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Abstract: Our immunity is guaranteed by a complex system that includes specialized cells and active
molecules working in a spatially and temporally coordinated manner. Interaction of nanomaterials
with the immune system and their potential immunotoxicity are key aspects for an exhaustive
biological characterization. Several assays can be used to unravel the immunological features of
nanoparticles, each one giving information on specific pathways leading to immune activation or
immune suppression. Size, shape, and surface chemistry determine the surrounding corona, mainly
formed by soluble proteins, hence, the biological identity of nanoparticles released in cell culture
conditions or in a living organism. Here, we review the main laboratory characterization steps and
immunological approaches that can be used to understand and predict the responses of the immune
system to frequently utilized metallic or metal-containing nanoparticles, in view of their potential
uses in diagnostics and selected therapeutic treatments.
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1. Introduction

Nanoparticles (NPs) are extremely attractive for several biomedical applications, due to their
capability to interact with molecular or cellular processes and the possibility to influence their
functions [1–5]. Specifically functionalized NPs have the potential to overcome some limits of many
traditional therapeutics, such as poor water solubility or lack of target specificity [6]. Metal-based
NPs possess unique physicochemical properties, offering many advantages and potential usages [7,8]
(Table 1). For example, the peculiar optical properties of plasmon-resonant noble metals (i.e., Au, Ag,
Pt, and Pd) and luminescent semiconductor nanocrystals (quantum dots (QDs)) make them useful
as markers for biological systems imaging [9–21]. Gold nanoparticles (Au NPs) find a wide spread
use in biological applications, such as cancer therapy [22], cell labelling [23], drug delivery [24], and
diagnostics [25]. Aluminium (Al) and iron oxide (Fe2O3) NPs have been proposed as drug delivery
systems [26–28]. Fe2O3 can be used exploiting their magnetic features to drive loaded NPs to specific
target tissues by applied magnetic fields. Furthermore, other metal-based NPs have been deeply
investigated as candidates for novel antimicrobial applications. Silver NPs are, indeed, widely used in
medicine, and in common household products as additives with antimicrobial activity against more
than 650 different types of disease-causing organisms, including viruses [29–38]. Along with Ag, TiO2

and Cu NPs also show strong antibacterial activity [39,40]. Different applications of Ag NPs have been
explored, such as cancer therapy and wound healing, spreading their exploitation in several fields of
biomedicine [41–44]. Interestingly, the catalytic properties of metal NPs could suggest their potential
use in oxidative stress-based disease, as indicated by Reactive Oxygen Species (ROS)-scavenging
activity of Pt NPs [45,46]. However, the same properties may lead to unexpected outcomes when NPs
interact with biological tissues. Indeed, the biological effects of materials at the nanoscale cannot be
anticipated by the knowledge of the same materials in the bulk form [47–49]. The understanding of the
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cause–effect relationship between the nanomaterial properties and their interference with biological
processes would enable the prediction of unforeseen hazards and the synthesis of “safe-by-design”
nanomaterials [50]. The safety assessment of NPs must include the consideration of three major topics:
an NP’s physicochemical characteristics, fate (biological or environmental), and (re)activity [51].

Table 1. Examples of frequently used metal nanoparticles in biomedicine.

Application Nanoparticles References

Antimicrobial
Ag Hardman et al., Lansdown, Elechiguerra et al. [30–32]
Cu Cioffi et al. [40]

TiO2 Kubacka et al. [39]

Cancer therapy Ag Wieder et al. [44]
Au Pissuwan et al., Zharov et al. [22,43]

Diagnostic Au Valentini et al. [25]

Drug delivery Au Voskerician et al. [24]
Al Tyner et al. [26]

Imaging

Ag Caro et al. [11]
Au Sharma et al., Manohar et al., Cole et al., [9,20,21]
Pt Deyhimihaghighi et al. [19]
Pd Park et al. [12]

Fe2O3 Corot et al., Gupta et al. [27,28]
QDs Wang et al., Kim et al., Stroh et al., Michalet et al. [14–17]

ROS scavenging Pt Moglianetti et al., Gatto et al. [45,46]

Wound healing Ag Poon et al., Fong et al. [41,42]

The compatibility with the immune system (IS) represents a crucial issue to comprehend an
engineered NP’s biological fate, and to approach feasible nanomedical applications [52]. The IS is
organized in a complex defense structure, tailored by evolutionary processes. It has a protective role
against foreign bodies, toxic and pathogenic entities considered “non-self” or dangerous, which are
safely confined or eliminated [53]. Among the mechanisms aimed at entrapping non-self bodies, the
major importance of the so-called “opsonization” phenomenon is recognized. This event involves
specific proteins, like antibodies, the complement enzyme-protein system, or membrane receptors
with the capability of firmly bind other structures, such as lipoproteins or sugars [54].

Specialized immune cells expressing many of these receptors belong to the innate immune system,
the fast responding and non-specific defense against any invading threats for the organism. These
cells are characterized by two main activities: phagocyting and/or killing pathogens. In particular,
neutrophils, macrophages, and dendritic cells perform phagocytosis driven by those receptors whose
cognate agonists “label” the microorganism. On the contrary, NK cells and granulocytes release
cytotoxic substances once stimulated or in contact with warning signals.

Two major classes of key membrane proteins mediating immune responses are the
antibody-binding fragment crystallizable region receptors (FcRs) and the membrane associated
pattern-recognition receptors (PRRs), binding to a variety of conserved pathogen-associated molecular
patterns (PAMPs), which distinguish the foreign bodies, such as viruses or bacteria [53]. A set of soluble
proteins binding microorganisms is the complement system. Its name reminds the “complementary
role” to antibodies, participating together in the several mechanisms to remove intruders and damaged
cells [55]. Such enzyme-activated pathway of opsonization is gaining evidence as one of the most
important biological effects of nanoparticle delivery [56].

NPs released in the biological milieu adsorb several of the described molecules on their surface,
facilitating the interception and internalization by immune cells. The set of molecules adsorbed
onto the NPs is generally called “corona”. Most of them are recognized by cell surface receptors
which are able to uptake the opsonized particle by different pathways, often depending on the
NP–corona complex size [57]. Hence, engineered man-made materials could be considered as
non-biological danger signals for the immune system and may, either directly or indirectly, activate
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phagocytosis. Hence, it is postulated that immune cells could sense nanomaterials, which are
designated as nanoparticle-associated molecular patterns (NAMPs) [58]. This may be accomplished
via surface-adsorbed biomolecules, or it could result from the recognition of specific structures of the
nanomaterial per se.

NPs or NP–protein aggregates may accumulate in the subcellular compartments, interfering
with the physiological immune functions and triggering inflammatory signaling [59]. For example, in
macrophages, different metallic NPs or non-degradable particles can accumulate and activate cytosolic
inflammasome complexes [60] which regulate the proteolytic enzyme caspase-1 [61]. Caspase-1 induces
the maturation of proinflammatory cytokines, in turn, triggering inflammation [62]. On the other hand,
the mechanism of NP escape from the cell is not so clear [63], although evidence of the exocytosis
mechanisms has been described [64].

Physicochemical characteristics, like size, shape, and surface chemistry of the particles, regulate
most of the aspects related to the bio-interaction [65]. Moreover, additional materials used to
increase metal NP solubility or as biocompatible coatings, may also change NP interface with the
biological environment, including their immunological profile [66]. Although significant improvements
in nanotechnology have occurred in many years of research, precise relationships between NP
physicochemical features and their biological outcomes still represents an arduous task to be elucidated.
Major challenges in immunological studies require meticulous characterization and the choice of
suitable experimental models. The intrinsic properties of nanoscale materials often complicate
the resolution of several assays and instruments currently used in biochemistry, leading to many
inconclusive and contradictory data on NP-induced responses [67].

The focus of this review is to outline the main characterization steps and the current
immunological approaches to understand IS interaction and its inflammatory responses to commonly
used metal-based NPs.

2. In Vitro

In vitro studies are a fast approach to evaluate NPs’ reactivity and induced toxicity, as well as
their cellular uptake and inflammatory potential [68]. In order to make a meaningful comparison
among different experimental results across different studies, it is imperative to carry out a precise
nanomaterial characterization, along with standardization of the experimental protocols.

Currently used in vitro methodologies require high accuracy in the assessment of the potential
NP-induced immunotoxicity, as several issues may compromise the results. These include the choice
of the appropriate cell culture model; NP dose and dose metric; relevant and suitable positive and
negative controls; the assay format; the selected endpoint; the NPs’ interference with the assays; and,
last but not least, the understanding of assay predictability for the corresponding immunotoxicity
in vivo. Sometimes, it is undervalued the importance of reliable cell culture models mimicking the
actual human immune systems. Different immune cells perform different tasks, and they have diverse
protein expression profiles and uptake mechanisms. In addition, frequently used in vitro assays involve
murine or human cell lines (tumor derived or “artificially” transformed) demonstrating advantageous
robustness and facile growing conditions, but may not reflect the natural conditions of the primary cells.

Although the use of cell lines in monoculture systems is recommended for the first stage
of safety evaluation, the relevance of specific, more advanced in vitro models (i.e, co-cultures or
three-dimensional (3D) models) has been highlighted. These models would be preferable for assessing
NP interactions and cellular effects, in order to overcome the lack of phenotypic details, physiological
functions, and complex cell crosstalk of the traditional monocellular type cultures [69]. For instance, to
study gastrointestinal NP exposure, a feasible in vitro model could be the simulation of the intestinal
barrier by enriching the epithelial cell layer with macrophages, in order to comprehend their functional
crosstalk in the generation of inflammatory responses [70]. The cellular model also influences
the exposure duration and the relative endpoint assessed, posing limitation of sub- and chronic
exposure studies. Major restrictions depend on the fast cell division of most cell lines or the possible
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de-differentiation during prolonged culture time. In this regard, in vitro systems might not be suitable
to evaluate any potential dysregulation of immune system long-term responses [71].

2.1. NP Dose

Metal NP dispersion in liquid media represents a critical condition to assure the expected dose to
be delivered. The NP suspension preparation must be optimized to avoid aggregation, dissolution, or
detachment of functional ligands that could affect the final testing concentration. The cell culture media
also alters NP characteristics, mainly because of the presence of serum proteins forming the protein
corona and affecting NP agglomeration, sedimentation, as well as their overall biological identity. The
serum source (i.e., bovine, calf, horse, human), its treatment and manipulation (i.e., heat-inactivation),
as well as the final concentration in culture (e.g., 10% or 1%) used can affect NP interaction with cells,
modulating particle uptake and toxicity. Serum interference could be avoided by performing in vitro
experiments in serum-free conditions, but serum-component deprivation is an unrealistic condition,
strongly affecting cell behavior and viability.

The choice of an appropriate dose of exposure could compromise immunotoxicity of a certain
NP. Albeit in vitro, the assessment of potential immune response should be based on a realistic human
exposure to NPs [72–74]. Often, unrealistic high concentrations are used for the determination of NP
effects. An obstacle is represented by the evaluation of the discrepancy between the administered
and the deposited NP amount in the experimental dishes. Dosimetry curves for metal NPs could be
defined by elemental analysis of cells treated with metal NPs by inductively coupled plasma atomic
emission spectroscopy (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS), which
are precise methods to evaluate plausible NP concentrations targeting the cells. Unfortunately, these
methods do not discriminate between the number of NPs stuck on the cell surface and the ones inside
the cell. Many cell washing steps at the end of metal NP administration are helpful, although the
procedure of etching metal NPs from the surface would be suggested before NP quantification [75].

2.2. NP Interference

It is worth reminding that specific physicochemical properties of NPs, in particular the
metal ones, can interfere with established tests originally developed for biological samples using
conventional chemicals [76]. Due to their increased surface to volume ratio, NPs display an increased
adsorption capability. The affinity to bind polypeptides may strongly influence the readout of protein
concentration or their activity [77]. Due to their optical properties, metal-based NPs present in the
reaction mixture or in cell culture medium compromise several assays based on light absorption or
fluorescence detection [78–80]. The possible NP interferences with the optical reading (absorbance,
luminescence, or fluorescence) could lead to false positive results. This imposes several controls,
including the NP suspension alone, that may cause optical effects by itself. False results could also
arise from peculiar catalytic properties of some metallic NPs.

A comprehensive and reliable understanding of NP effects on the immune cells can be achieved
only using specific assays, but, despite global efforts, there are no universal established standards for
the abovementioned areas [71,72,81].

2.3. Cytotoxicity

The impairment of cell viability is the first parameter to evaluate the NP potential immune
response. Many observed inflammatory outcomes are actually due to cell death and intracellular
molecule release in the medium, emerging as consequences of cell or tissue damage.

Since several cell types are commercially available, cells belonging to the presumed target tissue
of our nanomaterial should be preferred. Following this rationale, toxicity tests should probe the
viability of the immune cells patrolling the specific tissue of interest. For example, NPs designed
for the release of drugs in the bloodstream could be monitored for their potential dose-dependent
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cytotoxicity with endothelial cells and blood resident immune cells. Equally, brain-aimed NPs must be
tested with neurons, glia, and microglia cells.

As a result of several cellular processes, the viability could be assessed considering different
outcomes: detection of mitochondrial activity (MTT, MTS, WST colorimetric assays) [82], evaluation
of necrotic and apoptotic processes (LDH release, annexin V/propidium iodide staining, caspase-3
detection) [83–86], and the assessment of lysosomal integrity (neutral red uptake) [87]. Complementary
to NP impairment of cell viability, proliferation assays could give evidence about the NP-triggered
effect on the normal cell cycle in actively replicating cells. On the contrary, interference with the
differentiation process could also be considered to define the possible misleading regulation of cell
maturation [88].

As previously mentioned, NP-induced cytotoxicity of fast-proliferating cells can be quite different
from its toxic effect on primary cells with a physiological cell cycle. Thus, the use of cell lines is limited
to the evaluation of validated biomarkers reflecting the actual response of normal human cells [89].
NPs could also induce an indirect effect by the adsorption of growth factors and nutrients from the
cell culture medium [90], interfering with the readout. In toxicity tests using propidium iodide, false
positive samples occur by the presence of this dye stuck on metal NP surface, increasing the uptake by
viable cells, but finally counted as dead cells [91]. Another example of interference with metabolic tests
is the NP interaction with the enzymatic substrate causing the depletion of the free form of the latter
(i.e., MTT) and producing false negative results [92]. Metal ions have been clearly shown to interfere
with the LDH assay [93,94], and several metal NPs may absorb light, quenching probe fluorescence in
different tests [93,95–97]. The catalytic activity and the magnetic properties of some metal oxides may
also cause erroneous signals in detection methods based on redox reactions [98–102]. For example,
metal ions derived by the dissolution of the NPs interfere with the MTT reduction reaction [78].

Along with viability tests, the cellular stress response gives information regarding active cell
reaction to exogenous materials. Reactive oxygen species (ROS) are generated by cells as byproducts
of normal cellular activity, and are neutralized by cellular antioxidant defenses. If the ROS production
exceeds the cell neutralizing capacity, an oxidative stress status occurs. To monitor this oxidative
status, the two most common assays are the measurement of ROS generation and the glutathione
(GSH) reduction. The generation of ROS is usually investigated using a fluorometric assay based on
intracellular oxidation of 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) [103], while GSH is
measured with assays based on the production of a fluorescent or colored dye upon reaction with
GSH [104]. As many fluorescent probes, however, results using DCFH-DA suffer from the interference
of metallic NPs, showing plasmon resonance in the visible spectrum and specific absorbance around
490 nm wavelength [105]. Furthermore, the catalytic properties of some metal particles must be taken
into account since non-internalized deacetylated DCF may accumulate in the extracellular space, and
could react with catalytically active substances outside the cells [106].

Intracellular Ca2+ release is another useful indicator of cell activation. Several cellular mechanisms
are triggered by an increase in intracellular Ca2+ concentration, potentially initiating apoptotic signals
or autophagy [107]. Since most of the Ca2+ probes are fluorescent, the same metal NP-induced optical
interference could be found.

2.4. Inflammatory Potential

An exquisite parameter to assess cellular immune response is the production and release of
inflammatory markers, like cytokines and chemokines. The evaluation of this type of response is
commonly conducted using enzyme-linked immunosorbent assays (ELISA), that enables simple and
accurate quantification of released markers by specific antibodies and enzymatic reactions.

Multiple-parameter analysis can also be performed using multiplex systems [88,108,109].
Cytokine release represents a key activity of immune cell to coordinate either inflammatory or
anti-inflammatory responses. Although cytokine release is peculiar for each cell type determining
following precise activation fates of the target cell (e.g., lymphocyte polarization in different
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sub-population depends on specific monocyte/macrophage cytokine released pattern), immune cell
lines often show defined expression patterns commonly shared by several types of NP insults. Similar
inflammatory responses obtained in vitro do not always mean that all NPs behave in the same way
inducing the same response. Specific cell line-gene rearrangement may limit the response to similar
expression patterns facing particles made of diverse materials, which probably behave differently in
primary cells derived from the same tissue.

Along with these well-known markers, the expression of membrane receptors involved in the
cellular immune response can give the researcher important information [88,108]. Membrane proteins,
as well as lipids, denote the activity of cells in the different physiological or pathological conditions.
Upregulation of CD11b (cluster of differentiation 11b), for instance, can provide an indication of
macrophage and microglia activation [110]. Increased expression of a certain protein receptor prepares
the cell to respond quickly to its cognate agonist. For example, upregulation of FcRs (immunoglobulin
receptors) amplify the macrophage ability to engulf opsonized external bodies, including NPs.
Flow cytometry and confocal microscopy are commonly performed to evaluate membrane protein
expression. The first represents a suitable analytic method for non-adherent cells (e.g., monocytes)
and allows precise and fast quantification of different labelled targets, contemporaneously expressed
on the cells [111]. Confocal microscopy, otherwise, is recommended to observe fluorescently probed
objects in adherent cells (e.g., macrophages) [112]. Both techniques exploit fluorescence and have
been developed for biological samples. As described above for other optical detection techniques, it
is suggested to carefully include the proper controls to avoid artifacts created by NPs. Non-specific
interactions of protein-labelling antibodies with NPs, or even more likely, with proteins absorbed onto
the NPs, could induce variations in the detected fluorescence invalidating the data.

Another key feature of inflammatory responses is the immune cell trafficking and localization in
the insulted tissue. Immune cell trafficking in peripheral and lymphoid organs is mediated by specific
chemoattractant cytokines (known as “chemokines”) and their cognate heptahelical transmembrane
receptors [113]. The release of chemokines by inflamed tissues creates a signaling gradient, guiding
leukocyte migration to the target site. Persistent metallic NPs endocytosed by immune cells could
compromise their ability to reach the inflammation source, impairing their response to chemotactic
stimuli. This occurrence is always underestimated. Nevertheless, useful information on the potential
reduced, or increased, chemotaxis ability, can be easily tested in vitro by Boyden chambers or Transwell
plate systems [114]. The eventuality of altered NP-induced cytoskeleton rearrangements may have
important consequences on the kinetics of the immune response.

2.5. Colloidal Suspension Impurities

NP-induced immunological profile imposes the distinction of NP-mediated effects from those
triggered by chemical and biological impurities that are not always completely removed during the
NP synthesis. These impurities might be responsible for unwanted effects, as suggested by different
studies [71,93,115]. Among the possible contaminants, the presence of endotoxins [116] can lead
to false positive results [117]. Some nanomaterials, while not inflammatory themselves, are able to
potentiate endotoxin-mediated inflammation [118–120]. Currently, the FDA-approved method to
detect endotoxin is the limulus amoebocyte lysate (LAL) assay for in vitro tests.

While many types of NPs have been linked to certain types of immunotoxicity, there are no
reference materials to be used to standardize immunotoxicity results. Usually, immunological studies
are conducted using traditional controls, such as bacterial lipopolysaccharide (LPS) as an inducer of
cytokine production [121].

3. General Considerations on In Vivo Investigation

The study of the whole organism provides information on the immune response together with
systematic data on NP pharmacokinetics, tissue absorption, distribution, metabolism, accumulation,
and excretion [122]. The immune reaction has a dynamic nature and a defined time sequence, turning



Nanomaterials 2018, 8, 753 7 of 15

in a rapid deactivation once the cause has been eliminated. When the defense response is abnormal,
by duration or distribution, a pathological state occurs. In this context, the evaluation of a selected
biomarker does not always discriminate between pathological inflammation and physiological reaction.
Major attention should be paid to the detailed profile of response kinetics [71].

NPs could enter the body through six main routes: intravenous, oral, intraperitoneal, inhalation,
dermal, or subcutaneous [123]. The exposure route has enormous importance in the potential response
of the immune system. Different antibody molecules are generated and released in the different tissues,
so conditioning the eventual opsonization of NPs and their sequestration by patrolling phagocytes [124].
For example, IgA antibodies dimers intercept NP released by an oral route, and may induce the
activation of an IgA-mediated response. On the other hand, injected NPs can be quickly surrounded
by pentameric IgM antibodies with a far bigger size than single-molecule memory IgG or complement
molecules. The diversity of the corona changes the identity of the particles ruling their biological
fate [125,126]. However, the bio-corona generated onto the NP surface, in turn, depends on NP
physicochemical characteristics determining what is actually facing the cells. As a consequence, it
mediates the uptake and/or activate different signaling pathways [127]. Many of the subset of serum
molecules that interact with NPs, such as complement [128] and immunoglobulins, are immune-active,
managing the interaction with immune cells in the different tissues.

The physicochemical properties, like NP surface charge, affect the nanomaterial biodistribution,
though the current knowledge cannot enable general conclusions. NPs can distribute to various
organs, and may retain the same original structure or not, being modified and metabolized [129]. It is
worth distinguishing between acute and chronic exposure to NPs, since exposure time determines the
optimal technique to monitor the interactions of NPs with the immune system. A high percentage
of NPs can normally be sequestered in the liver, or in other organs, including spleen, lymph nodes,
and bone marrow. Notwithstanding the importance of finding the threshold dose inducing toxicity,
many experiments performed, in vivo, use amounts of metal NPs which are unlikely to be reasonable
in human exposure through the considered routes [130]. The investigation of very low doses of NPs
administered orally or by skin adsorption would be closer to the potential chronic exposure humans
may have throughout their life using NP-loaded commercial products. The data obtained, in this way,
help in understanding how a few particles can trigger immune reactions without showing massive
toxicity or organ failure, “simply” due to the accumulation of metals and release of metal ions [131].
Furthermore, these organs are guarded by specialized macrophages, as part of the mononuclear
phagocytes system (MPS) usually dealing with the uptake and metabolism of foreign molecules, which
amplifies the retention and increases the ion release by ROS formation and lysosome-dependent metal
NPs [132]. NP size is another critical parameter affecting final fate in the organism. For instance,
NPs smaller than 5 nm in diameter are excreted in the urine, throughout the capillaries of the renal
tubes [133], limiting their persistence into the body, otherwise micron-sized particles. Interestingly,
NP size has been shown to influence the generation of CD8 or CD4 type I T cell responses [134,135],
probably determined by the width of the NP surface in contact with cells, or the amount of absorbed
active molecules reacting with membrane receptors. These hints guide us in the choice of the proper
methods to reveal the mechanisms of NP-induced immune responses. Nonetheless, immune systems,
hence, immune responses, display differences among animal species. The use of animal models in
immunology is of indubitable importance. Differences and similarities to the human immune system
of the experimental available animal models are still a matter of debate. As a representative example,
one of the most used allergy models in mouse, namely ovalbumin as an allergen in BALB/c mice, does
not reflect the development of an allergic reaction in humans [136].

As well as for in vitro studies, there is a lack of standard controls for NP immunotoxicological
studies [137]. While many types of nanomaterials have been linked to certain types of immunotoxicity,
standardization of the methods for each material is very difficult. Usually, the immune response to
nanomaterials, in vivo, relies on traditional tests, with special attention to the innate immune reactions.
These include histochemical analysis of the tissue in the site of NP release (e.g., skin or muscle)
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to monitor of the recruitment of immune cell, as well as the local cell activation and presence of
inflammatory mediators, and possible initiation of adaptive immunity in lymph nodes (LNs). Metallic
NPs are relatively straightforward to identify by microscopy in cells and tissues, due to their opacity
in visible light and electron density in transmission electron microscopy (TEM) (Figure 1) [88]. As
previously stated, blood concentration of inflammatory mediators and immunoglobulin over a precise
time period is usually performed depending on the experimental model and the administration route.
As well as for in vitro analysis, specific standardized controls for NPs are missing, and conventional
molecules are generally used, such as lipopolysaccharide (LPS) as a positive control for cytokine
induction [121]. Although LPS induces reliable immune responses, mimicking the effects of the
Gram-negative bacterial wall, it is debated whether this molecule is the appropriate control for metallic
NPs. Indeed, the specific LPS cell receptors (e.g., CD14 and beta2 integrins) or the soluble LPS-binding
protein LBP, trigger precise signaling cascades which are not tailored for artificial nanomaterials of
any kind. Metal NPs, hence, do not stimulate the same pathways of LPS, hiding potential unexpected
inflammatory responses.
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into the standard methods currently used for chemicals or biological molecules. Although many
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