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ABSTRACT Information theoretic-based similarity measures, in particular mutual information, are widely
used for intermodal/intersubject 3-D brain image registration. However, conventional mutual information
does not consider spatial dependency between adjacent voxels in images, thus reducing its efficacy as
a similarity measure in image registration. This paper first presents a review of the existing attempts to
incorporate spatial dependency into the computation of mutual information (MI). Then, a recently introduced
spatially dependent similarity measure, named spatial MI, is extended to 3-D brain image registration. This
extension also eliminates its artifact for translational misregistration. Finally, the effectiveness of the proposed
3-D spatial MI as a similarity measure is compared with three existing MI measures by applying controlled
levels of noise degradation to 3-D simulated brain images.

INDEX TERMS Spatial mutual information, spatially dependent similarity measures, brain image
registration, spatial entropy.

I. INTRODUCTION
Registration is a key image processing component in brain
image studies. Automatic brain image registration methods
predominantly rely on information theoretic-based similarity
measures to avoid the time-consuming and subjective pro-
cess of manual extraction of landmarks, or features and their
alignment. Mutual information (MI), based on Shannon’s
definition of entropy, is a widely utilized similarity measure
for intermodal and/or intersubject 3D brain image registra-
tion. MI was originally introduced for image registration by
Viola [1] andMaes [2]. Despite its widespread use, it has been
shown that the use of MI can result in misregistrations and
there is room for improvement [3]–[5].
MI computation has been conventionally done based on

a global spatial independency assumption over the entire
image. This underlying assumption means that there is
no statistical relationship among neighboring voxels which
is strongly violated in most medical images; this short-
coming was recognized soon after MI was introduced.
Studholme et al. [3] attempted to enhance the effectiveness of
MI by incorporating spatial dependency into its computation,

but the method resulted in limited improvement. Since then,
researchers have tried to find new ways by which inter-voxel
dependency can be taken into consideration toward comput-
ing MI.
Conceptually, the conventionalMI provides image similar-

ity based on a single voxel correspondence. However,MIwith
spatial dependency takes into consideration correspondences
of multiple adjacent voxels. Spatially dependent MI is thus
more robust to image degradation and consequently provides
more accurate image registration. This advantage is the main
motivation behind the attempts to incorporate spatial depen-
dency into the computation of MI, but these attempts need
to overcome the dimensionality problem when computing
similarity across multiple spatially dependent voxels.
Fig. 1(a) illustrates the configuration of spatially dependent

voxels in the lowest possible order of the neighboring struc-
ture. Even for the lowest order neighboring structure, the high
dimensionality of the problem prevents any direct approach
from obtaining a tractable solution. The volume of recent
works on spatially dependent similarity measures (listed in
Section II) is indicative of the keen interest among researchers
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in the brain imaging field to incorporate spatial information
into useful similarity measures such as MI. However, most
of the spatially dependent similarity measures, reviewed in
Section II, are either an ad-hoc combination of MI with var-
ious image features to capture the image spatial information
or a heuristic use of different definitions of entropy instead of
the conventional Shannon entropy.

FIGURE 1. Nearest neighbor voxels configuration and joint distribution
for (a) anisotropic and (b) isotropic random fields.

The recently introduced spatial mutual information (SMI)
in [6] provides a method for computing spatially dependent
MI while addressing the dimensionality problem by applying
the Markovianity constraint. A measure that comes closest to
SMI is the second-orderMI introduced by Rueckert et al. [4].
In Section III, we first describe the existing artifact for

translational misregistration in the recently introduced sim-
ilarity measure SMI. Then, we introduce our method for
extending this similarity measure to 3D brain image reg-
istration, making SMI a viable alternative to MI. We also
demonstrate that this extension removes the aforementioned
artifact for translational misregistration. In section IV, we
compare the effectiveness of the proposed 3D SMI with MI,
SOMI, and SMI similarity measures for 3D brain image reg-
istration using simulated T1 and T2 weighted images while
applying different levels of image degradation. Finally, we
discuss future avenues of this work and conclude the paper
in section V.

II. SPATIALLY DEPENDENT SIMILARITY MEASURES
The aim of this section is to review some of the existing
attempts to incorporate spatial dependency into the compu-
tation of mutual information, or other information theoretic-
based similarity measures. The recent upsurge in the volume
of research in spatially dependent similarity measures indi-
cates the importance of this work in the field, and the imme-
diate need for a more robust and effective spatially dependent
similaritymeasure. Fig. 1(a) shows the structure of the nearest
neighboring voxels for a pair of 3-dimentional images. Even

though the nearest neighbor structure is the lowest order in
the neighboring structure of the Markov random fields, it
results in a 14-dimentional joint probability, which is required
for the computation of MI with spatial dependency. Such a
high dimensionality makes any direct approach to compute
the joint distribution an intractable problem. The methods
reviewed in this section are mainly simplification approaches
applied to joint distribution to make the computation of MI
tractable.We beginwith homogeneity and isotropy as themost
common simplifying assumptions.
Second Order Mutual Information (SOMI) might be con-

sidered the most straightforward extension of MI to incorpo-
rate spatial dependency under both homogeneity and isotropy
assumptions. It involves the use of the co-occurrence, or Aura
matrices to estimate the four-dimensional joint probability
density function (pdf) of an image pair [4]. This measure is
given by

SOMI =
∑
x,x ′∈χ

∑
y,y′∈χ

pX ,Y (x, x
′

, y, y′)log
pX ,Y (x, x

′

, y, y′)
pX (x, x ′)pY (y, y′)

(1)

where χ denotes a finite discrete label set, pX (x, x ′) the proba-
bility that x and x ′ are adjacent in imageX, pY (y, y′) the prob-
ability that y and y′ are adjacent in image Y, pX ,Y (x, x

′

, y, y′)
the joint probability that (x, x ′) are adjacent in image X and
(y, y′) are adjacent in image Y, and (x, y) denotes a corre-
sponding voxel pair.
Unfortunately, in practice the four-dimensional joint his-

togram for estimating pX ,Y (x, x
′

, y, y′) becomes sparse, since
a typical brain image contains insufficient data samples to
adequately fill its bins. In [4], Rueckert addressed this issue
by reducing the size of the discrete label set to 16. However,
this reduces the effectiveness of SOMI as a similarity mea-
sure; this drawback is thoroughly studied by Gao [7] for the
classical MI, and also in [8] for SOMI.
In addition, SOMI is an isotropic measure, meaning that

there is no sense of directionality in the adjacent voxels.
In other words, all six voxels in the nearest neighboring
structure are treated the same andwithout direction. As shown
in Fig. 1, the 14-dimensional joint distribution for a pair of
anisotropic fields is simplified to 4-dimensional joint distri-
bution for a pair of isotropic fields. This simplification is
essential for the validity of (1), but it reduces the sensitivity of
the similarity measure to changes along different directions.
Gradient Mutual Information (GMI) is a spatial similarity

measure that is formed by combining MI and a gradient
measure [9]. GMI is formulated as follows:

GMI = G(X ,Y )I (X ,Y ) (2)

G(X ,Y ) =
∑

(x,y)∈(X,Y)

w(αx,y(σ ))min(|∇x(σ )|, |∇y(σ )|)

w(α) =
cos(2α)+ 1

2
&αx,y(σ ) = arccos

∇x(σ ).∇x(σ )
|∇x(σ )||∇y(σ )|

where G(X ,Y ) is the gradient part of the similarity measure
contributing to spatial information, |∇x(σ )| denotes the mag-
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nitude of the gradient vector of image X at point x with the
scale of σ , |∇y(σ )| is the magnitude of the gradient vector
of image Y at point y with the scale of σ , and I (X ,Y ) is the
conventional mutual information. The registration outcome
when using this similarity measure has shown some improve-
ment for multimodal affine registration in comparison to the
conventional MI [9].

The maximum distance gradient magnitude for captur-
ing image spatial information is another approach dis-
cussed in [10]. In this approach, MI was obtained from a
4-dimensional joint histogram of two images and correspond-
ing maximum distance gradient magnitudes. However, the
lack of available data samples to fill the histogram bins still
poses a challenge.

Shen et al. [11] developed a similarity measure that deter-
mines image similarities based on an attribute vector for
each voxel including gray matter, white matter, and cerebral
spinal fluid interfaces. This similarity measure was specif-
ically devised for inter-modal, inter-subject magnetic reso-
nance brain image registration requiring the segmentation of
different tissue types.

Mutual information of regions was introduced by
Russakoff et al. [12]. In this approach, a vector of intensity
values is created for every voxel in the image. The compo-
nents of these vectors involve the respective intensity values
of the neighboring voxels. These vectors form a matrix in
which the rows are assumed to be normally distributed. Thus,
the entropy is computed directly from the determinant of the
covariance matrix. The entropy of the multivariate normal
distribution is given by

H (Z)=
1
2
log|6Z|+

d
2
log(2πe) (3)

where Z is the set of multivariate normal random variables,
|6Z| is the determinant of the covariance matrix of Z, and
d denotes the dimensionality of Z. Another similar attempt
was reported in [13] in which the same matrix, with voxel
intensity values and average intensity values of the neigh-
boring voxels, was used. Although assuming a normal dis-
tribution for each row of the matrix allows estimation of its
entropy, the effect of such a substandard assumption has not
been studied.

In [14], the image joint histogram was computed along
corresponding points on random lines instead of the usual
grid pattern. Since the random lines align along any orien-
tation, the spatial information is captured to some degree.
However, the outcome depends strictly on the number of
points on the lines. Even with a minimal number (2 points),
a 4-dimensional histogram is required to be populated which
leads to the same scarcity or dimensionality problem as men-
tioned earlier.

There have also been a number of attempts to compute
image spatial mutual information based on multi-feature
mutual information [15]–[17]. In these approaches, differ-
ent features of an image are used to capture the image
spatial information instead of incorporating neighboring

voxels information. These approaches still suffer from the
dimensionality problem. One solution is to consider the fea-
ture probability distribution as normal and obtain the joint
entropy directly from the covariance matrix by (3). A reliable
estimation of the normal distribution using the covariance
matrix requires much fewer samples, yet the error in estimat-
ing the feature distribution this way has not been studied. The
feature extraction is also another issuewhen using thesemeth-
ods since this process is often done in an ad hoc manner and
there is no systematic way of obtaining the most appropriate
features.
Another similarity measure, called α-MI, was introduced

by Hero et al. [18], and was later applied to 2D data [19].
The reported results indicated that there was not a signif-
icant improvement over the conventional MI despite the
higher computational complexity. Furthermore, the algo-
rithm requires various manual interventions to make the pro-
posed α-MI a suitable similarity measure in practice for an
automatic registration procedure.
The definition of Quantitative-Qualitative MI (QMI) was

introduced in [20] and further developed in [21]. QMI is
created by adding a utility coefficient into the formulation of
the conventional MI as follows:

QMI =
∑
x∈χ

∑
y∈χ

U (x, y)pX ,Y (x, y)log
pX ,Y (x, y)
pX (x)pY (y)

(4)

where pX (x), and pY (y) are the image intensity distributions
obtained from the histograms and pX ,Y (x, y) is the joint dis-
tribution of the images X and Y under voxel independency
assumption. The coefficient U (x, y) is meant to incorporate
the spatial information into this measure. In essence, U (x, y)
is an ad-hoc combination of the saliency measure in [22] and
the image gradient. Since an optimization process is required
for every voxel of an image in order to compute this mea-
sure, its computational complexity is quite high. Even though
the reported results indicated some improvements over the
conventional MI, it is not practically useable due to its high
computational complexity.

There have also been attempts to use different definitions of
entropy instead of the classical Shannon entropy [23], as well
as other information theoretic measures such as Kullbeck–
Leibler Distance [24], entropy correlation coefficients [25]
and normalized mutual information [26]. However, the con-
cept of incorporating spatial information is not taken into con-
sideration. For instance, so-called Jumarie entropy has been
used in [27] to define a similarity measure. The expression
for the joint entropy in that method resembles the normalized
entropy of the absolute difference image. Yet the spatial
information is still not taken into consideration, thus they are
omitted from this review. Next we describe the spatial mutual
information definition and its extension to 3D images.

III. SPATIAL MUTUAL INFORMATION
A. EXISTING DEFINITION FOR 2D IMAGE
SOMI was the first systematic attempt to incorporate
the image voxel spatial dependency into the computation
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of image mutual information which was based on two
simplifying assumptions: homogeneity and isotropy [4].
Despite the inefficiency introduced by the isotropy assump-
tion, the dimensionality of the problem still prevented its full
utilization in brain image registration. Markov processes, on
the other hand, have facilitated handling high-dimensionality
problems under anisotropic conditions. For example, there
is a well-established approach using Markov random fields
(MRFs) in image modeling [28]. In [6], we made the first
attempt to compute image spatial information under the MRF
constraint, which is a more relaxed constraint than the inde-
pendency constraint. In this approach, a causal MRF model,
called Quadrilateral Markov Random Field (QMRF), was
used to compute image spatial information under the def-
inition of Shannon entropy. The spatial entropy defined in
[6] was further simplified for homogenous but anisotropic
QMRF in [29] for nearest neighboring structures as per the
following equation:

H (X) = mn(H (X ,Xu)+ H (X ,Xl)

−H (X ))−
mn
2
(H (Xu,Xl)+ H (Xu,Xr )) (5)

where m × n denotes the image size, H (X ,Xu) the
joint entropy of a voxel with its upper neighbor, H (X ,Xl)
the joint entropy of a voxel with its left neighbor, H (Xu,Xl)
the joint entropy of the left and upper neighbors, and
H (Xu,Xr ) the joint entropy of the right and upper neighbors;
see Fig. 2. Consequently, the computation of spatial mutual
information (SMI) was done from the spatial joint entropy as
follows [6]:

SMI = −mnH (X ,Y )+
mn
2

{
H (X ,Yu)+ H (Xu,Y )
+H (X ,Yl)+ H (Xl,Y )

}
−
mn
4

{
H (Xu,Yl)+ H (Xl,Yu)
+H (Xu,Yr )− H (Xr ,Yu)

}
(6)

where H (X ,Y ) denotes the joint entropy of the voxel X in
image X with the corresponding voxel in image Y, H (Xu,Y )
the joint entropy of the voxel Y in image Y with the upper
neighbor of its corresponding voxel in image X with its
counterpart as H (X ,Yu), H (Xl,Y ) denotes the joint entropy
of the voxel Y in image Y with the left neighbor of its corre-
sponding voxelX in imageXwithH (X ,Yl) as its counterpart,
H (Xu,Yl) the joint entropy of the left neighbor of voxel Y
in image Y with the upper neighbor of the corresponding
voxel X in image X with H (Xl,Yu) as its counterpart, and
finally H (Xu,Yr ) the joint entropy of the right neighbor of
voxel Y in image Y with the upper neighbor of the corre-
sponding voxel X in image X with H (Xr ,Yu) as its counter-
part. Fig. 2 illustrates the configuration of H (X ,Y ) and two
other joint entropies (H (X ,Yu) in solid lines and H (Xu,Yl)
in dashed lines) and their counterpart structures for a pair of
2-dimentional images.

An observation made in (5) and (6) is that they do not
contain all the possible joint entropies of the cliques in the
first order MRF, as shown in Fig. 2. For instance, the joint
entropy H (X ,Xu) is included but not H (X ,Xd ). This is due

FIGURE 2. Illustration of sample 2D joint entropies in the definition of
spatial mutual information.

to the homogeneity assumption in the computation of SMI
in [6]. In other words, from an implementation standpoint,
the joint histograms of (X ,Xu) and (X ,Xd ) are the same for
homogeneous random fields. Therefore, their joint entropies
would also be the same in a homogeneous random field,
which is the reason they are omitted from (5) and (6).
Next, we state the drawback associated with SMI when it

is used as a similarity measure in 3D brain image registration,
and present a solution for it.

B. ARTIFACT OF SMI AS SIMILARITY MEASURE
The formulation of SMI in terms of two-dimensional joint
entropies is made possible in (6) by the two conditional
independency assumptions given in the following equation:

Y⊥Xl/(XYl) & X⊥Yl/(YXl) (7)

where a⊥b/c indicates that a and b are independent given c.
These conditional independency assumptions generate an
artifact in translational cases since they make the SMI value
negative for cases at or around ±1 voxel misalignments [see
Fig. 3(a)]. The theoretical reason behind this drawback is that
when there is such a misalignment between X and Y images,
the assumptions in (7) are no longer valid. For example, if
the source image is a translated version of the target image
with a±1 voxel misalignment along the x-axis, then the joint
entropies H (X ,Yl) or H (Xl,Y ) in (6) drop to their minimum
value of H (X ). On the other hand, the conditional indepen-
dency assumption in (7) implies that H (X ,Yl) ≥ H (X ,Y )
(data processing inequality mentioned in [30]; MI (X ,Yl) ≤
MI (X ,Y )). In fact, all the joint entropies in (6) need to be
always greater than H (X ,Y ) under the conditional indepen-
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dency assumptions given in (7). However, this condition is
violated on or around ±1 voxel misregistration. This is the
main reason that it becomes negative around these points.

FIGURE 3. SMI curves computed between simulated T1 brain image and
its translationally misregistered version over (a) axial (b) sagittal, and
(c) coronal slices. (d) SMI3D curve for the same registration.

The above problem is addressed in [6] by using the absolute
value of the SMI. However, this approach introduces two local
optimum points for translational misregistrations causing dif-
ficulty in the optimization process of registration. An alterna-
tive solution is proposed next by extending the definition of
SMI to 3D brain image volumes with the added benefit of
eliminating its translational artifact. The 3D SMI, hereafter
called SMI3D , matches well with magnetic resonance brain
images that are captured in 3D.

C. SMI FOR 3D BRAIN IMAGES
Mathematical computation of SMI for pairs of 3D images
requires a theoretical expansion of the definition of QMRF
to include 3D random fields, an expansion which does not
exist at this time. In this work, we have considered a different
approach to incorporate the 3D spatial information into the
computation of SMI. Fig. 4 provides an illustration of the
proposed approach. In this figure, a brain volume (top left) is
translated along the x-axis (top right) and the corresponding
cross-sectional slices are shown. As seen in the figure, the
effect of 3D translation of the whole volume is different
along different cross-sections. While the sagittal and axial
slices experience the same translational shift along the x-axis,
the coronal slices exhibit a total slice change. Therefore, in the
case of−1 or+1 voxel translation, the SMIs computed for the
sagittal and axial slices are negative whereas the SMI com-
puted for the coronal slices remains positive. Consequently,
one can simply consider a new SMI for 3D brain images as
the product of the individual cross-sectional SMIs, that is

SMI3D = SMIa × SMI s × SMI c (8)

where SMIa is the SMI computed on the axial slices, SMIs
the SMI computed on the sagittal slices and SMIc the SMI

computed on the coronal slices. The computed SMIa, SMIs,
and SMIc are different due to the fact that they take into
account the 2D spatial dependency in different cross-sectional
planes. For the case of translational misregistration, only two
of the SMIs become negative at or around ±1 misalignment
points, which ensures that the final product is always positive.
It should be noted that this drawback occurs only in the
translational type of misregistration.

FIGURE 4. Illustration of changes in the cross-sectional slices of a typical
3D brain image for a translational misregistration.

Finally, it should be added that in the case of 3D images
all the existing cliques in the neighboring structure of the
first order QMRF need to be included. Even though these
additional cliques would not change the final outcome for the
spatial mutual information of a homogeneous random field
(as described in [29]) for SMI3D, it is necessary to include
them to ensure the positivity constraint of this similarity
measure. This way, the new SMI is given by the following
equation,

SMI

=−mnH (X ,Y )+
mn
4

H (X ,Yu)+H (Xu,Y )+H (X ,Yd )
+H (Xd ,Y )+H (X ,Yl)+H (Xl,Y )
+H (X ,Yr )+H (Xr ,Y )


−
mn
8

{
H (Xu,Yl)+H (Xl,Yu)+H (Xd ,Yl)+H (Xl,Yd )
+H (Xu,Yr )+H (Xr ,Yu)+H (Xd ,Yr )+H (Xr ,Yd )

}
(9)

where the 2-dimensional joint entropies are the same or coun-
terparts of the ones stated in (6), see Fig. 2. This 3D extension
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not only solves the artifact of SMI in translational misregistra-
tion, it also produces a more effective similarity measure due
to the fact that it captures 3D spatial dependency. Next the
effectiveness of the new measure SMI3D is examined using
simulated T1 and T2 weighted brain images. In addition, its
performance is compared with the classicalMI, SOMI and the
2-dimensional SMI.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we used simulated 3D brain MRI scans to
examine the effectiveness of SMI3D as a similarity measure
for 3D brain image registration.

A. DATA
In order to evaluate and compare the performance of
SMI3D for 3D brain image registration, we used digital
brain phantom images of the BrainWeb database with two
simulated structural MR images: T1-weighted (T1), and
T2-weighted (T2). The BrainWeb images have been used
extensively to study the performance of anatomical brain
mapping techniques such as nonlinear co-registration, corti-
cal surface extraction, and tissue classification [31]. The main
advantages of using this database are: (i) the answer is known
prior to experimentation, and (ii) imaging parameters can
be controlled independently. Since the source for simulation
of all the images is the same digital phantom, one has a
systematic means of establishing a gold standard for regis-
tration and control over the level of image degradation for
all the modalities. We obtained T1 and T2 brain images with
1mm isometric voxel resolution directly from the BrainWeb
database. These images were next intensity normalized to the
range of (0 ~255) by scaling the range of the original image
histogram which contains 99% of the total image energy.
Different levels of image degradation (noise) were applied
to those images by adding a random Gaussian noise to the
images with the variances that gave the desired percentages
of noise energy.

B. EVALUATION
We first examined the elimination of the translation misreg-
istration artifact in SMI when using the new measure SMI3D.
Next we compared the effectiveness of SMI3D to the classical
MI, SOMI, and SMI.

Using bilinear interpolation, we generated translated
versions of the T1 scan with step size of 0.1 mm and along
the x-axis. The translated version of the image simulated the
misregistrated image for our experiments. We then computed
SMI over all the three slices and finally SMI3D in every step of
the simulation. Fig. 3 shows the outcome of this experiment;
Fig. 3(a) shows the curve for SMIa, Fig. 3(b) for SMI s, and
Fig. 3(c) for SMI c which were computed for the axial, sagittal
and coronal slices, respectively. As shown in this figure, the
translation along the x-axis caused both SMIa and SMI s to
become negative at or around ±1, whereas SMI c remained
positive during the entire translational misregistration pro-
cess. It is important to note that even though Fig. 3(a) and (b)

look similar, they are different since they show the SMI value
computed on different slices.
Fig. 3(d) shows the SMI3D curve for the translational

misregistration along the x-axis. As shown in this figure,
all the negative drops in the SMI curves got removed in
SMI3D. In addition, the SMI3D curve appeared monotonically
and smoothly decreasing which is a suitable characteristic
of similarity measures for optimization purposes. It is worth
pointing out that the two tiny spikes visible at ±1 are due to
interpolation.
Fig. 3 shows that the translational artifact was removed

by using SMI3D for the translation misregistration along
the x-axis; however, it is also straightforward to show that
for the translation along the y/z axes, this artifact will
also be removed by SMI3D. The only difference would be
that for the translation along the y/z axis, SMI s/SMI c and
SMI c/SMIa will be negative at or around ±1 misregistration,
and SMIa/SMI s will remain positive at all times.
Next we examined the effectiveness of SMI3D in register-

ing intermodal and noisy images from the BrainWeb dataset.
We startedwith the noiseless case and then increased the noise
level step by step till it reached 20% of the image energy.
The first column in Table 1 lists all the eight registration
cases in this experiment. Wemanually generated translational
(30 mm) and rotational (5 degree) misregistrations on one
of the images, which is indicated by italic font in the first
column. The registration start point was the same for all the
eight cases and no optimization or regularization was applied
in this experiment. This ensured that only similarity measures
got evaluated and the other aspects of the registration were
kept constant or got eliminated. We considered a registration
to fail when the registration result deviated by more than
0.5 mm / 0.1 degree from a perfect alignment for transla-
tional/rotational misregistration.
We tested the effectiveness of the four different similarity

measures of MI, SOMI, SMI, and SMI3D in our final exper-
iment. The second and third columns in Table 1 give the
registration results for the translational and rotational misreg-
istration for the classical MI. The fourth and fifth columns
give the results for SOMI, the sixth and seventh columns for
SMI, and the eighth and ninth columns for SMI3D. As can be
seen from this table, SMI3D outperformed all the other simi-
larity measures by successfully registering all the registration
cases except the one with the highest noise level. SMI failed
in three cases, SOMI failed in 6 cases, and the classical MI
failed in 10 cases.
While the experimentations here have been limited to sim-

ulated images due to our ability to control the noise level and
access to gold standard, one can clearly see the superiority of
SMI3D to the other similaritymeasures. Our experimentations
have shown a linear stepwise improvement in this order:
MI, SOMI, SMI, and SMI3D. However, full evaluation of the
proposed similaritymeasure under different registration prob-
lems, similar to the one introduced in [32], is still required to
make the final conclusion about the superiority of the SMI3D
in comparison to the existing similarity measures.
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TABLE 1. Registration test results (pass/failed = X) for registering T1 target image to degraded and spatially transformed T2 source image using MI,
SOMI, SMI, and SMI3D.

Finally, it is important to note that the product of three
different 2D spatial mutual information mathematically does
not give another mutual information. The proposed measure
is merely a similarity measure which combines the three
existing spatial information for three different cross-sections
of a 3D image. The fully characterized 3Dmutual information
requires the extension of QMRF to 3D random fields, and the
derivation of SMI from such fields.

V. CONCLUSION
This paper has described the importance of incorporating
spatial information into the computation of image mutual
information and reviewed previous attempts at computing
mutual information with spatial dependency. It was shown
that the recently defined spatial mutual information has an
artifact in the case of translational misregistration, which
was remedied by considering the proposed spatial mutual
information for 3D brain images. The proposed similarity
measure not only addresses the shortcoming associated with
translational misregistration, but it also captures 3D, instead
of 2D, brain image spatial dependency. The effectiveness of
SMI3D as a similarity measure was assessed by applying con-
trolled noise levels to simulated brain images and compared
to some of the existing similarity measures. Even though
the utilization of simulated T1/T2 images has facilitated the
evaluation of the introduced similarity measure in this work,
an evaluation of this measure via real images seems to be the
next natural step of this work.
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