algorithm, algorithms for visuomotor and haptic rendering [54].

The reconstruction of CT images in three-dimensional space is of particular impor-
tance in modern medicine and industry. Especially in robotic surgery, prosthetics and
orthopaedics as well as in the analysis of material quality. This is not only about real-time
visualisation and improving accuracy in the detection and treatment of diseases, such as
in robotic surgery, but also about achieving higher quality products in industry. In both
medicine and industry, methods for reconstructing and visualising 2D tomography images
are on the rise. Algorithms for target rendering are also being adapted and developed
accordingly. For example, Microsoft Visual Studio [49] has developed four algorithms with
the Visualisation Toolkit (VTK) to help with robotic surgery: Marching Cube, Contour
Filter, Composite Volume Rendering and Texture Mapping Hardware. Marching Cube and
Contour Filter are algorithms for surface mapping, while Composite Volume Rendering
and Texture Mapping Hardware are for spatial mapping. After 2000, similar develop-
ment trends can be observed among other manufacturers of commercial hardware and
software for computed tomography. The programming languages used to implement the
algorithms are C++, Java and Python. However, it is undeniable that algorithms for surface
or spatial imaging are adapted to specific needs and that the question of their robustness is
still relevant.

In recent years, there has been increasing interest in the use of machine learning
and deep learning algorithms, convolutional neural networks (CNN) or other artificial
intelligence algorithms in industrial computed tomography. Occasionally, adapted or
modified algorithms are used that have already been used in the reconstruction of 2D
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tomography images, such as Fourier volume rendering, Monte Carlo volume rendering [55],
the additive re-projection technique, depth-shading algorithms, etc. [52].

Figure 7. Computed tomography—presentation of the process of reconstruction of 2D CT images
and 3D models.

Algorithms for imaging or reconstructing 3D volumetric models can be divided into
four groups: Ray Casting Algorithms, Splatting Algorithms, Cell Projection Algorithms
and Multi-Pass Resampling Algorithms. However, in the practice of 3D visualisation and
modelling from tomographic images, three techniques for volumetric image projections in
computed tomography stand out: maximum intensity projection (MIP), minimum intensity
projection (MiniIP) and three-dimensional volume rendering (3DVR) [56] or direct volume
rendering (DVR) [51].

An optimised 2D tomographic image is a key factor for the quality of all further
procedures from visualisation to reconstruction of 3D models and addition. Therefore,
most research efforts in computed tomography have been and still are focused on the
improvement of algorithms for 2D image reconstruction and not on the reconstruction of
3D models. In computed tomography, computer graphics algorithms have become the
most popular. Chris Shaw [57] mentions that so far (2014) only a modest 1.8% of research
papers have been published that deal with CT and are also intended for 3D imaging.

A transparent contribution to the understanding and open questions of computerised
tomography and the algorithms used for reconstruction was presented by G.T. Herman
in his most cited work in the field of computerised tomography, his book Fundamentals
of computerised tomography: image reconstruction from projections [58]. Herman describes
how CT image data are obtained and used in science and medicine. The focus is on X-
ray data, but also on the importance of CT in other fields, such as electron microscopy,
nuclear medicine, ultrasound, magnetic resonance imaging, nondestructive testing and
evaluation of materials, etc. A comparative evaluation of the reconstruction method and
its accuracy under ideal and real conditions will be made. Reconstruction algorithms
are also covered, including the filtered back projection, the extended Fourier theorem for
reconstruction and back reconstruction, the linogram method for image reconstruction,
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algebraic reconstruction techniques, quadratic optimisation, etc. The book also draws
attention to the open questions and problems of CT image reconstruction.

A second review of the features, capabilities and shortcomings of segmentation and
reconstruction algorithms in computed tomography can be found in 3D Segmentation
Algorithms for Computerised Tomographic Imaging: a Systematic Literature Review [59]. The
article includes peer-reviewed articles published in four scientific databases (Science Direct,
IEEEXplore, ACMin PubMed) from 2006–2018. For the authors (Carvalho, Sobieranski and
VonWangenheim), the key to the reconstruction process in computed tomography is the
segmentation algorithm. A total of 182 papers were analysed, divided according to the
methods and segmentation techniques used, namely thresholding methods, graph theory,
level set methods, Markov Random Fields, active contours, flexible point distribution,
wave densities, region growing, primitive shapes, use of filters and histograms, intelligent
swarms, up to the use of convolutional neural networks, deep learning and machine
learning. An interesting example is a method that combines segmentation and visualisation
of multiple anatomical structures [60]. There is a very wide range of algorithms.

In tomographic image reconstruction in medicine, additive manufacturing, materi-
als analysis and industrial control, the filtered backprojection (FBP) algorithm has been
standardised for some time. In recent years, somewhat forgotten iterative reconstruction
algorithms have resurfaced in industrial tomography [61–65]. Their use has become in-
teresting with the increasing computing power of computers. Comparisons and research
show certain advantages of the reconstruction algorithms over the FBP algorithm. New
iterative reconstruction algorithms such as AIDR [62], ASIR and ASIR-V [66], IRIS [63,64]
SAFIRE [65], ADMIRE [67], etc., show certain advantages over the FBP algorithm. Namely,
iterative reconstruction significantly improves image quality due to cyclic processing. In
medical tomography, iterative algorithms also mitigate the negative consequences (noise,
artefacts, quality, sharpness) resulting from the requirement of selective use of the radiation
dose index [62]. New iterative algorithms are already built into the latest generations of CT
readers (e.g., Siemens, Toshiba, etc.) and are in most cases a trade secret.

The development so far shows a multitude of specialised reconstruction algorithms.
The number and variety of algorithms is due to the fact that each selected algorithm and seg-
mentation method or technique is adapted to specific research questions of 2D tomography
image reconstruction in medical or industrial diagnostic imaging or analytical practise.

Computed tomography algorithm developers are still mainly focused on optimising
algorithms for segmentation, recovery and 3D reconstruction of CT images [8,59] and on
creating and using technological protocols or computational methods to achieve higher
contrast and quality of CT layers in 3D visualisation [16]. However, research in iterative
reconstruction (BIR, SiR-V, etc.) is still ongoing [17,18]. The transition from slice imaging
to volumetric imaging and direct 3D reconstruction with spiral computed tomography
(SCT) [68] has led to significant advances in medicine and industry in recent years. SCT
also opens up new possibilities in the realisation of virtual archaeology projects.

4. Tomographic Reconstruction in Archaeology

Traditional radiology after 1889 and computed tomography after 1975 have been
present in archaeology since its beginnings. The use of algorithms for the reconstruction
of 2D images (for example: Inverse Fourier Transform or the filtered back projection
commonly used today) is considered a noninvasive technique for the anatomical study of
delicate, unstable and valuable artefacts [24] such as mummies, stone, Palaeolithic bone or
wooden remains [4,5,7,69], papyrus scrolls, metal tools or weapons [28], jewellery, pottery,
wall paintings, Ötzi—Italy [25,70], the Venus from Willendorf [26] etc.

Only rarely do we find examples of the reconstruction of archaeological 3D models
from tomographic images. This is partly due to the development of a relatively autonomous
field of computed tomography, which is primarily developed as an imaging technique
in medical diagnostics and as a measurement and control technique in industry. The
algorithms for reconstructing the X-ray signal into a 2D image and 3D visualisation from
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CT images are also geared towards these goals. Isolated attempts at 3D modelling from
CT images are also the result of the high financial cost of using CT scanners and the still
insufficiently exposed need to use 3D anatomical models in additive manufacturing.

The reconstruction of 3D models of archaeological artefacts has so far been mainly lim-
ited to 3D surface-based modelling in archaeology. 3D surface-based models have in most
cases been created using affordable photogrammetry, laser scanners and structured light
scanners. Various computer vision algorithms have been used for reconstructing 3D surface
models, such as: intuitive algorithms for computing similarity or distance [71], SIFT—
Scale Invariant Feature Transform [72,73], SURF—Speeded Up Robust Features) [74,75],
ICP [76], SfM [76,77], SfS [78], SfL [79], segmentation algorithms [80], stereoreconstruction
algorithms [81,82], self-learning algorithms [83], etc. In the last year, the use of artificial
intelligence algorithms (deep learning, convolutional neural networks, etc.) has come to
the fore. This is also the reason why the use of information technology in archaeology
has focused on virtual archaeology [10,11], the additive production of copies of artefacts
using surface-based 3D models and the digitisation of basic archaeological documentation.
The processing, evaluation and comparison of the digitised information in archaeological
document collections was left to future generations of archaeologists.

The reconstruction of anatomical 3D models from tomographic images is not yet the
subject of interest of heritage sciences for a comprehensive documentation of archaeological
objects. The use of computed tomography algorithms in archaeology still primarily adapts
to the possibilities of arbitrary use of medical and industrial hardware. It is only since
2015 that we have seen greater interest from archaeologists and conservators in the use of
computed tomography in the processes of conservation, restoration and visualisation of
archaeological objects [84–88].

According to studies published in 2020 and 2021, archaeologists and conservators
continue to use commercially tested material and composite analysis software tools to
reconstruct or visualise 3D archaeological models, such as VGStudio MAX, Amira Avizo
9.0, Simpleware—Synopsys, Inc. and Dragonfly Pro—Carl Zeiss. We also recommend the
possibility of online 3D visualisation of 2D images CT, with [89] interactive 2D and 3D
graphics (WebGL), in any compatible web browser and without the use of plug-ins.

This is also the reason why, given the still financially inaccessible hardware, no specific
computed tomography hardware or algorithms have been developed for the needs of
heritage conservation, suitable for documentation and research science. Such initiatives
have been presented in the past. For example, the Belgian project AGORA3D was launched
in 2008. In recent years there have been efforts in this direction, for example by researchers
at the University of Bologna and the Conservazione e Restauro “La Venaria Reale”—CCR
of the University of Turin. An important innovation in the use of computed tomography
for the conservation of valuable remains of cultural heritage are interdisciplinary projects of
some French (e.g., the Introspect project) [84,88], British (RTISAD project), American (e.g.,
EDUCE project; Mummy project) [87], Canadian, Israeli, Austrian [86] and German [85]
university research centres. In collaboration with specialised laboratories of state museums
and some private companies, they use computed tomography (CT algorithms) in the
planning, conservation and restoration of museum and archaeological exhibits.

5. Development of a New Tomographic Reconstruction Tool for Archaeology

The basic research objective was to select, improve and evaluate an algorithm for high-
quality reconstruction of 3D surface and 3D volume models from tomographic images for
the needs of preservation, conservation and evaluation of archaeological heritage remains.
With the new approach in computer vision, mainly using algorithms for 3D surface-based
modelling in the processing of 2D image records, we wanted to highlight the suitability
and applicability as well as the analytical and documentary importance of 3D volumetric
models in computer vision and heritage science. At the same time, we wanted to answer
some open questions about the observed changes in 3D surface-based models of Palaeolithic
wooden point from its discovery to the completion of conservation [2,4,5,7].
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As open-source algorithms are used for observing 3D surface models obtained from
image acquisitions from DSLR cameras, structured light scanners, lasers and other surface
and remote sensing devices, reconstruction of 2D images from CT, MRI and other depth
sensors also requires appropriate observational techniques. Most algorithms for processing
and reconstructing CT images have not received special attention from computer vision in
heritage science due to a focus on commercialisation, closed source, specialisation (medical
or industrial), radiation risks and intellectual property protection. With new methods for
reconstructing surface and volumetric 3D models from CT images, we aim to challenge the
traditional research and application field of computer vision in heritage science.

With the new experiences, we aim to expand the research interest of computer vision
(using CT, MRI and other depth-imaging scanners) from the already-established traditional
3D surface models to the reconstruction of surface models and 3D volumetric models from
tomographic images. We anticipate that the price of 3D depth detection scanners will
become more affordable for cultural scientists on the threshold of the fourth industrial
revolution.

A particular research and development goal was to develop a simple algorithm for
reconstructing volumetric 3D models from CT images of archaeological objects. The
algorithm should not require highly specialised computer and mathematical knowledge
from the user. We were guided by the idea that the algorithm should be simple, robust
and adaptable to the specific needs of archaeologists and conservators. After all, they
occasionally come across CT images of artefacts in their work, but they do not have the
appropriate algorithms, customised software tools and solutions for reconstructing and
analysing 3D models. Therefore, they are usually forced to use commercial software
tools developed and adapted for other purposes, namely diagnostic work in medicine and
industry. Since working with them is not tailored to the goals, interests, needs and problems
of archaeological or conservation research, the huge amount of data and information
contained in surface-based and volumetric 3D models remains unused. This leads to an
impoverishment of the digital documentation of cultural objects. Developing a simple
computer algorithm suitable for working with cultural heritage remains was our ultimate
motivating goal, which would provide an incentive for further research in computer vision
and cultural heritage science.

5.1. Design Considerations

After studying the literature and initially testing various computed tomography,
computer graphics and computer vision algorithms for reconstructing 3D models from 2D
images CT, we were faced with the need to develop a new iterative algorithm. The tested
solutions did not meet our expectations to reconstruct a surface-based and volumetric
3D model that would answer the open questions about the identified changes in the five
surface-based 3D models of the Palaeolithic wooden point accurately, volumetrically precise
and graphically clear enough. The test with commercial software also showed that the
built-in algorithms reconstruct the 3D model, but only the outer surface edge points of the
cloud. Volumetrically, it reliably and accurately reconstructs only the 3D surface model of
the scanned object.

The workflow of the new algorithm is based on a preliminary analysis of the properties
of the 2D CT image slices and the projection of the output file of the 3D model (an OBJ
file) based on the following parameters of the reconstruction of the surface-based and
volumetric 3D model:

• 2D image CT in the format TIFF (JPEG, GIF, PNG, BMP, RAW, etc.) consisting of a
grey HU or RGB matrix in which each point (pixel) of the matrix has a grey x/y value;

• the thickness of the X-ray beam corresponding to the z-coordinate value of each voxel
of the 3D layer in Cartesian three-dimensional space;

• an edge-detection technique that segments selected greyscale RGB values of each
boundary point (pixel) of a 2D image.
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The algorithm must be adapted to the purpose of the archaeologist or conservator to
reconstruct the 3D surface and 3D volume model of the artefact under investigation. In the
selected test case this will be: detection of dislocations, inclusions, pores, cracks, openings,
damage, deformations and fractures in the anatomical structure of the object.

The design of the algorithm should focus on the specific research objective of recon-
structing the 3D surface and 3D volume model in the initial phase of development. Based
on the available data contained in the greyscale values of the images from CT, we found
that the reconstruction of the 3D spatial and 3D surface model can, on the one hand, use
the full set of attenuation or RGB values and, on the other hand, develop an algorithm that
can detect features in the anatomical structure of the object that are aligned with a specific
archaeological or conservation goal.

Methodologically, two iterative algorithms were developed that differ in terms of the
degree of robustness, the research purpose and the temporal dynamics of the implementation:

• the algorithm with the working code name dAR3D converts 2D images from CT
directly and without additional segmentation into 3D slices CT (3D scalar field of
voxels), registers them in a three-dimensional coordinate system as a collection file
and then reconstructs them into a volumetric and surface-based 3D model, and

• the algorithm with the working code name sAR3D, which first limits the number and
values of features in the 2D image CT by segmentation. It then converts the segmented
2D images CT with a z-coordinate value into a 3D scalar field of voxels (3D CT slices),
registers them in a three-dimensional volume coordinate system as a collection file, and
then reconstructs them into a 3D volume and 3D surface model using the aggregation
and alignment method. The segmentation algorithm is intended for specific analysis
or research goals in the archaeological, conservation or restoration treatment of an
archaeological object. It is faster than the dAR3D and can be implemented on personal
computers without memory limitations. It can also be used in other fields or in cases
where we decide to segment features in a 2D CT (MRI etc.) image.

The algorithms are limited to the process of reconstructing the 3D surface model and
the 3D volume model from 2D images CT (Figure 7).

The direct algorithm dR3D is slower (due to the large amount of information contained
and consequently the size of the output file). Reconstructing a 3D model takes about
7 times longer than reconstructing a 3D model from segmented CT images. Due to the
large amount of information, additional computer storage capacity or cloud processing is
required. This algorithm is useful:

• in the initial nonselective and noninvasive examination of the anatomical structure
of the artefact to obtain initial information about the artefact and for the subsequent
selection of target features for archaeological, analytical or conservation processing;

• for a comprehensive archaeological 3D documentation, and;
• to produce a 3D additive as a perfect replica of the original.

The segmentation algorithm sAR3D, which was the subject of our special development
refinement due to its robustness, simplicity and efficiency, is adapted to the research goals
of the direct user. It is intended for the working purposes of archaeological, conservation
or restoration treatment. It is faster in time and can be realised on noncommercial personal
computers without memory limitations. It is user-friendly, robust and simple. No special
knowledge (radiology, mathematics, physics, computer vision, computer graphics, com-
puter tomography, etc.) is required to achieve the user’s research goals of reconstructing a
3D model from CT images.

The workflow of the two algorithms is shown in Figure 8.
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Figure 8. Workflow of the direct dR3D and the segmentation algorithm sAR3D for reconstruction of
3D models from CT images.

5.2. Implementation

Code the algorithms for direct and segmented reconstruction of 3D models from 2D
µCT (or any 2D images obtained with CT, µCT, nano- CT, MRI, MMG, ultrasound or other
depth sensor readers) in four steps. The individual steps and specifics of the code record
structure are shown in the tabular overview (Table 3), which lists the basic code records.

In the mathematical and logical design of the code of both algorithms, we used a
numerical analysis software package, MATLAB. The chosen fourth-generation program-
ming language is sufficiently effective for performing mathematical operations. However,
the segmentation process is only one form of mathematical algorithm. In addition, the
programming language can quickly work with tables to quickly convert segmentation data
into a 3D coordinate table.

The code of both algorithms is the same in the first step (selecting and registering 2D
images CT for 3D reconstruction), in the phase of converting 2D images into 3D layers
and in the phase of writing a 3D model in OBJ format. The codes of the two algorithms
differ only in the fourth step, where we use the outer and inner edge detection technique to
segment individual 3D layers.

The code uses the auxiliary algorithm of the NATSORTFILES function (built into
MATLAB SORT), which classifies an array of cells with filenames or paths. It takes into
account all numeric values in the array (instead of the default sort, it uses “natural sorts”).
It is a “natural sort type” or an “alphanumeric type”. NATSORTFILES (74) does not mean
sorting by natural order, but separates file names and their extensions. This has the effect
that shorter file and directory names are always placed before longer names, thus ensuring
the correct order of names in the directory. For the same reason, file paths are divided into
each path delimiter and each directory level is sorted separately.

A special feature of the code of both algorithms is the input of “z-values” or “z-
coordinates”. This procedure is crucial for the correct volumetric arrangement of the 3D
model. If we want to reconstruct a surface and volumetric 3D model from CT images that
allows accurate volumetric analysis and comparison, it is not enough to simply fold 2D
images into a virtual 3D model. To achieve a volumetric match with the original, each 3D
layer must be inserted into a Cartesian coordinate model of the space with precise voxel
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dimension data (the “z-coordinate value” in the 3D model space). Only in this way can we
obtain a volumetrically accurate 3D anatomical model that is volumetrically identical to the
original. If we simply glue the images of CT together, we will obtain the correct values for
the width (x) and thickness (y) of the object, but the length (z-coordinate) will be completely
distorted, unrealistic and useless for volumetric analysis and final reconstruction.

Table 3. Code characteristics of the segmentation algorithm sAR3D for the reconstruction of 3D
models from CT images.

sAR3D Code Characteristics

Step Code comment Slide Master

1 Preparation of the algorithm

Defining, selecting and sorting
image file names; scale;
specify the name of the final
file

imagefiles = dir(’*.tif’);
n = natsortfiles((imagefiles.name));
nfiles = length(n);
scale = 0.053;

fid = fopen(’my.obj’,’wt’);

2 Loop (go through images by
file name)

for ii =1:nfiles
...
end

3 Opens and reads each image
file

currentimage = imread(currentfilename);

4 Obtaining and determining the
x− y coordinate of points

Segment images and determine the coordinates of points
from them

5 Add the third (z) coordinate to
the points

z = repmat((ii * scale), [size(row,1) 1]);
...
points = [xy, z];

6 Write to specified end file
(3D coordinate table)

result = cat(2,vert,string(points));
fprintf(fid, ’

7 Close the final 3D model file Segment 3D model file

The fundamental difference between the two algorithms lies in the introduction of the
segmentation procedure, which in our case is based on the technique of detecting edges
on the surface and in the anatomical structure of the studied object. The segmentation
procedure removes insignificant grey values of edges from the image CT and determines the
edge values that will be the subject of the user’s examination. The segmentation procedure
allows us to highlight the selected target features of the anatomical structure of the original
more clearly in the reconstruction of the 3D model than with the dAR3D algorithm. In this
way, we simplify and shorten the reconstruction and extract the features highlighted in the
3D anatomical model while preserving all volumetric values and information.

5.3. Segmentation

In our case, segmentation is considered as a form of mathematical algorithm. This
was also the reason why we chose a numerical analysis software package (MatLab) to
write the code. This programming language is suitable for working with tables and can
effectively convert segmented data into a table with 3D coordinates. The code written in
this programming language is generally robust, easy to understand and use, optimal for
processing image files (e.g., TIF, JPEG, PNG, etc.) and does not require additional and
intermediate procedures.

The right choice of edge-detection techniques is crucial for efficient segmentation. The
edge of a CT image can be defined as an abrupt change in intensity. The edge is nothing
more than the boundary of a particular region. In a CT image, the edge can be defined
as a break in brightness or a change in the grey values of the HU or RGB matrix. When
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the light intensity or the grey value changes, this is called an edge. Edge perception is
important for describing the shape and anatomical structure of an object. Edge detection
identifies boundaries in a 2D image CT. The features can be common or separate. The
main goal of edge detection in the segmentation algorithm is to obtain the volume and
surface features of the object. Before selecting the segmentation code, we investigated and
evaluated different edge detection techniques (Figure 9) and selected the most suitable one
for reconstructing a 3D model of an archaeological object.

Figure 9. Comparison of different edge detectors for segmentation of 2D slices CT. The figure shows
the test results of the different edge-detection methods. The analysis and comparison of the test
results was the basis for selecting the most suitable operator for performing the segmentation process
in the phase of preparing the 2D micro-CT images for placement in 3D space and reconstruction of
the 3D model. The Roberts Edge Operator was selected as the most suitable operator for performing
the segmentation process. The advantage of the Roberts segmentation function is that it maintains the
most small details without altering small cracks or indentations (these differences are more noticeable
at higher magnifications).

We have investigated, compared and tested different techniques (Roberts, Prewitt,
Sobel, Log, Zerocross, Canny and Approximate Canny) for edge detection in the image CT
of the Palaeolithic wooden point and some other artefacts (Figure 9). We chose Roberts
edge-detection technique, which we found most suitable for processing CT images of
archaeological artefacts. This technique is simple, robust and does not smooth edges
compared to other edge detectors. It is also capable of detecting smaller openings. It uses a
2 × 2 convolution mask. The Roberts operator [90–92] is widely used for image processing
in computer vision. It is one of the oldest operators and was introduced by Lawrence
Roberts in 1963. The operator is also known as Roberts’ cross operator. The edge image can
be calculated quickly and easily. Although it is the oldest and simplest, it has proven to
be the most reliable in reconstructing a 3D model of an archaeological object compared to
other techniques.

The process of reconstructing the 3D surface model and the 3D volume model from CT
sections was adapted to the specific research objectives of the archaeological or conservation
treatment of the artefact using the segmentation sAR3D. Segmentation in our case is a
technique for determining, selecting and limiting the grey RGB values in CT images. This
also allows us to reconstruct the 3D surface and 3D volume model. It is a rarely used 3D



Sensors 2022, 22, 2369 20 of 41

modelling technique, even when it comes to the commercial reconstruction of a 3D model
from CT images. However, CT image segmentation is different from the prevailing 3D
modelling techniques in computer vision, where segmentation is based on other paradigms,
such as: light sources, contrast, colour shading, generalisation of geometric shapes, etc.

In our particular case, segmentation was used to determine and mark the edges of the
non-oody x–y–z coordinate points (voxels) in each 3D layer. This marked the features in
the anatomical structure of the 3D layer (the outer edge of the artefact, the edges of the
anatomical—in our case—nonwoody features of the object). We selected those features in
the 3D layer which, in accordance with the aim of the study, we believed could successfully
answer the question about the nonwoody features of the artefact and the factors that might
influence the observed surface deformation of the object. In our case, these were openings,
pores, fractures, inclusions, cracks, etc. By determining the outer edge handles, we have set
the stage for the reconstruction of the 3D surface model, while the 3D anatomical model
will volumetrically mark and represent selected features that were the subject of research
interest and observation.

5.4. Visualisation of Results

The visualisation of the 3D model, which was reconstructed from 2D images CT, is
done with the graphical open-source software tools CloudCompare and MeshLab, which
enable high-quality and accurate visualisation of 3D models, their volumetric analysis and
comparison.

The visualisation process is simple. It is done in six steps using the tools, methods,
techniques and algorithms built into the software. The following is a summary of the main
procedures for visualising 3D models with CloudCompare (Figure 10):

Step 1: the point cloud of the 3D model in the selected format (OBJ, PLY, STL, etc.) is
entered using the “Open” function in the CC software;

Step 2: The tool CROSS SECTION removes unwanted or disturbing sections in the point
cloud and then exports the selected section as a new point cloud to CC;

Step 3: The calculation of NORMAL with the surface approximation method follows (it
is possible to select the methods depending on the goal of the visualisation: planar;
triangulation; square);

Step 4: The calculated normals are aligned to the normals using an orientation algorithm or
a numerical Fast Marching method (or using the Minimum Spanning Tree algorithm);

Step 5: Poisson Surface Reconstruction is used to convert a point cloud into a 3D model
with triangulation mesh.

Depending on the exposed research objectives and the planned treatment of the 3D
model and the objectives of its visualisation, follows.

Step 6: For further processing and clearer visualisation, various filters, stereogram analyses
and other tools are available for multilevel volumetric, statistical and analytical
treatment of the point cloud (e.g., cross sections, 3D depth views, comparisons,
smoothing, volumetric and statistical tools, segmentation, scalar fields, etc.). In our
case, we opted for anatomical or volumetric 3D visualisation and volumetric detection
(x, y, z) of critical points in the anatomical structure of the Palaeolithic point.

By processing the triangulation mesh of the points of the visualised model, we can
successfully perform an accurate volumetric and deformation analysis and comparison
(deformation monitoring) of the selected 3D models.
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Figure 10. 3D model visualization process in the CloudCompare software tool. Read the explanations
of the six steps in the text of the article.

6. Results

Algorithms for reconstructing 3D models from CT images were tested on a 40,000-
year-old Palaeolithic wooden hunting weapon found in the Ljubljanica River (Slovenia) in
2008 [2]. To obtain an assessment of the quality of the represented 3D volume and surface
model, the algorithms were tested on four other archaeological objects (bone flute from
Divje babe I [69] and three ceramic rattles from the Bronze Age [93]). The robustness of the
algorithms was also tested on two composite materials (concrete and fabric). The quality of
the reconstructed 3D models was compared with models visualised with the commercial
software tool Avizo Fire (FEI).

Volume and deformation analyses with the software CloudCompare were carried out
for 3D volumetric models of the Palaeolithic wooden point.

6.1. Input-Output Data for the Reconstruction of 3D Models from CT Images

Algorithms used for reconstruction of 3D models from CT Images:

• dAR3D—direct algorithm for 3D model reconstruction;
• sAR3D—segmentation algorithm for 3D model reconstruction.

Input data (Table 4): reconstructed two-dimensional microtomographic images of an
archaeological object in the format TIFF, created on the basis of a matrix of attenuation
values (HU -number) and filtered back-projections with a MicroXCT 400 scanner.

Output data (Table 5): 3D model in format OBJ. Displayed and processed with the
software tools MeshLab and CloudCompare.

6.2. Hardware and Software

The algorithms were systematically developed, tested and evaluated on a commercially
available portable computer (a laptop) with the following configuration:

• PROCESSOR: INTEL (R) Core (TM) i7-8850 U @ 1.80 GHz;
• RAM: 8 GB;
• GPU: NVIDIA GeForce RTX 1050;
• OS: Windows 10 (64-bit).

MatLab (ver. R2018a—a custom multiparadigm programming language and numerical
computing environment) was used to develop the algorithms.
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Open source applications for graphical, statistical and volumetric processing Mesh-
Lab and CloudCompare were used to process image data, compare and reconstruct the
3D model.

Table 4. Input data for the reconstruction of a 3D model from CT images.

Artefact Number Format Image Size Slice Thickness

Input Data µCT Images

Palaeolithic
wooden point

2452 (year 2018)
2650 (year 2019)

TIFF 2699 × 2731
1012 × 1024

44.2 µm

Bone flute from
Divje babe I 2649 TIFF 732 × 837 31.9 µm

Ceramic rattles
R1—1717
R2—1014
R3—1013

TIFF
1012 × 1024
1012 × 1024
1012 × 1024

51.9 µm
44.5 µm
62.7 µm

Different
composites

B—1014
T—1014 (300)

TIFF 1012 × 1024 44.5 µm

Table 5. Output data of the reconstructed 3D model from CT images.

Artefact 3D Model—File Size

dAR3D Format sAR3D

Palaeolithic wooden
point

8.18 GB (year 2018)
7.7 GB (year 2019)

OBJ 196 MB (year 2018)
193 MB (year 2019)

Bone flute from Divje
babe I 4.68 GB OBJ 166 MB

Ceramic rattles
R1—5.12 GB
R2—3.26 GB
R3—2.49 GB

OBJ
R1—132.0 MB
R2—89.2 MB
R3—68.1 MB

Different composites B—14.9 GB OBJ B—280 MB

T—1.8 GB OBJ T—69 MB

6.3. Reconstruction, Comparison and Analysis of 3D Models of the Palaeolithic Wooden Point

The reconstruction of the 3D models of the Palaeolithic wooden point was carried out
using both developed algorithms (Figure 11). Based on the obtained results and volumetric
data of the point cloud in 3D Cartesian space, we performed an analysis of the anatomical
structure and properties of the 2019 3D volumetric model and compared the obtained data
and information (deformation monitoring) with the 2018 model. The visualisation and
comparison were performed with the graphical software tool CloudCompare.

6.3.1. Reconstruction with Algorithm dAR3D

Using the direct algorithm (dAR3D), we reconstructed the 3D surface-based model and
the 3D volumetric model directly from the entire set of 2D images CT of the Palaeolithic
wooden point (Figure 12) as captured in the HU matrix by the CT reader and recognised by
the RGB matrix.

Compared to the original and the model reconstructed with the commercial tool Avizo
Fire (FEI), the surface-based 3D model is extremely accurate and even surpasses the photo
of the original in certain parameters (contrast, properties of the surface texture). The
difference in contrast and accuracy between the reconstructed 3D model and the original
photo is due to the limitations of the DSLR camera such as colour gradations, the influence
and direction of light on the artefact and other circumstances of the photo. The difference
in contrast between the reconstructed dAR3D model and the model displayed with the
commercial Avizo Fire (FEI) tool is due to the use of different 2D image resolutions in
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the TIFF format. In our case, the image resolution used to reconstruct the 3D model was
significantly higher (2690 × 2731) than the image resolution (1012 × 1024) used by the
commercial tool to display the 3D model. This is also the reason why our model is more
accurate and the point cloud also contains a much larger set of stored information.

Figure 11. Reconstruction results: (A) direct algorithm dAR3D, (B) segmentation algorithm sAR3D.

6.3.2. Reconstruction with the Segmentation Algorithm sAR3D

For the implementation of the segmentation algorithm sAR3D, we first marked only
the grey RGB values (−278 HU; 110–130 RGB) in the 2D images CT for the reconstruction of
the 3D surface model and the 3D volume model, as well as regions that indicated nonwood
features or values in the images. With this intervention, we limited the segmentation to
selected features in the anatomical structure of the point (Figure 13), such as dislocations,
inclusions, pores, cracks, openings, damage, deformation and fractures. According to
archaeologists, conservators and restorers, these deformations are important for planning
procedures to protect artefacts and for further 4D analyses (deformation monitoring) of 3D
volume models of the point (2018 and 2019).

The properties of the surface model reconstructed with the algorithm sAR3D are
identical to the results described and summarised in the model presented with dAR3D.
Since the segmentation algorithm limited the set of point clouds and the target information
in CT images of the point’s anatomical structure to the RGB values of the nonlignified
parts of the point (pores, openings, cracks, fractures, etc.), only the segmented values in the
anatomical structure were highlighted in the 3D volumetric model (Figure 14). The model
accurately and clearly represents the changes, features, characteristics and deformations of
the artefact.
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Figure 12. Example of a 3D model reconstruction with the algorithm dAR3D. The model detects
anatomical changes (cracks, fractures, etc.), but the anatomical structure is also filled with woody
parts. The reconstruction of the 3D model was performed considering all RGB values (0–255) of the
grey matrix of the 2D images. Deformations of the internal structure of the model are only visible
after individual sections. The model does not provide a detailed 2.5D insight into the artefact despite
the large amount of information and data.

Figure 13. In the 2D CT image the edges of larger openings, fractures, pores, inclusions, etc., are
detected first.
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Figure 14. Palaeolithic wooden point: (A) 3D anatomical (volume) model, (B) 3D surface model,
(C) 3D anatomical model with marked deformations (red dashed lines indicate the outer edges of
cracks, openings and fractures in the internal structure of the point). The segmentation algorithm
provides a 2.5D insight into the anatomical structure of the artefact after reconstruction. The outer
surface boundaries of the artefact are marked in blue, with the light blue representing the inner
openings, cracks and other deviations. The green colour represents the inner boundaries of the woody
part of the artefact.

6.4. Comparison of the Quality of Surface-Based 3D Models of the Palaeolithic Wooden Point

To determine the efficiency of the algorithm and the quality of the reconstructed
3D surface-based model, we compared the 3D model of the wooden point reconstructed
with the algorithms dAR3D and sAR3D with the 3D surface-based model of the point
reconstructed with the commercial software package Avizo Fire (FEI). The comparison
(graphical and statistical) was performed using the ICP algorithm and the CloudCompare
graphical software tool. The comparison showed slight discrepancies between the two
models. From this comparison it can be concluded that the quality of the reconstructed
3D model depends mainly on the quality of the input data. This fact also became clear
when comparing two models that were created at different resolutions. Here the differences
were in the contrast and texture details of the surface-based 3D model and not in its
volumetric deviations.

6.5. Anatomical Characteristics of Surface-Based and Volumetric 3D Models of the Palaeolithic
Wooden Point (2018–2019)

In the volumetric computer analysis of the anatomical structure of the volumetric 3D
models, we restricted ourselves to a model reconstructed with a segmentation algorithm
sAR3D. During segmentation, we paid attention to dislocations, inclusions, pores, cracks,
openings, damages, crisps, deformations and fractures. We located critical areas, identified
damage and changes that were previously not readable from the 3D surface-based model.

The critical points of the artefact’s internal structure were determined volumetrically
and marked on the model (Figures 15–18). Three pronounced internal deformations were
detected (Figures 19 and 20): an elongated crack (B), a pronounced fracture (A) and a
deformation (C). These three internal deformations stimulated the bending of the upper
and lower part of the point after the conservation process, which was detected in the
volumetric analysis and the comparison of the 3D surface models.
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Figure 15. Exposed critical points in a 3D volumetric model of a Palaeolithic wooden point. A blue-
green grid was chosen to make the anatomical structure of the artefact clearer. The light blue colour
indicates the outer surface boundaries of the artefact and the inner boundaries of the non-wooden
deformations (openings, fractures, cracks, pores, etc.) in the anatomical structure. The green colour
indicates the inner boundaries of the wooden part of the artefact. The images show a view of the
inner structure from the tip to the handle part (1’ and 2’) and from the handle part to the upper part
of the artefact (1–4). Deviations and critical points are clearly visible.

Figure 16. Volumetric microlocations of critical sites in the volumetric 3D model of the Palaeolithic
wooden point.
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Figure 17. Overview of the critical points in the volumetric 3D model of the Palaeolithic wooden point.

Figure 18. Locations of exposed deformations of the Palaeolithic wooden point in the volumetric 3D
model, which was recorded with a µCT scanner in 2019.

A comparison was made between models of the Palaeolithic point reconstructed in
2018 and 2019 using a CT scanner (Figures 21 and 22). Compared to the 2018 reconstructed
model, the length of the point has shortened by 1.3 mm (−0.84%) in 1 year due to changes
in deformation (shrinkage and bending of the point). The width and thickness at the
most exposed points have increased—due to the expansion and deepening of the internal
cracks—by 2.4 mm or 1.6% (width) and 1.1 mm or 0.73% (thickness), respectively. The
internal dynamics of the surface changes show a tendency to settle down in this relatively
short time interval. This fact underlines that the interval of the conservation process is
longer in time than its official conclusion. The artefact is a “living organism” responding to
altered ex situ nutritional conditions.
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Figure 19. A three-dimensional depth image (viewed from the handle section) of the exposed critical
areas in the anatomical structure of a Palaeolithic wooden point. Three main deformations were
noted in the anatomical structure: a crack (B) running the entire length of the surface of the artefact; a
transverse fracture (A) extending from the sampling point to the centre of the artefact; and numerous
deformations, fractures, pores and cracks in the left wing of the artefact (C).

Figure 20. Fracture (A), which runs from the junction of the socket part and the point into the interior
approx. 4.7 cm. A longer opening (B) is visible inside and cracks and fractures (C) in the left wing of
the Palaeolithic wooden point.

A comparison of the anatomical changes of the artefact after one year shows a tendency
towards greater contraction of the tip (Figures 23 and 24). This process also affects the
condition of the longer crack running from the top towards the middle and to the plant part.
The crack has widened (from 0.1 to 0.8 mm) and deepened further (from 0.1 to 1.4 mm)
within a year. Deformation changes (widening of the cracks and smaller fractures—from
0.12 to 1.2 mm) were observed in the left wing of the artefact. The pronounced transverse
fracture was stable over one year.
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The deformation changes seen in Figure 24, which are not yet fully stabilised, indicate
the hypothesis that the surface changes in the tip (bending, etc.) are mainly influenced by
the crack that extends over the entire length in the upper part of the point. The dynamics
of the changes at this crack have so far been faster than the dynamics of the changes at the
lower fracture. A crack could be a major cause of bending of the plant part and the top of
the point. In the long term, it could bring the risk of fracture or disintegration of the point.

Figure 21. Changes in surface deformation of the 2019 3D model of the Palaeolithic wooden point,
compared to the 2018 reference model (changes are in a limited range between 0.0001 and 1.5001 mm).
The colour matrix scale of deformation monitoring of the 2018 and 2019 3D models confirms the
one-year dynamics of surface changes. Compared to other 3D models (2009–2017), the dynamics of
changes on the artefact surface has stabilised. The shrinkage of the artefact persists with an average
of 0.1 mm per year (green grid). However, the deformation of the uppermost point is even more
pronounced. It lies between 0.5 mm and 1.0 mm (red-orange-yellow grid). The annual bending of the
top by 1.35 mm is confirmed volumetrically. The bending is detected in the area of the handle. This
has bent by 1.7 mm compared to 2018. More deformation of the left wing (A) of the point was also
noted. In this area, the anatomical model drew attention to a number of unnatural internal cracks
and deformations. Deformation variations in this area ranged from 1.1 mm to 2.2 mm compared to
2018, and the crack in the central part (B) widened by 1.4 mm. At the exposed point (B), it reaches a
depth of 7.1 mm. Monitoring of the deformation was carried out using the CloudCompare software
tool and the C2M algorithm (ICP).
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Figure 22. Exposed sites of changes in the surface-based 3D model of the Palaeolithic wooden point
(2019 —comparison with the 3D model from 2018). Volumetric measurements confirm the calming
of the point deformation process. It is still dominated by shrinkage or bending in the range of
0.18—0.37 mm. Stand out (red value on the deformation scale—from 1.2 to 1.5 mm) deformation
changes in the top, planting part and left wing point.

6.6. Reconstruction of 3D Models of other Archaeological Objects and Composite Materials

Experimental tests of 3D model reconstruction with our algorithms were conducted
on four smaller archaeological objects made of bone and clay and two other materials
(concrete and fabric) to determine the robustness and quality of the algorithms for 3D
model reconstruction of surfaces and volumes (Figure 25).

In all cases, the two algorithms have been shown to be suitable for the reconstruction
of 3D models. As for the quality of the 3D models reconstructed and created with the
algorithms dAR3D and sAR3D, they do not differ in any way from the quality of the models
reconstructed with commercial software tools. It is significant that the segmentation
algorithm (Figure 25) matches and even surpasses the quality, clarity and robustness
of the 3D models reconstructed with commercial software tools. At the same time, the
reconstructed models provide accurate volumetric data on the location and condition at
the critical points.
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Figure 23. Annual dynamics of changes in anatomical structure (model—2019; reference model—
2018)—view from the grip area to the top of the Palaeolithic wooden point. The deformation changes
in the anatomical structure are clearly visible (crack along the entire length of the upper part of the
artefact (1); larger fracture (2) in the lower and middle part; numerous unnatural deformations (3) in
the left wing). The colour scale of the changes (red, green and orange grid) highlights the anatomical
changes of the upper part of the artefact. The process of crack propagation and deformation of the tip
is also shown.
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Figure 24. Deformation monitoring of the top of the artefact (comparison of the 2019 model with the
2018 reference model). (A) shows the dynamics of volumetric changes on the surface, and (B) shows
the dynamics of changes in the anatomical structure of the artefact. The colour scale represents the
annual process of shrinkage and deformation of the upper part of the artefact. The dynamics range
from 0.1 mm (green) to 1.1 mm (red). The upper side of the artefact is mainly exposed to a more
intensive deformation process. On the inside, smaller cracks, openings and pores can be seen. These
touch the beginning of the crack, which extends over the entire length from the top to the handle
area. Due to the ongoing deformation process in this part of the artefact, the annual deflection of the
top of the Palaeolithic head in 2019 was 1.35 mm.
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Figure 25. Six examples of reconstruction of 3D models from CT images of various archaeological ob-
jects and other composite materials. On the left are three clay rattles [93], one the right a Neanderthal
bone whistle [69] (top), a cylindrical piece of concrete (middle) and some fabric (bottom).

7. Discussion

The iterative segmentation algorithm developed for reconstructing a 3D model from
2D micro-CT images of an archaeological object is only one of a number of current algo-
rithms for processing 2D CT images or 3D CT sections. However, it is one of the first to
use a computer vision approach to reconstruct 3D surface and anatomical models and
addresses the weaknesses of traditional techniques for reconstructing 3D surface models
from 2D images that occur when using conventional computer vision algorithms. It com-
bines knowledge, methods and techniques from computed tomography and computer
vision. It provides extremely accurate 3D surface and anatomical models that, together
with high-quality CT images, can be a perfect copy of the original. Compared to other
algorithms, it is simple and user-friendly. It is versatile and not specialised for narrow
professional use (although it was developed for direct use by archaeologists and conserva-
tors). With reconstructed 3D models, it provides the user with a large amount of data and
information and enriches archaeological documentation. The image data and information
can be processed with already-available software tools for processing 3D network data.
However, it is true that this makes the reconstruction of 3D models more expensive than
traditional computer vision algorithms. With the financial availability of CT hardware, it is
also becoming interesting for use in the heritage sciences. This is confirmed by the growing
number of research projects and published professional contributions in all fields and not
only in heritage studies.

With the developed segmentation algorithm we used in our specific archaeological
case, the process of segmenting features in 2D images using the Roberts Edge detector, after
reconstructing the 3D model (from any plane section) we obtain a depth image of the object
in the case of a dynamic 3D visualisation or a printed 2.5-D image simulating the holo-
graphic method of recording 3D dimensional information about an archaeological object.

Our simplification of the preprocessing of 2D image files or 3D slices eliminates the
need to use additional philtres (Rashidi, Vigorelli, Bakirov) for the segmentation process. It
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is also not necessary to use the translucent visualisation technique (Gaboutchian) of the 3D
anatomical model. The depth view (a 2.5D depth view and not just a surface hologram of the
outer edges of selected internal segmented features—see Figures 12, 13, 17, 21, 22, 23) was
not provided by any software tool for reconstructing 3D anatomical models from CT images.
Anatomical views are therefore simulated in most cases by visualising only the outer
edges of selected internal/anatomical deviations or features. To achieve a similar effect
in visualising anatomical features—but without insight into the interior of the anatomical
feature—a simple video sequence of 2D images of the reconstructed model in the selected
plane is usually used to analyse the anatomical features of the 3D model. In this case,
it is left to the user to visualise and localise the features and spatial properties of the
selected anatomical feature by numerically recording metric data about its location, which
is automatically acquired by the software tool. The volumetric correctness of the placement
of the reconstructed 3D model in the Cartesian coordinate system may also be questionable.
It may deviate from the original. Therefore, volumetric deviations and errors occur more
frequently. This may complicate the volumetric analysis of the artefact or the design of
conservation procedures. Especially when machine or deep learning, artificial intelligence
or automatic or robotic processing methods or techniques are involved in the processes of
analysis or conservation.

We do not exclude another way of visualising the anatomical structure of the object,
but after reviewing the software tools of the user manual, such a possibility is neither
described nor foreseen.

The highlighted features of the segmentation algorithm require critical consideration
and implementation in new cases and in different practises to objectively assess its applica-
bility. Our evaluation has shown that the new algorithms for reconstructing 3D models
from 2D images CT have met expectations. Critical points in the internal structure of the
Palaeolithic wooden point, which was the subject of our investigation, were successfully
located. Anatomical features point to the causes of the surface changes. The need for
further development of better conservation techniques for wet wood is highlighted.

In all cases, the algorithms qualitatively reconstructed the surface-based 3D models
and the volumetric 3D models from CT images. The reconstructed 3D models do not differ
from the quality of the models reconstructed or rendered using commercial software tools.
This is an indication that the segmentation algorithm sAR3D reconstructs models that
outperform those reconstructed with commercial software tools in terms of quality, clarity
and volumetric accuracy.

The developed iterative algorithm for reconstructing 3D models from 2D microtomo-
graphic images of archaeological objects can be successfully used to create both surface-
based and volumetric 3D models of X-ray scanned objects. They also enable the reconstruc-
tion of a three-dimensional 3D model after previously constraining the number of features
specified by the user.

The algorithms were tested on seven practical examples and met expectations. The
results answered the working questions (reconstruction of 3D models from 2D µCT images,
internal deformation of the Palaeolithic artefact).

With the reconstructed 3D models, we were able to accurately identify, examine and
document the internal structure of the artefact. Deformations (cracks, fractures, decay)
are clearly visible and volumetrically localised. The 3D anatomical model successfully
complemented the knowledge of the features and specificities of the alterations and revised
the erroneous and not fact-based assessment of the alterations that was solely based on the
surface-based 3D models.

The chosen hardware and software proved to be suitable to realise the set development
and assessment goals of the study. It can form a basis for a possible standardisation of
hardware and software for the reconstruction of computed tomography images into a 3D
model.

The advantage of both algorithms is their ease of use. The user can reconstruct the
3D model according to his research objectives, with the appropriate hardware and open-
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source software configuration of the computer system, without any special mathematical
or computer knowledge and without additional professional and technical support from a
radiologist, computer scientist or physicist.

To implement the algorithm directly, the user needs:

• the selected number of CT images in the appropriate format (the set of images for
reconstruction is not limited in number; in our case, for example, the set of CT images
in the selected test objects ranged from 1100 to 3500 images);

• data and information from the radiologist about the thickness of the layer (d = t = z)
and the type of X-ray beam;

• information about the possible inclination (in degrees) of the object mounted in the
CT reader, and;

• information from the radiologist about the limits of the object (length – width – thick-
ness) that can be detected by the selected CT reader with a single X-ray (scan).

The information and data provided are important for the accurate volumetric treat-
ment of the object and its match to the original. Algorithms otherwise adapted for the use of
computed tomography and 3D model reconstruction from CT images of small archaeologi-
cal objects for archaeological documentation and for planning conservation and restoration
procedures can also be robustly used in other cases (e.g., testing and analysis of materials or
composites, in industrial control, etc.). The limit for the choice of the algorithm’s intended
use depends on the technical possibilities of the chosen CT reader.

The algorithms are useful in the reconstruction of 3D models from 2D microtomo-
graphic or tomographic images acquired with all types of CT or µCT readers, as well as
with other depth imaging readers (e.g., MRI, etc.). The segmentation algorithm can be fully
adapted to the needs of different users and workspaces. It is simple and straightforward
and does not require in-depth mathematical and computer knowledge of the direct user.

The quality of the reconstructed anatomical (3D volumetric) and surface-based 3D
models from 2D µCT images is not significantly different from the quality of 3D models
created with more expensive commercial software. The evaluation of the algorithms
confirmed that the quality of the 3D model depends mainly on the quality of the input 2D
CT or µCT images.

Given the amount of information contained in the internal texture of 2D µCT images,
the dAR3D algorithm is significantly slower than the sAR3D in reconstructing the 3D model.
The shorter reconstruction time of the 3D model with the sAR3D algorithm is due to the
smaller amount of information in the segmented 2DµCT images. The difference between
the two algorithms also lies in the size of the output file of the 3D model. The dAR3D file is
significantly larger (Table 6).

It is critical to note that the current technological requirements for an optimal and rapid
open-source implementation of the direct algorithm in the context of the use of personal
computers for general use are not yet fully in place. With a large number of images (more
than 1000) with high resolution (3000 × 3000 or more) and a high density of greyscale
values of the HU or RGB matrix, the reconstruction process with a direct algorithm can be
very time consuming. These circumstances significantly extend the time limits for effective
reconstruction of 3D models, but they can be overcome with the help of cloud processing
(4th data processing paradigm—op. Cit.) [94–96].

Advantages, disadvantages and limitations of both algorithms are summarised in
Table 7.

The reconstruction of surface-based and volumetric 3D models of an archaeological
object with both algorithms confirmed the extraordinary informative value of the model for
an objective assessment of the current state of the artefact. The additional information about
the condition of the artefact obtained in this way can also be of great help to conservators
in selecting the most appropriate methods and techniques for conservation and protection.
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Table 6. Reconstruction time and output file size of algorithms dAR3D and sAR3D.

Artefacts
3D Model—Reconstruction Time and Output File Size

dAR3D File Size Format sAR3D File Size

Palaeolithic wooden point 48 h (year 2018)
36 h (year 2019)

8.18 GB
7.7 GB OBJ 1.10 h (year 2018)

1.04 h (year 2019)
196 MB
193 MB

Bone flute from
Divje Babe I

24 h 4.68 GB OBJ 55′ 166 MB

Ceramic rattles
R1—23.9 h
R2—16.0 h
R3—11.7 h

5.12 GB
3.26 GB
2.49 GB

OBJ
R1—45′

R2—30′

R3—24′

132.0 MB
89.2 MB
68.1 MB

Different composites CONCRETE—18.1 h
FABRIC—8.7 h

14.9 GB
1.8 GB OBJ CONCRETE—78′

FABRIC—20′
280 MB
69 MB

Table 7. Advantages, limitations and deficiencies of algorithms dAR3D and sAR3D.

dAR3D sAR3D

Advantages

- Complete surface and volume
reconstruction of the 3D model;
suitable for quality and complete addition of
the original.
- Suitable for the reconstruction of small
artefacts.
- Suitable for the reconstruction of up to 300
CT, MRI, ultrasound, MMG... 2D images.

- Fast, reliable and efficient reconstruction of the 3D model.
- High-quality and accurate surface 3D model for
visualisation and addition.
- High-quality and more segmented 3D volume model
according to selected characteristics.
- More vivid and selective presentation and analysis of 3D
model data.
- Adaptation to the interests and needs of the end user.
- Simple and easy by the end user.
- Robustness (can be used in various fields).
- Suitable for processing and processing a large number of
CT, µCT,
then- CT, . . . , MRI, ultrasound, MMG, . . . 2D images (1000
<n).
- Ability to remove unwanted data.
- Lower memory and hardware load.
- Efficient and fast operation regardless of the number of 2D
images reconstructed.
- Fast and efficient comparison and processing of volumetric
data from surface and
volume 3D model.
- Efficient and fast implementation of deformation
monitoring.
- Smaller and more suitable file of reconstructed 3D models
for further processing.

Limitations
and

Deficiencies

- Longer time intervals of 3D model
reconstruction from µCT images (t = 25–50 x;
depending on architecture and hardware
capabilities).
- Optimal processing in the range of up to 300
2D images.
- Extremely large files when reconstructing
from a larger set of 2D images
(over 1000) with a higher resolution (e.g.,
15–50 GB).
- Increased saturation and therefore the risk
of noise and poorer contrast.
- Poorer quality (contrast...) due to a larger
set of greyscales HU or RGB scales.
- Lots of useless and unstructured data.
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8. Conclusions

Professional work in the field of cultural heritage conservation, archaeology, con-
servation and museology cannot be imagined without the use of new scientific methods
and techniques originating in the natural sciences, or without the use of new computer
and information technologies, artificial intelligence, collections of 3D models, multime-
dia, robotics, computer analysis of deformations and other modern technologies (Visual
Languages, Remote Sensing, AI Neural Networks, Big Data, Data Science, etc.). Indeed,
3D surface-based models and volumetric 3D models (anatomical), volumetric 3D analy-
ses and CT have become indispensable for documentation for the permanent, integrated
conservation and presentation of tangible cultural heritage today and in the future.

The importance of 3D surface-based and volumetric 3D models and 3D computer
visualisations enriches the standards for archaeological and cultural heritage recommended
by the London Charter [10], the Seville Principles [11] and ratified international treaties.

At the same time, computed tomography and the reconstruction of 3D volumetric
(anatomical) models and 3D surface-based models from tomographic or microtomographic
images can effectively contribute to the implementation of Rule 4 of the Amendments to the
UNESCO Convention for the Protection of the Underwater Cultural Heritage, which rec-
ommends that state authorities and institutions apply nondestructive methods to cultural
heritage remains [6].

It would be appropriate for the archaeological and conservation professions to use
noninvasive computed tomography more frequently than in the past and to model suc-
cessful practises as standard methods and techniques for dealing with fragile and rapidly
degradable cultural heritage remains.

Both the algorithms for reconstructing 3D surface-based and 3D volumetric models
from CT images can be upgraded with new methods from the fields of computer vision,
deep learning and artificial intelligence. By upgrading algorithms to reconstruct 3D models,
we could complement or even replace the autonomous analytical function of humans in the
treatment and evaluation of cultural heritage remains. Experiences with algorithms such
as Deep Learning already represent a significant advance in the automatic recognition and
processing of 2D images from computed tomography. Methods and techniques ranging
from convolutional neural networks (CNNs) to variational auto-encoders (VAEs) are being
used. These artificial intelligence methods are already delivering successful results in
the automatic recognition of complex patterns in computed tomographic image data,
particularly in the faster and more efficient segmentation of features and the automatic
diagnosis of X-ray image conditions [97].
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1. Guček Puhar, E.; Korat, L.; Erič, M.; Jaklič, A.; Solina, F. Reconstruction of 3D models from microtomographic images of

archeological artifacts. In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and
Cultural Heritage, Trento, Italy, 22–24 October 2020; pp. 378–383.
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