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The precise determination of de novo genetic variants has
enormous implications across different fields of biology and
medicine, particularly personalized medicine. Currently, de novo
variations are identified by mapping sample reads from a parent–
offspring trio to a reference genome, allowing for a certain degree
of differences. While widely used, this approach often introduces
false-positive (FP) results due to misaligned reads and mischarac-
terized sequencing errors. In a previous study, we developed an
alternative approach to accurately identify single nucleotide vari-
ants (SNVs) using only perfect matches. However, this approach
could be applied only to haploid regions of the genome and was
computationally intensive. In this study, we present a unique ap-
proach, coverage-based single nucleotide variant identification
(COBASI), which allows the exploration of the entire genome using
second-generation short sequence reads without extensive comput-
ing requirements. COBASI identifies SNVs using changes in cover-
age of exactly matching unique substrings, and is particularly suited
for pinpointing de novo SNVs. Unlike other approaches that require
population frequencies across hundreds of samples to filter out any
methodological biases, COBASI can be applied to detect de novo
SNVs within isolated families. We demonstrate this capability
through extensive simulation studies and by studying a parent–off-
spring trio we sequenced using short reads. Experimental validation
of all 58 candidate de novo SNVs and a selection of non-de novo
SNVs found in the trio confirmed zero FP calls. COBASI is available
as open source at https://github.com/Laura-Gomez/COBASI for any
researcher to use.
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The identification of variations among genomes is the starting
point for a diversity of projects to understand human health

and disease. It is such an important step that several large in-
ternational consortia have been established, such as the HapMap
Project (1, 2) and the 1000 Genomes Project (3, 4), to catalog
variations among different healthy human populations, as well as
several large consortia to examine genetic variations associated
with different diseases, such as the International Cancer Ge-
nome Consortium (5) and the Cancer Genome Atlas Project (6)
to identify variations between normal versus cancer cells. A
particularly important type of variation, de novo variants, are
those variants that occur spontaneously between parents and
children, and have been implicated in a variety of diseases, such
as autism, intellectual disabilities, and schizophrenia (7–9).
Several bioinformatic pipelines have been developed to iden-

tify single nucleotide variants (SNVs). Most of these begin by
mapping sequencing reads from the sample to the reference
genome (RG), allowing some number of mismatches or indels
using one of a number of short-read aligners [Burrows–Wheeler
aligner (BWA), Bowtie, etc.] (10). A mapping quality score is
reported to reflect the probability of the read being correctly
mapped. The mapped reads are then used to make genotype

assignments using computational tools, such as SAMtools (11) or
Genome Analysis Toolkit (GATK) (12), which evaluate the
alignment of reads at every position along the genome and assign
a confidence score to indicate the probability of the existence
of a variant. This is achieved using statistical inference algo-
rithms, which are necessary because imperfect alignments create
uncertainty about the position assigned to each read and sequencing
errors can induce false variants (11, 12). Various correction steps,
such as around-indel realignment or quality recalibration, have
been proposed to correct for common artifacts. However, most
of these steps require a database of known variants (13). Finally,
to correctly assign each genotype, the likelihoods for each possible
genotype are calculated based on the observed data, modeling
both alignment accuracy and sequencing accuracy. Different
scoring schemes have been used to compute the probability that
the read has been correctly mapped (14) and the genotype has
been correctly assigned to ultimately indicate the overall confidence
in the results. Additionally, some pipelines specialized for finding
de novo variants incorporate stringent filtering based on each
individual genotype likelihood (15–17). These pipelines also of-
ten use population-specific samples to identify and filter out any
methodological bias (15–17, 18) or they require a predetermined
de novo mutation rate and population-specific allelic frequencies
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to calculate the probability of the called de novo variant being a
false positive (FP) (19, 20).
These methods are needed to overcome an apparent paradox:

when sequence reads are aligned to a reference genome, some
degree of mismatch must be tolerated, since variation would not
be detected by using only perfect alignments. On the other hand,
because of the highly repetitive and complex structure of the
human genome, the tolerance of mismatches could result in the
misplacement of some reads, introducing false variants. Our
group has addressed this paradox by applying a different ap-
proach to the problem of detecting SNV’s in human genomes
called context-dependent individualization of nucleotides and
virtual genomic hybridization (COIN-VGH) (21). It is based on
perfect alignments of unique substrings of a specific size (k;
kmers) of the sequencing reads to the reference genome. As a
proof of concept, the COIN-VGH approach was previously used
to identify SNVs in a haploid region (nonpseudoautosomal
region of the chromosome X) of Craig Venter’s and James
Watson’s genomes using the same Sanger or 454 sequencing data
as in the original studies (22, 23). Despite the success in elimi-
nating false-positive calls over alternative approaches, COIN-
VGH has important limitations for its widespread use: (i) it can
only be used in haploid regions of the genome, (ii) it requires
relatively long reads, and (iii) the algorithm is time consuming
and utilizes a large amount of random-access memory (RAM)
and disk storage.
Addressing these issues, we have developed a unique ap-

proach, called coverage-based single nucleotide variant identifi-
cation (COBASI). COBASI builds on the original COIN-VGH
approach but can be used to call variants from both haploid and
diploid regions of the human genome and works with 30× or
greater fold coverage (it has been used in datasets with as much
as 100× fold coverage) of second-generation short sequence
reads. In addition to circumventing the previous limitations of
COIN-VGH, the approach is particularly suited to identify de
novo SNVs through the joint analysis of a parent–offspring trio
sequencing data. To evaluate COBASI, we first apply it to a
diverse collection of simulated sequencing data and show that its
performance is similar or superior to alternative approaches. We
next apply it to the whole genomes of a parent–offspring trio we
sequenced using Illumina sequencing and identified de novo
SNVs across the entire child genome. From this, we discover
58 de novo SNVs, and all predicted de novo SNVs were exper-
imentally confirmed as correct (zero false positives). Further-
more, the computing time and resources required for the
bioinformatics pipeline have been significantly reduced, allowing
for its routine application over many human datasets or other
large mammalian datasets with a high-quality reference genome.
Thus, COBASI is a powerful tool to systematically scan genomes
for regions of interest for a broad range of applications.

Results
Rationale of the COBASI Approach. When a single specific nucle-
otide is searched along the genome, the position to which it
belongs cannot be unambiguously determined. If two adjacent
nucleotides are incorporated into the search, the set of possible
locations is reduced, although it remains quite large. At some
point, however, the context of the target nucleotide will contain
enough information to unambiguously determine its unique or-
igin position (Fig. 1A). In our previous research, we defined
COIN-Strings (CSs) as the set of all overlapping sequences (with
a one-nucleotide sliding window) from the reference genome of
a specific size (k) that are uniquely localized. Thus, each nucleotide
along the reference genome is contained in, at most, k CSs.
COBASI extends this analysis of CSs to robustly find varia-

tions in the sample across the entire genome. When a SNV is
present in a sample at a particular position X, it is expected that
about half the reads for heterozygous SNVs, or nearly all of the

reads in homozygous SNVs that overlap with X will contain the
SNV. Accordingly, the CSs that include X will be present only in
the reads that do not contain the alternative allele. This can be
translated into specific patterns that are designated as variation
signature regions (VSRs) (Figs. 1 C and D and 2A). Once can-
didate regions are identified, local alignments between the reads
and the genome at the regions of interest will uncover the nature
of the specific variants.

De Novo SNV Discovery Using the COBASI Pipeline. Based on the
rationale presented, we designed and implemented a strategy to
detect de novo SNVs from a parent–offspring trio. First, all of
the CS positions from the reference genome are computed. We
define the COBASI-accessible genome as regions at least 100 bp
long for which at least 50% of the kmers starting inside the re-
gion are CSs using k = 30 bp. Even though more than 50% of the
human genome is classified as repetitive sequences (24), the vast
majority (around 84%) of the genome can be interrogated using
COBASI (SI Appendix, Table S1).
Next, all of the SNVs from the child individual are identified

by analyzing the variation landscape (VL). The VL is a repre-
sentation of the number of reads that contain each CS sequence
(coverage) along the whole genome (Fig. 2A). To magnify the
difference in coverage between two adjacent CSs, the VL was
transformed into a relative variation landscape (RVL) using a
relative coverage index (RCI), measured on a scale from −1 to
+1 (Fig. 2B). Under this formulation, the RCI is close to zero
when there is little to no difference in coverage, and its absolute
value approaches 1 when abrupt differences occur, most often
because of underlying genetic variation (Fig. 2C). Since the RVL
is variable in low-coverage regions, a coverage threshold was
established to avoid noise in the VSR identification process
(Materials and Methods).
From the RVL, the VSRs can be identified spanning any

candidate mutations. We define the last CS before the start of a
VSR as PrevCS, and define the first CS after the end of a VSR as
PostCS, and both of these CSs we call signature CSs. Next, reads
containing perfect matches to the signature CSs are identified
and global alignments between the corresponding region in the
reads and the genome are computed. Finally, the variant nucleotides
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Fig. 1. Rationale of the COBASI approach. (A) A specific nucleotide (large
bold C) cannot be uniquely localized along the genome until its context is
included in the search. (Left) The string to be searched; (Right) the number
of positions at which such a string is found. The bottom string is a COIN-
String (CS) of 30 nt. (B–D) (Upper) Schematic representation of sequence
reads. (Lower) Specific regions of variation landscapes (VLs) for three sce-
narios. (B) No variation signal. (C) A heterozygous SNV variation signal. (D) A
homozygous SNV variation signal. Black lines in B, C, and D represent reads
from the genome project that contain the reference allele. Red lines rep-
resent reads from the genome project that contain the SNV allele. The
sections of the VL in ref. 2 are represented by blue lines. The x axis indicates
the genome position for every CS start. The y axis indicates the number of
reads containing the CS sequence starting at that position.

Gómez-Romero et al. PNAS | May 22, 2018 | vol. 115 | no. 21 | 5517

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802244115/-/DCSupplemental


in the reads are highlighted in the local alignment to identify the
specific SNV (Fig. 3). Since CSs are guaranteed to be unique in the
genome, and only perfect matches are considered, no other quality
filters are required.
To discover the de novo SNVs, variable positions in the child are

next interrogated in the parents. For each SNV in the child, its
signature CSs were used as anchors to retrieve the reads of interest
in the parents. Those reads from the parents are then aligned to the
RG using the above procedure. A catalog containing all of the child
SNVs and the alleles found in each parent for the same positions is
then generated. The genotypes for each individual are assigned and
compared, so that candidate de novo SNVs can be identified (Fig.
4). We considered as bona fide de novo variants those not found in
either parent in more than one alignment containing both signature
CSs, which are considered as high-quality alignments.

Performance of COBASI by Simulation Experiments. We first evalu-
ated COBASI relative to the most commonly used pipelines
through simulation experiments considering several different
sequencing depths, kmer sizes, and other internal parameters (SI
Appendix, SI Materials and Methods). Mutations were introduced
into one human diploid chromosome (chromosome 12), simu-
lated reads were produced, and SNVs were called using
COBASI. We quantified the performance using the widely used
area under the precision-recall (AUPR) curve statistic.
The best performing parameters were derived from the sim-

ulation experiments. Over all of the tested sequencing depths,
the best kmer size was 30, and the best ratio between the cov-
erage of both signature CSs was 2.0. This maintained a low
number of FPs while not significantly increasing the false nega-
tives (FNs). Values of 0.2 or 0.3 for the RCI threshold had very
similar AUPR scores. In contrast, the best value for other key
parameters depended on the sequencing depth. If the sequenc-
ing depth was 35×, the minimum coverage for the signature CSs
was 5, the optimal extension for alignments that contain only the
PrevCS was 5 bp, and the minimum number of alignments with

both CSs was 2. If the sequencing depth was 100×, the minimum
coverage for the signature CSs was 10, the optimal extension for
alignments that contain only the PrevCS was 5 bp or 10 bp, and
the minimum number of total alignments with both CSs was 3 or
4. Once the best performing parameters were identified, the AUPR
ranged from 0.94 to 0.96. To compare COBASI performance with
the performance of the most commonly used variant-calling
pipeline, the SNVs were also called from the simulation experi-
ment with a sequencing depth of 100× using a combination of
BWA, Picard Tools, and GATK. The AUPR was 0.99, while the
AUPR obtained for COBASI was 0.96. However, the time required
to obtain a list of SNVs from raw sequencing data was incredibly
reduced, from more than 30 h in the case of the standard
alignment-based pipeline to less than 6 h required by COBASI.
Besides, in a previous study, Hwang et al. measured the per-

formance for any combination of three different mappers and

Retrieve
reads 

Reads

Count
kmers

Kmer
 count 

database

Obtain 
unique
 kmers

CS 
database

Kmer read count 

Reference 
Genome

Merge

egarevoC

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Align 
read-reference 

A

B

C

D

E

Fig. 3. The COBASI experimental pipeline for SNV discovery in one indi-
vidual. (A, Left) Every overlapping 30-nt kmer (with a sliding window of 1 nt)
along each of the reads of the sequencing project is obtained (only 3 kmers
are shown per read). The counts for every kmer are stored in a database.
Reads and read kmers are shown as gray and light gray lines, respectively. (A,
Right) CS along the RG is obtained, and the start and end positions of all
nonoverlapping unique regions is stored. RG and RG kmers are shown as
purple and light purple lines. (B) The two virtual products are merged and
the variation landscape (VL) is generated. (C) A region of the VL containing
one heterozygous SNV is presented. The plot shows the start position of
each CS along the genome (x axis) and each CS coverage (y axis). The VL is
represented as a blue line. The VL is transformed into the RVL. Only the VL is
depicted. The start position of the PrevCS and the PostCS are indicated by
vertical orange and yellow lines, respectively. The PrevCS and PostCS are
represented by horizontal orange and yellow lines, respectively. Some
interCSs are shown as horizontal brown lines. The position of the SNV is
shown as a red vertical line. All CSs located between the Prev- and PostCSs
(interCSs) contain the SNV position. (D) The Prev- and PostCSs (signature CSs)
are used as anchors to retrieve all of the reads of interest (Materials and
Methods). (E) Each of the retrieved reads is then aligned with the corre-
sponding region of the RG. An aligned read-RG region is shown. The SNV
position and specific nucleotide is highlighted in a red rectangle.
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Fig. 2. Variation landscape transformation into a relative coverage land-
scape. (Left) A homozygous SNV is shown. (Right) A heterozygous SNV is
shown. (A) The VL for a region composed of 30 nt upstream and 30 nt
downstream of each VSR is shown. The plots show the start position of each
CS in that genomic region (x axis) and the coverage for each CS (y axis). (B)
The VL is turned into the RVL using the RCI. RCIn refers to the relative coverage
index for nucleotide n. Cn and Cn1 denote the number of reads that contain
the CS starting at nucleotide n and the next downstream CS, respectively. (C)
The RVL for the same regions shown in A. The plots show the start position of
each CS (x axis) and RCI values associated with each CS (y axis). The VL and the
RVL are represented by blue lines. The PrevCS and PostCS are shown as orange
and yellow lines at the Bottom of each plot, and their start positions are
highlighted with dashed black vertical lines (SI Appendix, Fig. S1).
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three different callers for any of 11 datasets (10). In most cases,
the AUPR for COBASI was similar to previously reported
AUPRs, even though Hwang et al. used only exome data (about
2% of the genome) and COBASI was tested on the whole
callable genome (about 84% of the genome) (SI Appendix,
Tables S2 and S3).
We next measured the performance of de novo SNV discovery

by COBASI using parent–offspring trio simulations. A trio of
parent–offspring genomes was created following Mendelian in-
heritance along with a limited number of de novo variants (with a
median of 35 de novo SNVs per simulation) (Materials and
Methods), from which sequencing data were simulated. The se-
quencing depth was chosen to resemble our experimental se-
quencing data: 35× for the parents and 100× for the child. The
de novo SNVs were then called using COBASI. The experiment
was repeated five times, so that robust median accuracy values
could be computed. The median precision obtained was 1.0 and
the median recall was 0.91 with a median of 32 true positives
(TPs), 3 FNs, and 0 FPs.
As with any variant detection pipeline, sufficient sequencing

coverage is required to accurately detect mutations. To examine
this for COBASI, we plotted the precision-recall curve ordered
by the available coverage, defined as the number of alignments
that contain the variant. The median AUPR across all coverage
values was 0.86. However, most of the errors were found in
low coverage variants, and with a reasonable coverage level
(>10 reads), the median precision and recall for de novo simu-
lations were 1.0 and 0.91, respectively. In one individual exper-
iment, the precision and recall at the same coverage threshold
were 0.9999 and 0.9613, respectively. Thus, the de novo discov-
ery pipeline was more precise than the whole-genome pipeline at
the expense of a small degree of sensitivity. Using the same
simulated data, the de novo SNVs were called using the standard
practices of the most commonly used alignment-based pipeline,
resulting in an AUPR of 0.91. Thus, the COBASI performance
can be compared with state of the art pipelines reducing the time
required to complete the variant-calling process.

COBASI Application in a Family-Based Framework. We next applied
the de novo discovery COBASI pipeline to find genome-wide
SNVs in a parent–offspring trio we sequenced using Illumina
sequencing (Materials and Methods). Here we used the best
performing parameters determined from the simulation experi-
ments. Additionally, we considered as bona fide de novo variants
those not previously reported in public databases, such as
dbSNP, since the probability of two independent individuals

having a de novo mutation event at the same nucleotide is very
low (SI Appendix, SI Materials and Methods). Using these pa-
rameters, we found 2,912,889 SNVs in the discovery individual
and 58 de novo variants (Fig. 5).
The 58 de novo SNVs and a selection of two randomly chosen

SNVs per chromosome (46 random variants total) identified in
the child were selected for experimental validation via PCR and
Sanger sequencing. In the case of the de novo variants, for five
cases no PCR product could be obtained and one case could not
be properly sequenced. For all 52 de novo mutations that could
be sequenced, the Sanger sequencing confirmed that each pre-
dicted SNV represented a real de novo variant. SI Appendix,
Table S4 presents the genomic coordinates, the genotype for
each individual, and the results of the experimental validation for
every de novo SNV. SI Appendix, Fig. S2 presents the experi-
mental validation for each individual of the family trio for 10 de
novo variants, chosen at random. All of the 46 Mendelian vari-
ants were successfully validated (SI Appendix, Fig. S3 and Table
S5) (five examples).

Discussion
To find de novo SNVs in sequenced genomes, the COBASI
approach represents a fast and precise solution to the variant-
calling problem. It is based on the concept that by using only
perfect matches of unique substrings to a reference genome,
variation can nevertheless be found with great precision. In this
study, we used unique DNA strings of 30 nucleotides, which can
interrogate about 84% of all of the base pairs of the complete
reference genome. Importantly, this percentage was calculated
to include all repetitive sequences, such as low-complexity re-
gions and segmental duplications of high identity. Larger strings
would identify a greater percentage of the genome, although this
will become more sensitive to any sequencing errors in the reads.
The VL constructed in the first stages of our approach rep-

resents a powerful tool to pinpoint regions of polymorphisms by
identifying abrupt changes in local coverage. Moreover, these
sharp differences were proven to be robust to noisy coverage
fluctuations found in any sequencing project. The VL is gener-
ated in a fast, computationally efficient process and represents a
comprehensive description of the read coverage across the ge-
nome at a single-nucleotide resolution.
The identification of de novo variants is a particularly chal-

lenging task because any false-positive calls in the child or any
false-negative calls in the parents result in a variant incorrectly
identified as de novo. To address this challenge, several spe-
cialized algorithms that analyze sequence data for all family in-
dividuals have been proposed. These algorithms rely on a prior
probability of de novo mutations that is used to compute a
posterior probability for each de novo mutation being correctly
identified (11, 25). These algorithms therefore must be trained
with a set of quality metrics obtained from a previously validated
positive and negative set of variants (26). In addition, in previous
reports, large populations are needed to remove the artifacts
produced by the sequencing process, along with stringent quality
filters to identify bona fide de novo variants (15–17, 27).
The strategy presented in this work is based on the most re-

liable types of alignments: perfect matches of unique strings of
the genome followed by an analysis of the resulting alignment
coverage. Other algorithms rely on less reliable alignments of
imperfect matches spanning repetitive sequences and establish-
ing probability thresholds to measure the quality of the findings.
The performance of COBASI was assessed by simulation ex-
periments, and for SNV discovery in one individual, we obtained
an AUPR of 0.94 and 0.96 for a sequencing depth of 35× and
100×, respectively. In most cases, the AUPR for COBASI was
similar to previously reported AUPRs (10), even though pre-
vious reports only used exome data, which represents about 2%
of the genome. For de novo SNV discovery, we obtained a
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Fig. 4. The COBASI experimental pipeline for SNV discovery in a family-
based framework. (A) For each SNV in the child, its signature CSs are used as
anchors to retrieve the corresponding reads in the parents. The reads are
then aligned to the RG. (B) A catalog containing all child SNVs and the alleles
found in each parent at the same positions is generated. The three geno-
types are then compared, and the possible de novo SNVs are identified.
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precision of 1.0 and a recall of 0.91 using COBASI, while a
precision of 0.89 and a recall of 1 were obtained if the de novo
SNV discovery was done by alignment-based approaches.
COBASI achieves a good compromise between the increase of
precision at the expense of a small decrease in recall. Further-
more, COBASI was tested on the whole callable genome, which
constituted about 84% of the genome. It is also much faster than
alignment-based approaches to achieve similar accuracy.
The precise identification of variant sites by COBASI relies

on global alignments that include the variant site and two
unique strings, one string located at each side of the variant
site. Due to the small size of the reads, only small insertions or
deletions would generate these high-quality alignments. Fur-
thermore, in such cases, specialized aligners and detection al-
gorithms would be required to pinpoint the variant positions.
Incorporation of these specialized algorithms could be an ex-
tension of COBASI’s scope.
The computing resources and time required by COBASI en-

able its routine utilization. Generating a whole-genome SNV list
from 35× raw sequencing data requires around 40 h on a com-
puter server with 12 cores and 64 Gb of RAM. Moreover, the
whole-genome variation landscape can be generated in only 8 h.
Furthermore, if only some regions of interest are chosen to be
investigated, the time required to generate a list of SNVs can be
greatly reduced (SI Appendix, Table S6).
In this work, we analyzed the whole-genome sequencing of a

parent–offspring trio sequenced to a genome coverage of 35× for
the parents and 100× for the child. We did not assume any a
priori de novo mutation rate. We applied coverage filters, but
not quality filters on the reads. Regardless, we found no false
positives in either our de novo SNV predictions or in the ran-
domly selected Mendelian SNVs. Moreover, we found 58 de
novo SNVs, and this number is consistent with the number of de
novo SNVs expected from the previously reported germline
mutation rate, 1.0–1.8 × 10−8 per nucleotide per generation,
which translates into 44–82 de novo SNVs per individual (9, 28).
This was accomplished because our approach combines a highly
sensitive discovery in the child genome with an exhaustive vali-
dation in both parents. The number of discovered variants could
be an underestimate, given that we can only interrogate 84% of
the genome. However, with a world-wide sequencing capacity
tending toward hundreds of thousands of genomes each year
(29), our main interest is in maximizing the precision in the
called variants to diminish as much as possible the extent of
experimental validation that is required.
Recently, some publications have addressed the issue of

calling SNVs by implementing mapping-free strategies. Known
SNVs have been identified from sequencing reads if unique
kmers containing the alternative allele are present in the reads
(30). A Burrows–Wheeler transform of the reads was used to
localize SNVs based on differences in kmer frequency (31).
Changes in kmer frequency have been used to reconstruct
haplotypes from genomic regions harboring long variants, this
strategy focused on specific regions of the genome (32). A re-
cently published work from our group used kmer frequency
changes to identify variants along natural genomes and syn-
thetic chromosomes of haploid yeast strains (33). However, no
previous work has focused on finding de novo SNVs in human
whole genomes.
COBASI could be used to identify SNVs from different or-

ganisms, since the successful application of COBASI is only
limited by the ploidy of the organism and the fraction of its ge-
nome that can be represented by unique strings. Within a single
genome this approach can also be used to analyze CSs from
particular regions of interest, such as a cancer gene panel or
other sets of genes, thus speeding up the analysis time. We
propose that the general principle underlying COBASI can be
used in a broad range of applications, including personalized

A

CHR        POS         REF
11        66915741      A   

 T C

B

D

E

C

0
6

0

0 20 6040 80

0
4

0
8

0
-1

.0
0

1
.0

1
2

0

0 20 6040 80

0 20 6040 800 20 6040 80-1
.0

0
1

.0

0 20 6040 80-1
.0

0
1

.0

0 20 6040 80-1
.0

0
1

.0

CHR     POS       REF 
X        8928469     T      

T/Y*

C/C*          

C/T

A/A* 

A/A* 

A/G* 

A   T   C   A   G   A   T  G   C  T   G

A   T   C   A   G  G   T   G   C  T   G

C   A   G C  A   C C T   G    A T

G   A   C   T T  T A G   G   A  T

G    A  C   T T  T A  G   G  A  T

G    A C   T T  T A  G   G  A  T

Fig. 5. Experimental example of the COBASI strategy in the family-based
framework. (Left) A Mendelian SNV is shown. Position 1 in the plots cor-
responds to chrX position 8928409. (Right) A de novo SNV is shown. Posi-
tion 1 in the plots corresponds to chr11 position 66915681. (A) The
corresponding section of the VL is shown for each parent–offspring trio
individual: the red, green, and purple lines correspond to the VL for the
father, mother, and child, respectively. Since the Mendelian SNV is located
in the chrX, the father has around half the coverage of the mother. (B) The
RVL is shown for both parents. (C) The RVL is shown for the child. (D) The
nucleotide present at the RG is shown. (E ) The chromatograms obtained by
Sanger sequencing for these regions are shown. The genotypes obtained
for each individual by the COBASI approach are shown in bold letters. An
asterisk next to the individual genotype indicates that the chromatogram is
in the reverse orientation. The SNV position is shadowed according to the
individual color code.
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genomics, family studies, population genetics, ancient DNA
studies, and metagenomics. It could also be used for general
correlations between genotype and phenotype, such as different
disorders characterized by the presence of de novo mutations,
such as intellectual disability, autism, and schizophrenia (7–9).

Materials and Methods
COBASI Pipeline. The program Jellyfish (34) was used to count the number of
occurrences of each kmer (k = 30) along the reads. To eliminate possible
sequencing errors, all unique kmers were discarded. From the Jellyfish da-
tabase, the count for every kmer along the RG was retrieved using the cov-
plot script from the AMOS repository (35), and the read-based kmer counts
associated with CSs were kept to generate the VL. The VL contained the start
position for every CS along the genome and its number of occurrences in the
reads (coverage). To identify CSs with abnormal coverage for each simula-
tion or sequencing experiment, a coverage threshold was calculated. It
corresponded to the median of the coverage [+/−]10 interquartile range
(IQR), and ∼99.99% of the CSs had coverage values inside this rank. The VL
was transformed into the RVL using the RCI. All CSs with an abnormal cov-
erage were not taken into account.

In the child, the VSRs were identified from the RVL. Specifically, COBASI
searches for regions with an abrupt drop in coverage followed by an abrupt
rise in coverage. These partial VSRs were extended at most k nucleotides
upstream and k nucleotides downstream. To characterize drastic changes in
coverage, we required a minimum coverage as well as a minimum absolute
value for the RCI for each of the signature CSs. Additionally, to extend the
partial VSRs, a maximum ratio between the coverage of both signature CSs
was established. The reference sequence for each signature CS was obtained,
and all of the reads containing a signature CSwere retrieved. A file containing
the read identifier, the start reference position for the signature CS, and the
position in the read for the match between the CS and the read and its
orientation was created. Some inconsistent reads were filtered out (SI Ap-
pendix, SI Materials and Methods). For the case of the parents, the signature
CSs obtained in the child were used to retrieve the reads of interest.

From reads containing both signature CSs, whole-VSR alignments were
computed using a modified C++ align function from the AMOS repository.
For each read, the region from the start of the PrevCS to the end of the
PostCS was aligned to the corresponding RG region. These alignments were
considered high-quality alignments, and only variants found in at least a

certain number of these were further analyzed. For reads containing only
the PrevCS, the alignment between the RG and the read was done from the
start of the PrevCS to 5 nt downstream of the last variant nucleotide
obtained from the high-quality alignments. In the case of the parents, if
there was no variation in the whole-VSR alignments, the default extension
was 5 bp. For all complete alignments, SNVs were identified.

The genotype of every SNVwas assigned based on the algorithm described
by Li (11), modified as described in SI Appendix, SI Materials and Methods. To
identify the possible de novo SNVs, the genotypes for each of the individuals
of the family trio were compared, and the potential de novo SNVs were
identified. We defined criteria to establish a possible variant, such as a bona
fide de novo variant (SI Appendix, SI Materials and Methods). Low-coverage
sequencing experiments are prone to a higher number of both FN and FP calls.
Therefore, COBASI includes additional quality requirements to avoid incorrect
de novo SNV calls. Regions prone to incorrect genotype assignment were
identified and excluded: (i) regions with low CS density, (ii) regions with more
than one CS with a coverage higher than expected, (iii) regions with low
coverage for any of the signature CSs in any individual, (iv) regions with
additional significant changes in coverage inside the region corresponding
to the child VSR: in the case of the child if there is any additional drop or rise
it should correspond to a region with almost no coverage; in the case of the
parents there should not exist any drop or rise corresponding to the child
SNV position, and (v) regions with unequal coverage in both sides of the VSR
for the child.

Additional Methods. Additional methods are found in SI Appendix, SI Materials
and Methods: Definition of CS Regions from the RG, Definition of Accessible
Genome, Simulation Experiments, Variant Calling Using Alignment-Based
Pipelines, TRIO Sequencing and COBASI Application, and Experimental Vali-
dation of de Novo SNVs.
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