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 supercomputer (IBM Blue Gene) with 10,000 processors to model a 
rat  neocortical  column (one processor per neuron). Despite current 
analytical and computational limitations, Henry Markram suggests 
there will be suffi cient computational advances to model an entire 
human brain within 10 years. With a ‘complete’ brain model, behav-
ioral complexity could be investigated through simulated interac-
tions with the environment. An alternative to this approach is to 
directly investigate behavioral complexity by modeling the relation-
ship between behavior and brain subsystems (e.g. single neurons, 
neural ensembles) in vivo. This modeling may be achieved in a 
typical neurophysiology laboratory given simple models. Notice 
that both of these approaches only address one area of complexity 
(anatomical or behavioral).

Alternatively, it would be useful to provide increased compu-
tational capacity to facilitate real-time modeling of interactions 
between multiple brain subsystems, learning, and behaviors. Such 
interactions may provide insight into existing research questions 
(e.g. hierarchical vs. connectionist organization) by revealing func-
tional relationships within the brain and between the brain and 
external world. Recently, increased computation power has been 
harnessed via a multi-core graphics processing unit for parallel 

INTRODUCTION
In the last decade, there has been an explosion in the number of 
models and amount of physiological data that can be obtained from 
either basic neuroscience or computational neuroscience experi-
ments (Trappenberg, 2002; Purves et al., 2004). The data from these 
experiments is beginning to be leveraged to address the problem of 
reverse-engineering the brain (Markram, 2006). This process has been 
identifi ed by the U.S. National Academy of Engineering as one of 
the 21st Century’s great challenges for engineering and neuroscience 
because it has the potential to: (1) impact human health by providing 
a guide for repairing diseased neural tissue and (2) create innovation 
in neuromorphic systems based on details of brain function. The chal-
lenge arises due to both anatomical and behavioral complexity. Human 
brains contain approximately 1015 synapses  connecting 1011 neurons 
of different classes which are hierarchically self- organized across mul-
tiple temporal and spatial scales (Abeles, 1991). Furthermore, the 
neuronal properties, structural networks, and functional networks 
can adapt based on experience and learning.

A prominent project addressing anatomical complexity is 
the Blue Brain Project which combines realistic neuron mod-
els (Markram, 2006). Currently, experimental data is fed to a 
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computations (Wilson and Williams, 2009). Additionally, the ability 
for researchers to share (and improve) models has proven successful 
in projects like BCI2000 (Schalk et al., 2004) and Physiome (Asai 
et al., 2008). The Concierge platform at RIKEN provides central-
ized experimental results and analysis for researchers around the 
world (Sakai et al., 2007). Here we aim to incorporate aspects of all 
those systems into a modular, user-friendly workstation for in vivo 
experiments. We further believe that information technology has 
an important role to play in encapsulating many details of the labo-
ratory work – translating advanced computational neuroscience 
methods into accessible tools for experimental neuroscience. The 
Cyber-Workstation (CW) developed here was designed with those 
philosophies in mind.

The CW provides a computational infrastructure for real-time 
neural systems modeling and collection (and storage) of mul-
tiple channels of neural and environmental data during behav-
ior. Synchronous modeling and experimentation can provide a 
window to functional aspects of neural systems that combine 
sensory, cognitive, and motor processing while interacting with 
dynamic environments. The CW allows a neuroscientist to expand 
in vivo paradigms by providing as much computational power 
as needed.

The CW was developed around and will be demonstrated via a 
Co-Adaptive Brain-Machine Interface (CABMI). Brain-Machine 
Interfaces (BMIs) generally create a model of a specifi c brain sub-
system’s (e.g. motor, parietal) interaction with the external world 
(Sanchez and Principe, 2007) such that the BMI can decode user 
intention to control a prosthetic. Co-adaptive BMIs go a step 
 further by engaging both the user and a computer model to learn 
to control a prosthetic’s movements based on interaction with 
the environment (DiGiovanna et al., 2009). The CW is an ideal 
platform for CABMI approaches which naturally require con-
current modeling and experimentation. Although neuroscience 
encompasses many more topics than BMI; implementing a BMI 
is a microcosm of the challenges in blending computational and 
experimental neuroscience.

The next section specifi es system requirements for BMI research 
and design choices given our available computational resources. 
The section ‘Architecture’ describes the system architecture, how 
the middleware interfaces the software and hardware, and the web-
portal user interface. The section ‘Evaluating the CyberWorkstation’ 

introduces BMI and overviews the CABMI used to demonstrate 
some CW capabilities. The fi nal section discusses implications of 
the CW for computational neuroscience.

FUNCTIONAL SYSTEM REQUIREMENTS
The practical embodiment of our CW consolidated soft-
ware and hardware resources across three collaborating labs: 
Neuroprosthetics Research Group (NRG), Advanced Computing 
and Information Systems (ACIS) Lab, and Computational 
NeuroEngineering Laboratory (CNEL) at the University of 
Florida. The CW enables neurophysiology researchers to setup, 
carry out, monitor and review experiments locally that require 
powerful remote online and/or offl ine data processing. The initial 
design of the CW was centered around the development of BMIs 
where neural activity was used to directly control the position of 
a robotic (prosthetic) arm. The CW was designed to improve the 
effi ciency and effi cacy of the typical workfl ow required by closed-
loop experiments. Specifi cally, several aspects of the workfl ow 
can be automated, hidden or supported by a cyberinfrastructure 
that exposes, through a single point of access, only the needed 
functionality for a neuroscientist to conceptualize, conduct and 
reason about an experiment. Figure 1 depicts a high-level view 
of what such an infrastructure might consist of. Neural signals 
are sampled from behaving animals at NRG and sent across the 
network for computing. At ACIS (>500 m away from NRG), a 
variety of computational models process these data on a pool 
of servers; then results are aggregated and used to control robot 
movement in real-time at NRG. The architecture of the CW 
is described in the next section and has general applicability 
beyond the specifi c environments of the ACIS, NRG and CNEL 
laboratories.

Under the hood of such interface, middleware would be 
 responsible for supporting:

• Real-time operations that scale with biological responses 
(<100 ms)

• Parallel processing capability for many multi-input, multi-
output models

• Large memory capacity for neurophysiological data streams 
and model parameterization

• Customizable signal processing models

FIGURE 1 | Infrastructure for execution of BMI experiments and online/offl ine analysis of data. Individual components (e.g. experiment management, parallel 
computing) are discussed in the next section and Figure 2.
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• Data warehousing for large volumes of neural signals, 
 experiment parameters, and computational results (e.g. pro-
sthetic movements)

• Integrated analysis platform for visualization of modeling and 
physiological parameters

• Simple yet powerful user interfaces for scientists to manage 
experiments

These application requirements arise from over three decades of 
BMI research (Leuthardt et al., 2006; Hatsopoulos and Donoghue, 
2009; Nicolelis and Lebedev, 2009). Prior BMI researchers have 
exploited distributed local computation (Laubach et al., 2003; 
Wilson and Williams, 2009) or controlled robots by sending con-
trol signals around the world (Fitzsimmons et al., 2009). However, 
to our knowledge, the CW is the fi rst architecture to meet these 
requirements through distributed, remote computing.

ARCHITECTURE
The CW architecture was designed to satisfy all of the application 
requirements in the prior section. Researchers may combine exist-
ing models (e.g. a toolbox) and/or develop novel models via object 
oriented programming constructs. These models are connected 
in a block diagram and then adaptive middleware transparently 
implements the specifi cations using the full power of the remote 
hardware. In effect, the middleware deploys an on-demand neu-
roscience research test-bed that consolidates distributed software 
and hardware resources to support time-critical and resource-
 demanding computing.

Multiple interacting and customizable components make it 
 diffi cult to give a single ‘blueprint’ of the CW. However, the CW is 
divided into four functional layers in Figure 2; these layers mirror 
the key stages of the typical workfl ow (Sanchez and Principe, 2007) 
of a BMI experiment:

• Access to experimental test-bed
• Model selection and composition
• Virtual resources request and reservation
• Run-time management of experiments

Each of these four stages is discussed in this section, fi rst in a 
general context and then as embodied in our CW implementation. 
Real-time system operation is achieved through the use of low-level 
communication protocols and interfaces, use of parallel computing 
to reduce computation times and careful optimization of mid-
dleware components in the critical path (closed loop in Figure 1). 
These and other IT-related design and implementation details will 
be reported elsewhere (Rattanatamrong et al., 2009).

ACCESS TO EXPERIMENTAL TEST-BED
This functionality enables neuroscientists to gain access to a physi-
cal system consisting of the subject and all devices needed to enable 
and monitor subject-environment interaction. Necessarily, such a 
system is specifi c to a class of experiments and may change over time 
(e.g. subject specifi c differences). If a test-bed can be reused among 
several researchers, ideally individual researchers could avoid the 
overhead (time and cost) of interfacing and maintaining different 

FIGURE 2 | Functional CyberWorkstation layers. The left side of each panel 
represents entities/actions at a neurophysiology lab and the right side 
represents their associated events at a computing lab. (A) Physical Access and 
Setup: The CW is confi gured to communicate with the user’s specifi c recording 
hardware and prosthetic. (B) Model Selection and Composition: The user 
specifi es and connects models and, implicitly, necessary resources to run them. 

(C) Virtual Resources Request and Reservation: The middleware transparently 
allocates and confi gures computing resources and network links (black lines are 
connected, gray lines not used). (D) Run-time Management: Ensures 
experiment operates within expected timings and provides user-specifi ed 
visualizations. Here the ‘real-time’ CW operation loop is shown by green 
(outgoing) and red (returning) lines.



Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 4

DiGiovanna et al. Cyber-workstation for computational neuroscience

components. Instead, it is desirable to allow researchers to specify 
needed confi gurations without having to directly modify individual 
components, each of which may have its own idiosyncratic pro-
gramming procedures.

The CW enables both the reuse of existing system components 
and the ability to integrate with remote resources during experi-
ments through what we labeled as a physical layer (see Figure 2A). 
This physical layer is transparent to the CW users but provides an 
interface with data acquisition hardware and prosthetic devices. 
This layer ensures that formatting conventions are respected and 
network communication between the neurophysiology lab and 
remote computational resources is stable and reliable. During 
experimental design, the user must confi gure the physical layer, 
i.e. specify the manufacturer and model number such that the 
CW is aware of all hardware it should interact with. However, this 
confi guration is kept at a block-diagram level. Next we provide an 
example of basic interfacing in the physical layer and communica-
tion to the remote facility.

Data acquisition from neurophysiology hardware
In our physical layer, the CW was confi gured to sample neural sig-
nals from a multi-channel, digital signal-processing (DSP) device1. 
The DSP contains buffers that store estimated fi ring rates from elec-
trodes implanted in behaving animals at the NRG laboratory. After 
acquiring neural activity from the brain, the CW packs data into an 
input data structure and sends it over the campus network to the 
ACIS compute cluster. Our implementation sampled 32  electrodes 
(up to 96 neurons on our DSPs) in 8.1 ms (see “Evaluation” section). 
Expanding this to 256 neurons (assuming eight detected neurons 
per electrode) with current Tucker-Davis Technologies components 
would only double the necessary sampling (due to better compres-
sion). The theoretical maximum number of electrodes the CW 
could support involves a tradeoff between other processes in the 
computation budget and network transfer speed. We believe this 
sampling time will scale linearly with the number of electrodes for 
the range of array sizes used in current BMI studies (Hatsopoulos 
and Donoghue, 2009).

Prosthetic control
The physical layer also must be confi gured to control the prosthetic. 
At NRG the prosthetic was a robotic arm (Dynaservo, Markham, 
ON, Canada) using four degrees of freedom. This robot accepts 
both incremental and point-to-point types of movement commands. 
Incremental control specifi es differential changes for each joint 
of the robot arm, which must fi nish within a closed-loop cycle 
(∼100 ms). Alternatively, point-to-point control specifi es absolute 
endpoints but does not guarantee completion time. The CW could 
seamlessly communicate with the robot in either mode (and switch 
between modes) to exploit the advantages of each.

Communication to remote facilities
Once this layer is confi gured, it is necessary to communicate with 
the remote compute cluster. A connectionless User Datagram 
Protocol (RFC 768 Standard) socket was selected to provide low 

latency communication between the data collection site (NRG) 
and processing site (ACIS). This protocol provides lower over-
head for real-time operation at the expense of reliability. Data loss 
and unexpected delay could happen at any time during the com-
munication over the campus network because of its unreliable 
and shared nature; thus, reliable data transfer must be ensured 
at the application level via middleware to support reliable and 
real-time experiments. Middleware at the remote facility creates 
a timeout if it is unlikely that computation results will be avail-
able in time to meet the deadline. A circular fi rst-in-fi rst-out 
(FIFO) buffer is utilized to store newly acquired data samples 
while retransmitting the previously failed results. The possible 
delay between neural activity and robot action is limited by the 
size of the buffer, which is adjustable based on model require-
ments and user preference.

MODEL SELECTION AND COMPOSITION
This functionality enables a computational neuroscientist to 
choose and implement models on the basis of experimental goals. 
These models may have components involving statistics and 
machine learning (e.g. adaptive fi lters, neural networks, Hidden 
Markov models, etc. (Trappenberg, 2002)). Desirably, an investiga-
tor should have access to a toolbox of models that could be instanti-
ated easily and composed as necessary to capture the architecture 
of the neural system under investigation. The toolbox should be 
easy to extend and share with different researchers. We provided 
this toolbox in what we labeled an allocation layer (see Figure 2B). 
It uses a template-based approach where a researcher can specify 
his or her choices of modules for each part of the template. As 
long as the modules satisfy pre-specifi ed interface requirements, 
the components instantiated on the template are guaranteed to 
communicate and interact correctly. In this layer, the user speci-
fi es data fl ow, model types, experiment priority, and visualization 
parameters. Middleware infers the amount and type of resources 
that need to be reserved to execute all the models to meet these 
specifi cations. Additionally, it checks the software design in the 
user-created models to ensure there are no logic violations with 
respect to the expected interfaces. Next we provide more details of 
basic confi guration in the allocation layer.

Data fl ow
Notice in Figure 2A that the local BMI Controller box, which coor-
dinates data acquisition, signal processing, model adaptation, and 
prosthetic control, is grayed out. The CW makes that component 
unnecessary in the neurophysiology lab; instead users specify 
how neuro-physiological data will be processed (e.g. serially or 
in parallel) at the remote facilities by creating a block diagram to 
establish the data fl ow to/from computational models. Figure 2B 
 illustrates possible connections with gray arrows and possible 
parallel  processing (of model sets) with gray planes. This allows 
user fl exibility and also conveys explicitly what can be executed 
concurrently in order to exploit the parallel computing capability 
of remote machines. The data fl ow partially specifi es the over-
all complexity of the remote processing and can also be used to 
implicitly identify further parallelism at a fi ner grain. The actual 
models used in each block (e.g. Model A, B, or C) also contribute 
to complexity and are discussed next.

1The NRG lab uses Tucker-Davis Technologies (Alachua, FL USA) devices; however, 
the CW should generalize to any recording hardware with buffers that can be sam-
pled within experiment time limits (e.g. 25–100 ms).
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Model selection
After specifying the data fl ow, the user must also specify lower-level 
processing, i.e. which computational models will be used for each 
block. Here the user has the option to select from a toolbox of 
established signal processing models (e.g. recursive least squares, 
moving average). This toolbox is advantageous because the mod-
els will have been thoroughly error-checked and vetted by other 
users. Alternatively, the user can upload custom C++ algorithms 
for each block.

Visualizations
The user also specifi es which experimental variables will need to 
be monitored during the actual experiment, i.e. at run-time. This 
is also done in the block diagram (see Figure 2D). The user inserts 
and connects a visualization block to an appropriate area to monitor 
a variable. The user then specifi es which type of visualization (e.g. 
trace, histogram, error rate) is appropriate.

Experiment priority and type
The fi nal decision is the experiment’s priority. The user informs the 
CW what type of experiment they plan to run, i.e. online, real-time 
analysis, or offl ine. An online experiment will run at the user’s lab 
and has the highest priority – the CW must meet all user- specifi ed 
deadlines. A real-time analysis experiment piggybacks onto a col-
laborator’s experiment, e.g. a user at the CNEL lab can run real-time 
analysis of an online experiment at the NRG lab. An offl ine experi-
ment has the lowest priority because it does not have any hard 
deadlines. Offl ine experiments are useful to try new signal process-
ing techniques on existing data.

VIRTUAL RESOURCES REQUEST AND RESERVATION
Computing BMI models in real-time often requires investigators to 
properly structure their models into computational tasks that can 
be executed concurrently and/or use models that have been previ-
ously optimized for parallel execution. These tasks then need to be 
programmed and deployed on computers that could be dedicated 
to the test bed or part of a shared computer facility that is usually 
remote. In the latter case, researchers need to fi gure out the neces-
sary amount of resources, how to request and reserve them, how to 
connect to these remote resources and how to submit tasks to (and 
retrieve results from) them. Ideally, investigators should instead 
only have to do high-level organization that relies on their domain 
knowledge (i.e. specifi c connectivity and processing in the alloca-
tion layer) rather than having to refashion algorithms and making 
sure that communications and computations take place properly on 
available hardware, both of which require IT expertise. Depending 
on the extent of the  computational demands, the need for real-time 
computation and the complexity of accessing remote resources, this 
experimental stage can be rather complex and a signifi cant barrier 
to the successful completion of an experiment.

We provided this functionality in what we labeled the con-
fi guration layer. This transparent layer includes middleware that 
organizes and allocates virtual resources to the appropriate physi-
cal machines based on the needs specifi ed by the allocation layer. 
An example of user design choices and middleware reservations 
is shown using black arrows on the left and right side Figure 2C 
respectively. The CW uses virtualization technology to create 

 virtual machines (VM) and each VM can be customized with the 
necessary execution environment, including operating system 
and libraries, to support seamless deployment of a computational 
model. Multiple models can run concurrently with dedicated 
VMs, where resources are dynamically provisioned accord-
ing to model demands and timing requirements. Virtualization 
provides effi cient utilization and isolation of resources (e.g. for 
parallel computation).

Communication between different models is realized using the 
Message Passing Interface (MPI). MPI allows communication with 
both simplicity and portability across systems (Snir et al., 1995). The 
integrity and consistency of data in the CW is protected through the 
mechanisms available from communication channels. In addition, 
we isolate data addition, modifi cation and deletion from different 
users in the CW using a lock mechanism. Further improvement 
via transaction-based consistency protocol is expected as the CW 
becomes available to more users.

RUN-TIME MANAGEMENT OF EXPERIMENTS
After physical connection, confi guration, allocation the experi-
ment is ready to run. All data must properly collected and unan-
ticipated situations properly handled and documented. Beyond 
collecting data, it is desirable to be able to graphically visualize 
spatio- temporal data, critical measures, and control experimental 
parameters (if necessary). The CW includes what we label a runtime 
layer (see Figure 2D) to ensure all specifi cations are met.

At the compute cluster, control scripts are used to orchestrate 
computation processes and communication among them. The 
master process (blue server in Figure 2D) manages and distributes 
data to other computers (worker processes) in the cluster (black 
servers). The worker processes execute the user’s control scheme. 
The control scheme comprises both computation of commands 
from neural signal and continuous model adaptation. All model 
set (black planes) results are aggregated at the master process and 
sent back to NRG for prosthetic control. Model adaptation occurs 
between neural commands.

Middleware monitors the elapsed time after sending out 
neural data. The elapsed time includes the segments marked in 
Figure 2D with green (outgoing) and red (incoming) arrows. 
A timeout happens when it detects that it is unlikely to get the 
computation results back (following the red path) in time to meet 
the deadline (e.g. 100 ms). In a timeout, the middleware stores 
the failed data sample in a circular fi rst-in-fi rst-out buffer, and 
starts a new closed-loop cycle by polling the neurophysiology 
hardware. During the new cycle, it queues the newly acquired 
sample in the buffer and retries the transmission of the previously 
failed sample. A delay between neural activity and robot action 
will occur after this type of timeout. However, the acceptable 
extent of this delay is adjustable based on model requirements 
and user preference.

WEB PORTAL
The prior sections provided an abstract overview of the CW’s 
functional architecture. Here we describe the Web-based portal2 
where users actually interact with the CW. Through this portal, 

2http://bmi.acis.ufl .edu/

2http://bmi.acis.ufl.edu/
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model API, into the CW’s collection via the integration portlet. 
This portlet requires an XML (Sperberg-McQueen et al., 2008) 
model specifi cation fi le ( containing all  information regarding 
the model’s confi gurable parameters), sample input fi les, and 
default parameter values; this information enables the experi-
ment manager portlet to automatically generate a model con-
fi guration interface for users.

A conceptual overview of visualization portlet is given in 
Figure 4, it is a window to the CW’s run-time layer. The visuali-
zation portlet supports the monitoring of prosthetic and model 
behavior via real-time video streaming. When the user terminates 
the experiment (as scheduled or due to an emergency), they will not 
lose any results. All details of the experiment can be downloaded 
as one archived fi le and examined locally after the experiment is 
ended. Also, users can perform extensive, remote analysis imme-
diately with the tools (e.g. Matlab) provided in the CW. Offl ine 
and analysis experiments are confi gured similarly (Experiment 
types detailed in the section ‘Experiment Priority and Type’). If 
the user would like to adjust the model confi guration to study 
alternative parameters or to improve performance, they can fi ne-
tune dynamic model parameters during the experiment in the 
experiment management portlet.

EVALUATING THE CYBERWORKSTATION
The CW has been designed to meet seven specifi cations listed in the 
section ‘Functional System Requirements’. In the prior sections, we 
have developed an architecture that is powerful, fl exible, and user-
friendly. Here, we use an online BMI experiment to benchmark the 

users can access the CW from anywhere with an Internet connec-
tion. Portal functionalities are provided via AJAX-based JSR-168 
compliant portlets, which allow fl exible interface customization 
and responsive, asynchronous content update. Users can confi gure 
the portal environment to meet their needs. The main portlets 
developed were model integration, experiment management, 
and visualization.

Figure 3 illustrates how a user would interact with the web 
portal to confi gure the allocation layer (see Model Selection and 
Composition). After making all physical connections with the 
CW (e.g. physical layer), the user should be able to interface with 
all other CW layers through the Web portal. All input, output, 
and confi guration data of this experiment are persistently stored 
in the compute cluster, so users can retrieve data or replay the 
experiment later. The experiment management portlet in the Web 
portal handles the selection of motor control model sets and 
model connectivity (i.e. allocation layer). It also ensures that any 
custom models follow the CW’s model API. Model confi gura-
tion (e.g. static and dynamic parameters, initializations, etc.) 
and visualization planning will also be performed in this port-
let. Additionally, users can fi ne-tune dynamic model parameters 
on the fl y. Beyond the collection of models already provided in 
the CW, users can add custom models, developed by the CW’s 

FIGURE 4 | Conceptual interface with CW run-time layer.

FIGURE 3 | Flow diagram to confi gure allocation and confi guration layers 

via the web portal. Orange shapes represent explicit actions the user makes 
in the CW’s interface, while green shapes represent implicit actions (e.g. 
decisions, modifi cations).
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TD learning is a boot-strapping method using future value estimates 
to improve current estimates. TD learning is sensitive to the accu-
racy of Q because it assumes Q(s

t + 1
, a

t + 1
) is a good approximation 

of R
t + 1

; hence, it may become unstable. However, TD methods 
asymptotically converge to Q* (Sutton and Barto, 1998).
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RL-based BMI (RLBMI)
We model the interaction of a paralyzed patient (i.e. user) with an 
intelligent prosthetic controller (agent) to maneuver a robotic arm 
to a target lever and press it (similar to reach and grasp) as a coop-
erative RL task (DiGiovanna et al., 2009). A RL framework is useful 
for a BMI because it creates an agent that constantly learns from 
interacting with the world without requiring a ‘desired’ (training) 
signal (e.g. user movements). We assume relevant control features 
(e.g. robot position, goal) will be detected by the user and affect the 
user’s neuronal modulations. To achieve control, the agent must 
learn both how to detect relevant neuronal states and, given the 
state, evaluate each possible control action such that it can complete 
tasks (i.e. earn reward).

Briefl y, rats had to use a BMI to maneuver a robot to one of 
two possible targets (randomly selected). Rats were given cues (e.g. 
lights, target position, robot position) for the task. In brain control, 
the rat’s objective was to modulate neurons in primary motor cortex 
to create a neural state. The agent’s objective was to perform value 
function estimation on this neural state and select a robot control 
action every 100 ms. If the agent and rat successfully maneuvered 
(selected a sequence of actions) the robot endpoint proximal to a 
target within 4.3 s, both were given a reward and the trial ended 
successfully. Otherwise, the robot was reset to original position and 
neither entity was rewarded. Important RL features:

• States: ensemble of neuronal fi ring rates
• Actions: robot endpoint motions (set of 26)
• Rewards: +1 proximal to correct target, else −0.01

Value function estimation
Neuronal state detection and value function estimation in the above 
paradigm are both non-trivial tasks for the agent. The state was 
(average) 60 dimensional (one fi ring rate or history per dimension) 
which is intractable for familiar look-up table approaches (Sutton 
and Barto, 1998). Instead, an adaptive projection  transforms the 
state into a subspace where segmentation is performed (DiGiovanna 
et al., 2007). Specifi cally, a Multi-Layer Perceptron (MLP) both seg-
ments the state (in the hidden layer) and estimates the value Q (in 
the output layer) as:

Q s s w wk t i t ij
i

jk
j

( ) =
⎛
⎝⎜

⎞
⎠⎟∑∑ tanh ,

 

(6)

Q is a function of state and weights (w) with i, j, and k index-
ing the state, hidden layer, and output layers respectively. An ε-
greedy policy typically selects the action corresponding to the 
maximum Q

k
.

CW’s effectiveness in meeting each requirement. BMI architectures 
and learning tasks are briefl y overviewed for context. Then we dem-
onstrate CW performance for each of the seven specifi cations.

BRAIN-MACHINE INTERFACES
Conceptually, a BMI learns an unknown mapping between neural 
signals and some prosthetic output (e.g. cursor position, endpoint 
velocity) to decode user ‘intent’. This mapping is typically initially 
random but is adapted over time to minimize some error metric (e.g. 
misalignment, failed trials). There are many BMI implementations 
(e.g. linear regressors, population vectors, kernel methods, point 
process models); each is tailored towards a particular application 
(Schwartz et al., 2006; Sanchez and Principe, 2007; Hatsopoulos and 
Donoghue, 2009). The CW’s fl exible architecture supports a variety 
of BMI systems whether they use single models [e.g. Recursive 
Least Squares (RLS)] or combinations of models (e.g. mixtures of 
experts). We developed a BMI based on Reinforcement Learning 
(RL) (DiGiovanna et al., 2009); in the next subsections we describe 
RL, RL-based BMI, and the learning tasks. This BMI specifi cally 
used real-time processing, limited parallel computation, ‘large’ 
memory capacity, and data warehousing capabilities of the CW. 
Later, we also address how other CW abilities could be exploited.

Reinforcement learning
The RL paradigm involves an agent that learns to interact with an 
environment in a fashion that maximizes future rewards (Sutton 
and Barto, 1998). The agent environment interface is modeled as 
a Markov Decision Process. Agent actions infl uence environmental 
state and after completing an action, the environment may provide 
a reward. The agent tries to maximize return R

t
 which is simply the 

discounted (γ≤1) sum of rewards r
n
 for all future times n. Equation 

1 shows that return is conditional on current state-action pairs. The 
agent does not know whether selected actions were optimal as they 
are executed. However, over time it can build an estimate of return 
– a value function Q. These value functions (Eq. 2) are recursively 
consistent such that Eq. 2 can be rearranged into Eq. 3 (please refer 
to Sutton and Barto, 1998 for derivation). Given Eq. 3 the agent can 
start with an initially random Q and learn the value function from 
observations of states, actions, and rewards. If the agents learns the 
optimal value function Q*, then it can always maximize reward by 
taking actions which maximize Q*.

R r s s a at
k

k t
k

t= = =+ +
=

∞

∑γ t 1 | ,
0  

(1)

Q s a E R s s a at t t( , ) | ,= = =( )  
(2)

Q s a r Q s at t t t t( , ) ( , )= ++ + +1 1 1γ
 (3)

RL can provide an unbiased estimator of the Bellman Optimality 
Equation (4) (Sutton and Barto, 1998) which can be solved if the 
state transition Pss

a
′ and reward probabilities R ss

a  are known and 
stationary. In situations where these probabilities are unknown 
and/or non-stationary (e.g. a BMI), RL methods can adapt the 
value function (Eq. 3) towards the Q* based on temporal difference 
(TD) error (Eq. 5) (TD error is created by rearranging the terms in 
Eq. 3). Positive error indicates things are better than expected and 
Q(s, a) should be increased, negative error indicates the opposite. 
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There are two computational tasks created here, network ini-
tialization and adaptation. Initialization refers to rapid adaptation 
of initially random MLP weights to estimate Q based on a sequence 
of observed states, actions, and rewards. Here the mapping is non-
linear and contains many local minima. To increase the probability 
of converging to a global minimum, multiple networks were cre-
ated and trained. Networks were adapted by back-propagation of 
TD(λ) error (similar to TD error described above) as described 
in (Sutton and Barto, 1998). Each network was trained for up to 
1000 times (epochs). We initially did this offl ine due to compu-
tational limitations (speed and memory) in our local worksta-
tion. Initialization includes many adaptations; however, real-time 
adaptation is challenge that cannot be addressed offl ine. After each 
action (every step) the agent has a new state, action, and reward 
observation; hence new error. Q(λ) learning can require up to 42 
complete weight updates [see Real-Time Operation that Scale with 
Biological Responses (<100 ms)] per time-step in this task. This 
must be completed within 100 ms for adaptation and as soon as 
possible for initialization.

EXPERIMENTAL SETUP
A series of both online and simulated RLBMI experiments was used 
to benchmark CW performance. A 100-ms deadline was imposed on 
each closed-loop control cycle, which consists of four phases: data 
acquisition, network transfer, model computation, and robot control 
(see Figure 2D). Neural signals (32 channels) were sampled through 
a DSP device (online) or from offl ine data stores (simulated). The 
data acquisition and robot control server (local) has dual 2.4 GHz 
Xeon processors and runs Windows Server 2003. Remote computa-
tion was conducted on a cluster of VMware ESX server 3.0-based 
VMs hosted on several dual 3.2 GHz Xeon servers. Each VM has 
1 GB RAM and runs Ubuntu Linux 7.04. The experiment was sub-
mitted, controlled, and monitored locally via the Web portal.

EVALUATION
Real-time operation that scale with biological responses (<100 ms)
In an online RLBMI experiment with 8151 time steps (13 m 22 s), 
99% of closed-loop control cycles were completed in less than 
10 ms; 100% completed within 100 ms (Zhao et al., 2008). This 
demonstrates the CW provides a high-performance computing 
environment capable of real-time experiments including BMI 
adaptation. Table 1 reports timing results in more detail, includ-
ing the statistics of the entire cycle time as well as individual phase 
latency (see Figure 2D for labels).

The data acquisition phase is responsible for a majority of overall 
variability in closed-loop operation time. Aquiring neural ensem-
ble fi ring rates from neurophysiology hardware requires 256 bytes 

(8 bytes per electrode), which is trivial to transfer. However, prob-
lems arise because Windows Server 2003 is not a real-time operat-
ing system. Although we assign both real-time priority and stop 
unnecessary services, the Windows Scheduler did not always allow 
acquisition (or robot control) to start immediately.

The relatively large variance in model computation is related to 
the specifi c algorithm used in this example. In Q(λ) learning, error 
is back propagated through the MLP at each time step (similar to 
other neural networks). However, this error includes an approxima-
tion of return (Eq. 1), which is not completely available at time t + 1 
(details in Sutton and Barto, 1998). Instead the MLP was adapted 
multiple times; increasingly often as trial length increased. For 
example, a four-step trial has an average of 1.5 weight updates per 
time step [(3 + 2 + 1)/4]. If the rat used the maximum trial length 
(43 steps) then there were 21 average weight updates per time step. 
Since the rat is free to maneuver the robot along any path (and trials 
may not be successful), trial length and computation complexity 
were variable.

Parallel processing capability for multi-input, multi-output models
In addition to closed-loop (online) mode, the CW excels in 
offl ine BMI training. A modest example is shown in Figure 5 
for the real world problem of RLBMI initialization (also com-
mon to other BMI). Specifi cally, value function estimation (see 
Value Function Estimation) is not guaranteed to converge to a 
global optimum, so multiple MLPs (planes in Figure 2) are ini-
tialized and trained to fi nd the best performer. The CW allocates 
VMs to initialize and train each MLP. The CW outperforms local 
computation if at least 2 VM (each training 18 MLPs) are used. 
If 18 VM (each training 2 MLPs) are used, initialization time is 
reduced by nearly a factor of 5. This creates the opportunity to 
fully initialize (or re-initialize) the BMI with the CW between 
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FIGURE 5 | Cyberworkstation performance as a function of number of 

virtual machines used. The time required (error bars are standard deviation in 
10 trials) to initialize a RLBMI using rat data from (DiGiovanna et al., 2009). The 
CW is faster (mean) than the local computer (AMD Turion 64 X2 [1.8 GHz dual 
core], 4 Gb RAM) when more than one VM is used (single VM time was 
4883 ± 33 s). Additionally, the local computer is free for other processing tasks.

Table 1 | Timing statistics of an online RLBMI experiment.

Latency Average (ms) Stdev (ms)

Entire closed loop 12.58 12.77

Data acquisition 8.09 10.18

Network transfer 1.42 1.10

Model computation 0.37 2.60

Robot control 2.54 6.58
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normal trials3. This contrasts sharply with our prior solution of 
offl ine batch training in (DiGiovanna et al., 2009) or the com-
mon practice of disjoint train and testing phases (Hatsopoulos 
and Donoghue, 2009).

The CW provides the necessary computational performance 
in experiments where scalability and code reusability are criti-
cal. A remote, resource-rich computing center makes it possi-
ble to provision the CW with large numbers of virtual/physical 
machines. This removes resource impediments to the scaling 
of models and data sets leaving only algorithm parallelization 
constraints. Two interesting aspects of Figure 5 are that the CW 
is slower than local processing when a single VM is used and 
computation time increases from 18 to 36 VMs. Overheads in 
virtualization, communication, resource sharing, parallelization 
and middleware execution that are not present in a local compu-
ter cause the fi rst issue. Using only a single remote VM creates this 
overhead without any of the benefi ts; hence, the local workstation 
is faster. Using additional VM creates speed increases up to a 
certain point (here >18) when the number of VMs becomes suf-
fi ciently large such that the communication and sharing behavior 
(all VMs write to the same set of fi les) between VMs exceed 
the computational savings gained from parallel computation of 
RLBMI networks.

Large memory for neurophysiological data streams and model 
parameterization
Brain-machine interfaces can present variable challenges to a cyber 
workstation depending which models (or model sets) are being 
employed. For example, a linear regression from neural signals 
to hand position using least mean squares (common in BMI) has 
complexity O(N) (where N is the number of neural inputs) for 
each output dimension, D. If a designer wanted to use Gaussian 
Processes to transform the neural data before fi ltering, they could 
add another model but this would have complexity O(M3) where 
M is the number of training samples. Neurophysiological data 
often is repeatedly processed in a BMI; hence it may require large, 
 dynamically  allocated memory blocks that must scale with N and 
time of control. Admittedly, RLBMI is parsimonious in  parameters 

relative to other BMI; we expect CW strengths will be better 
 showcased by other BMI – some of which scale exponentially with 
N or D.

Customizable signal processing models
The aspect of the CW with the greatest research potential is its 
inherent fl exibility. Both data fl ow and signal processing are totally 
customizable, e.g. in Figure 2B the CW user is presented with a 
fully interconnected set of three processing models between the 
input and output. Figure 2C shows how the user could confi gure 
the data fl ow. Specifi cally, the input goes directly to Model A. Model 
A has reciprocal connections with B and an outgoing connection 
to C. Model C has outgoing connections to B and the BMI output. 
The remaining gray arrows were not utilized. Additionally, the user 
has selected multiple parallel BMI implementations that may or 
may not have the same data fl ow as described above (the user can 
customize each parallel implementation). The models (i.e. A, B, C) 
in Figures 2B,C are customizable. Users can either select models 
from an established model toolbox (e.g. least-squares, RLS) or create 
their own models in C++ and upload them to the CW.

Model topology and confi guration will depend on the particular 
task attempted. One interesting combination that could be applied 
to a state-based controller (e.g. RLBMI) involves Gaussian Process 
models (Deisenroth et al., 2009) to segment neural state, linear 
fi lters to calculate state value, state/reward transition models to 
estimate the future, models that aggregate learning from experience 
and prediction, and fi nally inverse kinematics optimization models 
to fi nd robot actuations that achieve selected actions. It may also be 
useful to have a mixture of experts, which is parallel implementa-
tion of some of these models such that there is an expert (e.g. value 
function estimator) for different areas of the state space. We are 
actively pursuing this topic using the CW.

Integrated analysis platform for visualization of modeling and 
physiological parameters
The CW also facilitates integrated analysis both for the local 
(neurophysiology) lab and collaborators elsewhere. A conceptual 
overview of this integration is shown in Figure 6 where local CW 
users are running a standard experiment with a single visualization. 
Additionally, collaborators are simultaneously analyzing (process-
ing represented by dashed lines) the same experiment. The remote 
lab can perform additional analysis and communicate with the local 
lab through an instant messaging client. This is advantageous for the 

3For typical experiments, the minimum (average) inter-trial time was 1:06 [m:ss] 
(2:12). Using 18 VMs (smaller network than Figure 5; local computation time was 
15:33), the entire initialization time was 1:26. Given data, we could theoretically 
train the networks quickly enough that the user may not notice the delay before 
they were able to control the prosthetic.
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FIGURE 6 | Integrated analysis platform for real-time modeling and collaboration.
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It is often the case that data from BMI or general neuroscience 
experiments are used for follow-up studies which require access to 
the experimental data according to specifi c formats and execution 
of processing tasks to analyze, mine, or identify patterns of interest 
in the data. One hour of experiments can easily generate gigabytes 
of data. The CW securely preserves this data in persistent storage, 
yet keeps it easily available for online processing and visualiza-
tion. Additionally, analysis code can be centrally stored to ensure 
reported results are reproducible.

The CW provides the necessary resources for future studies 
including models to estimate future neural states, environmental 
rewards, and user’s internal reward (Mahmoudi et al., 2009). This 
modifi cation would allow a BMI to learn from both experience 
(DiGiovanna et al., 2009) and model prediction of possible environ-
mental interactions; thus facilitating faster learning. Additionally, 
fi nding explicit functional relationships between brain states, 
prosthetic actions, and rewards could provide insight into how 
the different brain areas process and share information. Even bio-
logically reduced models (reductionist approach) can be analyzed 
to reveal features (e.g. parameter sensitivity, hidden states) which 
correspond to neural or behavioral decision variables (Corrado 
and Doya, 2007).

The capability to include extra models is also useful for prosthetic 
control, specifi cally for fi nding differential commands for each 
robot joint based on predicted endpoint positions. Determining 
appropriate commands requires inverse kinematics, but this calcu-
lation for a redundant four degree-of-freedom robot (non-unique 
endpoint to joint angles mapping) does not have a closed form solu-
tion (Craig, 1989). Joint angles can be found via optimization, but 
it is not guaranteed to fi nd a feasible solution. Error checking and 
repeated optimizations consume the computing budget. Parallel 
computation increases the probability of at least one feasible solu-
tion in minimal time.

The CW does face a number of possible limitations. The major 
impediment is that researchers have developed their own mod-
els and are not able to devote resources to convert them to C++ 
compatible with the CW’s API. This could limit both the number 
of available models in the toolbox and number of CW users (to 
refi ne said models). Future CW development may expand sup-
port for models written in other languages (e.g. Matlab, Python); 
however, CW adoption may be too time consuming for some 
labs. Modeling fl exibility could be helpful for users who do use 
the CW; however, middleware is only responsible for checking 
that users’ code includes a set of data structures for communica-
tion – there is no check whether the code works. Users will need 
to validate models on similar processing architectures before 
uploading them to the CW. Additionally, transmitting neuro-
physiological data from animals or humans across the Internet 
could raise privacy and security concerns [e.g. compliance with 
Health Insurance Portability and Accountability Act (HIPAA) 
laws]. Finally, real-time communication cannot be guaranteed 
for arbitrary Internet connections whose communication laten-
cies are excessive.

Overall, this solution for distributed BMIs could lay the ground 
for scalable middleware techniques that, in the long run, can sup-
port increasingly elaborate neurophysiologic research test beds in 
which subjects can carry out more complex tasks. These advanced 

local lab because they get feedback and assistance from the remote 
lab. The remote lab can implement advanced analysis metrics and 
even alternative models without causing the local lab to divert their 
own attention from ensuring the BMI user’s safety, the prosthetic 
function, and their own analysis. If the remote lab develops a model 
that exhibits better performance (prosthetic control), then ideally 
their model could be selected and put online locally. The remote 
lab also benefi ts because they are given access to a closed-loop 
experiment without having to invest in access to BMI users and 
neurophysiology hardware.

Data warehousing
The CW also provides vast data warehousing capability. Before 
the CW, computational neuroscience experiments at the NRG lab 
generated 1–2 Gb of data per hour. Storage was scaled via external 
hard drives; however, drive failures could be catastrophic, switching 
between users required switching drives, and these drives were not 
easily incorporated into a data back-up system. The CW simplifi es 
and centralizes this storage to a Redundant Array of Inexpensive 
Disks (RAID) high-capacity storage server in the ACIS lab.

Simple user interfaces
As previously described in the section ‘Architecture’, the CW was 
designed with a focus on creating a simple and user-friendly inter-
face to allow BMI developers to focus on research instead of low-
level technical details. In order to use available models in the CW, 
the user does not need to know the specifi c details of the models; 
he or she only needs to understand the concepts. Help is provided 
via in-line mouse-over tips to be able to work with the models in 
short amount of time. The user interface also integrates multiple 
terminals (portlets) while conducting online experiments to give 
users a unifi ed control interface.

CONCLUSION
We have developed here a new framework to seamlessly bridge com-
putational resources with in vivo experiments to better study the func-
tional aspects of brain systems operating in dynamic environments. 
Online and offl ine BMI experiments execute in a closed-loop man-
ner that includes in vivo (for online experiments) data acquisition, 
reliable network transfer, parallel model computation, and real-time 
robot control. Scientists can conveniently deploy their algorithms and 
control structures on the cyber-infrastructure and conduct research 
through its Web portal. We have shown proof of concept that BMI 
control schemes (specifi cally RLS and RLBMI) could be implemented 
and tested on the CW. Additionally; we demonstrated that the CW 
met each requirement on the BMI designer’s wish list.

This CW potentially dissolves analysis barriers in neurophysiol-
ogy laboratories while further systematizing both experimental and 
computational neurophysiological investigations. The CW achieves 
this functionality by linking available hardware with user-friendly 
software architecture via a powerful middleware layer that man-
ages their interaction. This novel integration approach makes the 
CW powerful and customizable but also hides complexity with 
easy-to-use interfaces for users to conduct research. This simple 
interface makes the CW accessible to a variety of users, e.g. scien-
tists, engineers, and clinicians. We hope this accessibility catalyzes 
collaborative research.
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test beds will be essential for the development and optimization 
of the computational components that can be implemented on 
future workstations with multiple multi-core processors which, col-
lectively, will be able to provide the necessary resources for deeper 
study of neural coding and function. This new computational plat-
form is transformative by providing: (1) access to user friendly 
interfaces to dynamically manage and analyze experiments, (2) 
unrestricted computer power for simulation, signal processing of 

brain signals and experimental control, (3) huge storage for data 
and (4) real-time and closed-loop subject feedback, 24/7, anywhere 
in the world.
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