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Abstract Cyclooxygenases play a vital role in inflammation and are responsible for the production of

prostaglandins. Two cyclooxygenases are described, the constitutive cyclooxygenase-1 and the inducible

cyclooxygenase-2, for which the target inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs).

Prostaglandins are a class of lipid compounds that mediate acute and chronic inflammation. NSAIDs are the

most frequent choices for treatment of inflammation. Nevertheless, currently used anti-inflammatory drugs

have become associated with a variety of adverse effects which lead to diminished output even market with-

drawal. Recently, more studies have been carried out on searching novel selective COX-2 inhibitors with

safety profiles. In this review, we highlight the various structural classes of organic and natural scaffolds

with efficient COX-2 inhibitory activity reported during 2011e2021. It will be valuable for pharmaceutical

scientists to read up on the current chemicals to pave the way for subsequent research.
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1. Introduction
Figure 2 A diagram of the biochemistry of prostanoids.
Inflammation is an important part of the immune system’s response
against hostile world and has been linked to a variety of immuno-
logical diseases1. Chemical agents, physical injuries, immunolog-
ical reactions and Infection by pathogenic organisms usually cause
acute or chronic inflammations2. Non-steroidal anti-inflammatory
drugs (NSAIDs) have long been known to alleviate inflammation.
They treat a variety of diseases caused by inflammation, such as
rheumatoid arthritis, acute fever as well as relieving common daily
pains3. In the history of medicine development, the first therapeutic
NSAID was aspirin, which has been used for more than 100 years
since 1898. For more than a century, more typical NSAIDs, such as
celecoxib, indomethacin, ibuprofen, and diclofenac (Fig. 1), have
been latterly developed, and approved by the U.S. Food and Drug
Administration (FDA) for clinical treatment. NSAIDs competi-
tively inhibits the activity of cyclooxygenases (COXs) and thereby
interferes with the bioconversion of the downstream inflammatory
mediators. In 1971, Vane et al.4,5 first confirmed that the therapeutic
target of NSAIDs is cyclooxygenase, further investigation found
that the inhibition of cyclooxygenase directly resulted in termina-
tion of the biosynthesis of prostaglandins (PGs), which are crucial
mediators of inflammation.

Four major bioactive PGs, prostaglandin E2 (PGE2), prosta-
cyclin I2 (PGI2), prostaglandin D2 (PGD2), prostaglandin F2a
(PGF2a), along with a thromboxane A2 (TXA2) are generated
during inflammation6. The formation of PGs was shown in Fig. 2,
initially, arachidonic acid (AA) is released from the phospholipid
by the catalysis of the phospholipase A2 (PLA2), and then a
prostaglandin H2 (PGH2) is subsequently formed by the actions of
both COX-1 and COX-2. These four PGs and TXA2 are eventually
produced through the bioconversion of PGs and TXA2 synthases
in downstream mechanism. The level of prostaglandin production
mainly depends on the expression of cyclooxygenases (COXs) in
inflammatory tissues, especially cyclooxygenases-27. PGs are
hormone-like lipid compounds and are involved in many physio-
logical reactions and play a key role in the generation of inflam-
matory responses8. In general, PGs exert their effects by mediating
the body’s responses to tissue injury or inflammation. Among
them, PGE2 is the dominated prostaglandin that induces typical
symptoms of inflammation, such as pain, fever, tumor, and
anaphylactic reaction9.

Two functional COXs are identified and defined as COX-1
and COX-2 according to their different structures and functions.
COX-1 belongs to constitutive isoenzyme and extensively exis-
ted in most cells. Prostaglandins catalyzed by COX-1 have
protective effects on gastrointestinal tract. COX-2 is an inducible
enzyme which acts as the most important source of prostaglan-
dins, so it is always regarded as a pathologic enzyme chiefly
responsible for inflammation10e12. NSAIDs exhibits anti-
inflammatory effects by the non-selective/selective inhibition
Figure 1 Structure formulas of clinicall
of cyclooxygenase (COX) activity and subsequently blocks the
biosynthesis of prostaglandins in lesion sites13e15. However, due
to simultaneous inhibition of COX-1 and COX-2, non-selective
NSAIDs not only achieve anti-inflammatory and analgesic pur-
poses, but also cause serious adverse effects, such as digestive
tract damage and platelet function disorder. While selective
NSAIDs only inhibits COX-2 but does not affect the protective
effect of prostaglandins catalyzed by COX-1 on gastrointestinal
tract and platelet, thus greatly decreasing the risk of gastroin-
testinal side effects16,17. The traditional anti-inflammatory
mechanism of COX-2 inhibitor has been confirmed by recent
studies. As depicted in Fig. 3, COX-2 inhibitors exert pharma-
cological activity through inhibition of the NF-kB pathway.
Since COX-2 is responsible for producing reactive oxygen spe-
cies (ROS), COX-2 inhibition causes a sharp drop in the amount
of reactive oxygen species (ROS) in the upstream mechanism
and keep NF-kB in an inactive state of bondage to P-IkB in the
downstream, and thereby prohibit the production of pro-
inflammatory cytokines, including NO, PGE2, IL-6, and TNF-
a18. Although selective COX-2 inhibitors are the most common
choice of treatment for inflammatory diseases, they are often
found to be associated with potential adverse effects of cardio-
vascular disorder, and a possible increased risk of heart attack,
blood clots and stroke. Therefore, discovering new selective
COX-2 inhibitors that can reduce such side effects appear more
popular19,20.

To prevent undesirable outcomes, finding new NSAIDs with
improved safety profiles remains the most effective approach to
inflammation treatment. This paper reviews the classification and
pharmacological action of new COX-2 inhibitors which have been
y used COX-1 and COX-2 inhibitors.



Figure 3 A diagram of the putative anti-inflammatory mechanism

of the COX-2 inhibitor in RAW264.7 cells.
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reported in organic synthesis in the last ten years. In addition, new
compounds from natural origins with potent COX-2 inhibitory and
anti-inflammatory activity are also included, which are the
promising COX-2 inhibitor for drug design and clinical use.

2. Chemistry and pharmacology of new synthetic COX-2
inhibitors

2.1. Compounds having a pyrazole ring

Pyrazole is a p-excess aromatic heterocycle, which has been
recognized as a pharmacologically important active scaffold for
organic synthesis, especially for new COX-2 inhibitor develop-
ment. Clinical agents containing pyrazole fragments are cele-
coxib, antipyrine, aminopyrine, and metamizole21. During the past
ten years, a number of pyrazole derivatives were reported and
screened for their COX-2 inhibition and anti-inflammatory activity
(Fig. 4). In 2014, a new compound 1 containing pyrazole fragment
was synthesized by Bansal et al.22. Compound 1 showed excellent
Figure 4 Chemical structu
selective inhibition of COX-2 [IC50 Z 0.31 mmol/L, selectivity
index (SI) > 222] and potential anti-inflammatory activity with
ED50 of 74.3 mg/kg in a carrageenan-induced rat paw edema
model. The COXs inhibition activity of compound 1 was obtained
by using a COX fluorescent inhibitor screening assay kit con-
sisting of ovine COX-1 and human recombinant COX-2 enzymes
[an enzyme immunoassay (EIA)]. Further investigation indicated
that compound 1 presented suppression of acetic acid-induced
writhes, and it showed better gastro-spasm profile compare to
that of aspirin. In a molecular docking study, compound 1 showed
higher selective binding affinity towards COX-2 than to COX-1.
An important hydrogen bond between the oxygen of the nitro
group and the hydrogen of Arg120 was observed, which is
important for the interaction with COX-2. El-Sayed et al.23 re-
ported the synthesis of a series of potentially useful 1,5-diphenyl
pyrazoles. Compounds 2 and 3 displayed a considerable COX-2
inhibitory activity and a good selectivity (EIA)
(IC50 Z 0.45 mmol/L, SI Z 111.1). Compounds 2 and 3 also
presented high anti-inflammatory activity (ED50 Z 118 and
120 mg/kg) comparable with diclofenac (ED50 Z 114 mg/kg) in
carrageenan-induced rat raw paw oedema assay. Notably,
replacement of cycloalkanone moiety can significantly influence
their activity. Meanwhile, molecular docking analysis indicated
that compounds 2 and 3 bind into the active site of COX-2 in a
similar manner to SC-558, a selective COX-2 inhibitor. Xu’s
group24 reported a novel class of molecules, adopting a new
pyrazole N-aryl sulfonate synthetic approach. This inspiration
came from the selective COX-2 inhibitor-celecoxib, which has a
typical sulfonamide fragment. In vitro EIA experiments indicated
that compounds 4, 5, 6, and 8 have strong COX-2 inhibitory ac-
tivity (Table 1). According to the selectivity index on COXs,
compounds 4e8 displayed comparable selective COX-2 inhibition
with that of celecoxib. Importantly, compounds 4, 5, 7, and 8
showed excellent in vivo anti-inflammatory activity (5, 7, and 8: %
inhibition of auricular edemas Z 27.0, 27.0 and 25.7, respec-
tively; 4 and 7: % inhibition ratios of writhing Z 50.7 and 48.5,
separately, at the oral dose of 30 mg/kg, 8 mice/test group). El-
Sayed et al.25 continued to report some pyrazole derivatives
res of compounds 1e16.



Table 1 In vitro COX-1/COX-2 inhibition (IC50, mmol/L)

and selectivity index for compounds 4e8, and standard agent.

Compd. COX-1a COX-2a COX-2 selectivityb

4 0.5 0.0011 455

5 96.57 0.0092 10,479

6 >100.00 0.092 >1087

7 >100.00 0.53 >189

8 >100.00 <0.01 ‒

Celecoxib >100.00 0.056 295

aThe result (IC50, mmol/L) is the mean of three determinations

acquired using a COX fluorescent inhibitor screening assay kit

(Cayman Chemical, MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).
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based on the skeleton of SC-558 and celecoxib in 2012. Some of
the newly synthesized compounds showed increased COX-2
inhibitory and anti-inflammatory activity. Example as compound
9, exhibiting excellent COX-2 inhibitory activity (EIA) with IC50

of 0.26 mmol/L and selectivity index (SI Z 192.3). Furthermore,
the carrageenan-induced rat paw edema assay showed that com-
pound 9 exerted equivalent anti-inflammatory activity with ED50

of 0.170 mmol/kg in comparison to the reference drug (diclofenac:
ED50 Z 0.198 and celecoxib: 0.185 mmol/kg, respectively). Per
the docking result, the trifluoromethyl moiety of compound 9
inserts deep inside the COX-2 pocket and forming hydrogen bond
with Gln192 and Arg513, this result was consistent with COX-2
inhibition. A novel series of pyrazole derivatives that have un-
usual flexible fragments were reported by Gopi’s group26, of these,
compounds 10 and 11 exhibited moderate selective COX-2
inhibitory potency by using a chromogenic assay (IC50 Z 16.8
and 14.3 mmol/L, SI Z 0.5100 and 0.4400, respectively). In
docking calculations, an interaction between the ligands and
Arg513 was observed, which is required for the dependent inhi-
bition of COX-2. In 2020, on the basis of the structure of cele-
coxib, several halogenated triarylpyrazoles were prepared by
Abdellatif et al.27. In vitro COX-2 inhibition assay indicated that
three fluorinated compounds 12e14 exerted excellent efficacies
(IC50 Z 0.049, 0.057, and 0.054 mmol/L, respectively) close to
that of celecoxib (IC50 Z 0.055 mmol/L) and showed better se-
lective index (SI Z 253.1, 201.8, and 214.8, respectively) than
celecoxib (SI Z 179.4). Moreover, compounds 12e14 exhibited
close gastric profile (ulcer index (UI) Z 1.25e2.5) to celecoxib
(UI Z 1.75). In this study, halogenated aryl ring was found to be
crucial to affect activity and selectivity, and halogen atom fluoro
derivatives showed better COX-2 selectivity than celecoxib.
Figure 5 Chemical structures of compounds 17e25.
Abdelall et al.28 prepared a new series of 1,5-diaryl pyrazoles as
both COX-2 and 15-lipoxygenase inhibitors. Compound 15 was
more effective (ED50 Z 0.98 mmol/L) on COX-2 inhibition than
that of references celecoxib (ED50 Z 1.54 mmol/L) and meclo-
fenamate sodium (ED50 Z 5.64 mmol/L) in an EIA assay.
Meanwhile, compound 15 showed good anti-inflammatory activity
and selectivity index (SI Z 4.89) in in vivo assay, which was
almost identical to that of celecoxib (SI Z 4.93). Moreover, the
in vivo ulcerliability activity assay was explored in this study,
compound 15 presented good ulcerous profile (UI Z 2.78) and it
was as safe as the reference celecoxib (UI Z 2.9). In addition, the
results suggested that presence of a (CF3) moiety in pyrazoles had
no effect on COX-2 selectivity. Aiming to directly inhibit the
production of PGE2 in serum samples of rats, some novel pyrazole
derivatives were recently designed by Mohammed et al.29. Of
these, compound 16, which contains an acylamino linker, pre-
sented COX-2 inhibition with IC50 Z 1.76 mmol/L and a good
selectivity index value of 11.1. Moreover, compound 16 showed
potential anti-inflammatory activity (% edema inhibition Z 81)
and was less ulcerogenic than indomethacin in the in vivo ulcer
liability assay. Unfortunately, the potency and selectivity of
compound 16 cannot be compared with that of celecoxib, further
structural modification is required to improve the activity.

2.2. Compounds having imidazole and imidazoline rings

The imidazole and imidazoline groups, as structurally similar
pharmacophores, have been widely explored in the development
of NSAIDs30. From 2014 to 2021, several literatures have reported
new COX-2 inhibitors containing imidazole and imidazoline
moieties (Fig. 5). In 2014, Sarnpitak et al.31 designed and syn-
thesized an active imidazoline analog 17. Compound 17 displayed
prominent COX-2 inhibitory activity (IC50 Z 0.3 mmol/L) com-
parable to clinically used celecoxib (IC50 Z 0.091 mmol/L) upon
in vitro evaluation. This study also proved that replacement of
methylsulfonyl group by sulfonamide showed no pronounced
suppressive effect on COX-2 inhibition. Four years later, Abdel-
latif et al.32 reported a number of 4-substituted-imidazoline ana-
logs. Compounds 18e20 were more active towards COX-2
compare to celecoxib. Compounds 18, 20, and 21 were less ul-
cerogenic than clinical drugs including ibuprofen and celecoxib
(Table 2). Structure‒activity relationship study (SAR) revealed
that multiple ‒OCH3 (18) substituent on benzene ring has more
favorable effect on the COX-2 inhibition and selectivity than other
analogs. Some new substituted imidazoline-5-one derivatives 22,
23, and 24 were prepared by Metwally et al.33 Compounds 22e24
showed similar anti-inflammatory activity (% inhibition of
edema Z 43.1, 41.8, and 49.0) compared to celecoxib (% inhi-
bition of edema Z 43.1%), which suggested that keeping the
same sulfonamide (SO2NH2) moiety in new structures is crucial to
maintain or increase the anti-inflammatory activity. Further study
indicated that compounds 22e24 exhibited a high efficacy to-
wards COX-2 inhibition (EIA) with IC50 of 0.090, 0.087, and
0.092 mmol/L, respectively. In addition, several substituted 1,5-
diarylimidazole derivatives having the thioalkyl group at posi-
tion 2 were reported by Navidpour et al.34 in 2014. Of these,
compound 25 showed the moderate inhibition (EIA)
(IC50 Z 14.2 mmol/L) of COX-2 and displayed less selectivity
(SIZ 3.1) than celecoxib (IC50 Z 0.544 mmol/L; SIZ 19.4). The
results suggested that compounds bearing thiomethyl group at
position 2 have better activity as compared with thioethyl de-
rivatives in this study.



Table 2 In vitro COX-1/COX-2 inhibition (IC50, mmol/L),

selectivity index, ulcerogenic evaluation for compounds

18e21, and standard agents.

Compd. COX-1a COX-2a COX-2 selectivityb Ulcer index

18 4.52 0.42 10.76 1.22

19 6.74 0.62 10.87 3.02

20 4.52 0.52 8.69 2.60

21 7.86 0.86 9.14 2.61

Celecoxib 7.23 0.84 8.61 2.93

Ibuprofen ‒ ‒ ‒ 20.25

aThe result (IC50, mmol/L) is the mean of three determinations

acquired using a COX fluorescent inhibitor screening assay kit

(Cayman Chemical, MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).
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2.3. Compounds having an indole ring

The indole moiety belongs to an important pharmacophore core
for the synthesis of novel selective COX-2 inhibitors35. To
discover novel selective COX-2 inhibitors, Hayashi et al.36

designed a new acid-type compound 26 in 2012 (Fig. 6). Com-
pound 26 maintained the basis structure of indomethacin and
exerted potent selective COX-2 inhibition with IC50 of 0.009 and
0.155 mmol/L in human cells and HWB cells, respectively.
Moreover, compound 26 had good oral anti-inflammation efficacy
and potent in vivo anti-oedematous effect. Meanwhile, a new N-1
and C-3 substituted indole derivative 27 was synthesized by
Kaur’s group37 that showed selective COX-2 inhibitory activity
(EIA) with IC50 of 0.32 mmol/L and SI of >312. According to the
docking result, the phenyl CF3 substituent attached to the C]N is
located near the COX-2 active site and formed an important
hydrogen bond to His90, which is crucial for the COX-2 inhibition.
Bhat’s group38 reported a new COX-2 inhibitor 28, compound 28
not only inhibited COX-2 expression but also possessed desirable
gastral safety profile. This work provided valuable information for
exploring gastro-protective COX-2 inhibitors. Recently, Singh et
al.39 reported several new compounds containing tosyl and
dipeptide groups at N-1 and C-3 position, respectively, which were
developed for COX-2 inhibitors. Of all the compounds,
Figure 6 Chemical structur
compounds 29e31 showed similar in vivo anti-inflammatory ac-
tivities to diclofenac. Moreover, an in vitro COX-2 selectivity
assay showed that compounds 29 and 30 displayed competitive
inhibition and selectivity of COX-2 (IC50 Z 0.006 and 0.099
mmol/L; SI Z 351 and 440, respectively). However, compound 31
showed excellent COX-2 inhibitory activity IC50 of 0.54 mmol/L,
but the selectivity (SI Z 24) is poor. Additionally, Estevão et al.40

synthesized a new indole derivative 32. In comparison with
indomethacin, the methoxy at C-5 was replaced by a sulfonamide,
the C-2 and C-3 positions were substituted by two 4-fluro benzyls,
respectively. Compound 32 showed selective COX-2 inhibitory
activity with 67 � 6% (50 mmol/L) which is close to indomethacin
(78 � 3%). More recently, Jung group41 designed and synthesized
a novel N-1, C-3 substituted indole analog 33 that merge the
structural motifs of anti-inflammatory ascidian metabolites,
herdmanines. To form two vital hydrogen bonds with Tyr355 and
Arg120, the acid in indomethacin was replaced by a hydrazone
moiety based on bioisosteric replacement drug design strategy.
Compound 33 showed a considerable COX-2 inhibitory activity
(7.59 mmol/L) and selectivity (SI Z 5.16) compared with diclo-
fenac (IC50 Z 1.21 mmol/L, SI Z 15.18). The indole-containing
analogues were mostly designed based on the structure of indo-
methacin. Consequently, replacement of the C-3 acetic acid
moiety in indomethacin by various substitutes is an effective
strategy to improves their activity and selectivity. In addition, the
modification at N-1 and C-2 is also a reasonable option.

2.4. Compounds having a thiazole ring

Thiazole is a privileged pharmacophore in medicinal chemistry and
bear high potential for the anti-inflammatory therapeutic option. In
the past 10 years, three groups have reported several thiazole de-
rivatives which were developed as selective COX-2 inhibitors42

(Fig. 7). Sa�glık et al.43 recently designed and synthesized novel
derivatives bearing thiazolyl-hydrazine-methyl sulfonyl moiety as
selective COX-2 inhibitors. Compound 34 demonstrated significant
and selective COX-2 inhibition potency with an IC50 value of
0.140 � 0.006 mmol/L and selectivity index of >714.28 compa-
rable to nimesulide (IC50 Z 1.684 � 0.079 mmol/L) and celecoxib
(IC50 Z 0.132 � 0.005 mmol/L) in in vitro COX-2 inhibition assay
(EIA). Per the molecular docking results, compound 34 bounded in
es of compounds 26e33.



Figure 7 Chemical structures of compounds 34e38.
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a similar manner as celecoxib with COX-2 enzyme. Later, Abdel-
Aziz et al.44 synthesized a few novel anti-inflammatory EGFR in-
hibitors with cardiac and gastric safety profiles. Chemically, these
compounds were formed with pyrimidine-5-carbonitrile hybrids
with 2-amino-4-aryl-1,3-thiazole through an acetamide group
linker. Compounds 35e37 displayed good and selective COX-2
inhibitions (EIA) (IC50 Z 1.17, 1.13, and 1.03 mmol/L;
SI Z 5.78, 7.84, and 8.21, respectively) relative to celecoxib
(IC50 Z 0.88 mmol/L, SI Z 8.31). Further study indicated that
compounds 35e37 exhibited anti-inflammatory activity (the per-
centage of edema inhibition) up to 90%, 94%, and 86% of
meloxicam after 4 h interval and higher gastric safety profiles than
meloxicam. Compounds 36 and 37 had a superior safety profile
with an ulcer index of 2.70 and 2.40, respectively, compared to
meloxicam (UI Z 18). In addition, Hofmann’s group45 designed a
new thiazole analogue, with 4-chloro- and 2-hydroxy-substituted
compound 38, which displayed good and selective COX-2 inhibi-
tion with activity of 9.1 � 1.1% (COX-2 product formation)
measured at a concentration of 10 mmol/L.

2.5. Compounds having a tetrazole ring

Since 2011, two groups have reported the synthesis and pharma-
cological studies of anti-inflammatory tetrazole derivatives
(Fig. 8). Labib et al.46 designed several tetrazole derivatives based
on bio-isosteric replacement of SO2NH2 in celecoxib. Structurally,
two classes of compounds were designed: isoxazoles (39, 40) and
pyrazoles (41e44). Compounds 39e44 are active and displayed
potential in vitro COX-2 inhibitory activity in an EIA assay
(IC50 Z 0.039e0.065 mmol/L). Notably, compounds 40, 42, and
44 attained significant COX-2 selectivity index values which were
as selective as celecoxib. Moreover, compounds 40 and 44 showed
Figure 8 Chemical structur
similar anti-inflammatory activity to celecoxib at different time
intervals and were less ulcerogenic than celecoxib (Table 3).
Downstream inflammatory factors were also detected, compounds
40 and 44 significantly decrease the production of PGE2 (%
inhibition Z 81.042 and 82.724 in sequent) which is comparable
to celecoxib (% inhibition Z 79.666). The collected data indi-
cated that the derivatives with methoxy are more active than those
with hydrogen on the benzene ring. Al-Hourani et al.47 reported a
tetrazole-containing compound 45, which exhibited potent COX-2
inhibition with IC50 value of 2.0 mmol/L, but the SI value of
compound 45 (SI Z 210) was less than celecoxib (SI Z 313).
Five years later, this group48 prepared more 1,5-diaryl-substituted
tetrazoles by further modifications to the methylsulfonyl unit. The
collected biological data showed that compounds 46 and 47
exhibited moderate COX-2 inhibitory activity (IC50 Z 24 and
38 mmol/L, respectively) and selectivity (SI Z 0.87 and 5.2,
respectively); compound 48 displayed enhanced COX-2 inhibitory
activity and selectivity towards COX-2 (EIA) (IC50 Z 3 mmol/L,
SI Z > 67). The acquired results suggested that the presence of
the methylsulfonyl unit, methylene spacer at C-1, and longer
linker make the new derivatives more active towards COX-2
enzyme.

2.6. Compounds having an oxadiazole ring

Oxadiazole moiety has precedent for use as a bioisosteric sub-
stitute in drug design and synthesis. In the past ten years, three
groups had reported the synthesis of COX-2 inhibitors containing
oxadiazole group. As summarized in Fig. 9, El-Sayed et al.49

designed a novel heterocyclic oxadiazoles 49, which exhibited
prominent COX-2 inhibitory activity (IC50 Z 0.041 mmol/L) and
selectivity (SI Z 89.72) comparably to celecoxib
 
es of compounds 39e48.



Table 3 In vitro COX-1/COX-2 inhibition (IC50, mmol/L), selectivity index, ulcerogenic evaluation and in vivo anti-inflammation

activity (dose Z 50 mg/kg) for compounds 39‒‒44, and standard agents.

Compd. COX-1a COX-2a COX-2 selectivityb Ulcer index Rat paw edema (mm) (% edema inhibition, 6 h)

39 11.3 0.045 251.11 0.21 � 0.02 7.27 � 0.14

40 12.4 0.041 302.44 0.123 � 0.01 5.10 � 0.36

41 10.5 0.064 164.06 0.26 � 0.01 6.54 � 0.0.14

42 12.8 0.043 297.67 0.21 � 0.01 5.47 � 0.23

43 10.9 0.065 167.69 0.55 � 0.03 7.05 � 0.35

44 12.4 0.039 317.95 0.11 � 0.01 4.99 � 0.19

Celecoxib 12.7 0.045 282.22 0.167 � 0.01 5.21 � 0.19

Indomethacin 0.10 0.080 1.25 0.88 � 0.04 ‒

‒Not applicable.
aThe result (IC50, mmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical,

MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).

Figure 9 Chemical structures of compounds 49e55.
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(IC50 Z 0.049 mmol/L, SI Z 308.16) by using an enzyme
immunoassay. In 2020, Alfayomy et al.50 reported two new se-
lective COX-2 inhibitors 50 and 51, which belong to pyrimidine-
5-carbonitrile hybrids with 1,3,4-oxadiazole scaffold. Compounds
50 and 51 showed significant and selectivity on COX-2 inhibition.
Further investigation indicated that compounds 50 and 51 dis-
played good in vivo anti-inflammatory activity up to 89.5% inhi-
bition at 4 h in carrageenan-induced rat paw edema assay.
Moreover, compound 50 displayed superior safety profile than
celecoxib. The results revealed that the pyrimidinyl substituent
markedly affected the activity against COX-2. Grover et al.51

synthesized a new series of oxadiazole-comprising derivatives
52e55. Compounds 52e55 exhibited good and selective inhibi-
tion of COX-2 (EIA), but the efficacy and selectivity were less
than reference drug celecoxib. Besides, compounds 53 and 55 had
better in vivo anti-inflammatory activity than celecoxib (Table 4).
The results confirmed that tert-butyl is an indispensable moiety to
enhance COX-2 inhibitory activity and selectivity. This approach
provides an alternative inspiration for new COX-2 inhibitor
development.

2.7. Derivatives having fused heterocyclic fragments

Recently, fused heterocyclic rings have been flexibly used as crucial
core for COX-2 inhibitors (Figs. 10 and 11). Szczukowski et al.52

produced a number of novel hybrid pyrrolo[3,4-d]pyridazinone
derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmaco-
phores. Compound 56 exerted no cytotoxicity and had significant
selective COX-2 inhibition at lower concentrations. Structurally,
the arylpiperazine pharmacophore is connected with 1,3,4-
oxadiazole ring via sulfur. The results indicated that elongating
the linker part is important to enhance the anti-inflammatory ac-
tivity. Khatri et al.53 prepared several benzothiophene derivatives,
and compounds 57, 58, 59, and 60 showed potent and selective
COX-2 inhibition (EIA) (IC50 Z 0.33, 0.31, 0.67, and 1.40 mmol/L
respectively, selectivity index: 48.8e183.8). Analysis of SAR
indicated that various substitutions of benzyl were the major de-
terminants for COX-2 inhibition, such as compounds 59 (4-
SO2NH2) and 60 (‒NHCOCH3), which showed enhanced activity
compared with 57 and 58. Moreover, compounds 57e60 showed
considerable anti-inflammatory activity in vivo. Sun et al.54 reported
a series of novel selective inhibitors of enzyme COX-2. Compound
61 had potential anti-inflammatory activity with no cytotoxicity.
Moreover, compound 61 showed selective inhibition towards
COX-2 (IC50 Z 0.2 mmol/L) and COX-1 (IC50 Z 8.35 mmol/L) in
an enzyme immuno assay (Bio-Swamp). Four bioactive benzox-
azole analogs were prepared by Kaur et al.55. Compounds 62e65
showed significant COX-2 inhibitory activity and selectivity to-
wards COX-2 over COX-1. Of all the compounds, compound 62
was the most active compound with excellent inhibition of COX-2
(EIA) (IC50 Z 0.04 mmol/L) and good selectivity (SIZ 25.5). The
in vivo assays results indicated that compounds 62e65 had signif-
icant anti-inflammatory activity (% inhibitionZ 84.09%, 68.18%,
79.54% and 72.72%, respectively), greater than reference drug
ibuprofen (% inhibition Z 65.90, dose Z 60 mg/kg). More
importantly, they demonstrated a more significant gastric tolerance
than ibuprofen, the pharmacokinetic profile of compounds 62e65
showed their available druggability. Later, a group of benzoxazole-
benzamide analogs 66 was reported by the same group56. Com-
pound 66 exhibited potent and selective COX-2 inhibition (EIA)
with IC50 of 0.14 mmol/L as compared to celecoxib
(IC50 Z 0.15 mmol/L). Compound 66 also exhibited in vivo anti-
inflammatory activity (79.54%) superior to ibuprofen (65.90%)
(dose Z 20 mg/kg); The ulcerogenic activity results indicated that
compound 66 had significant more gastric tolerance than ibuprofen.
The collected data revealed that electron withdrawing substitutions
at ortho and para positions to phenyl ring aide in improving activity.
Molecular docking results suggested that the benzoxazole ring is a
crucial moiety to interact with Tyr355 and Arg120 of the COX-2
enzyme. All the experimental date demonstrated that compound
66 is a potential COX-2 inhibitor and valuable for further clinical
investigation. Chen’s group57 reported a novel dihydropyrazole
sulfonamide derivative 67, which exhibited remarkable and selec-
tive COX-2 inhibition (IC50 Z 0.33 mmol/L), the potency almost



Table 4 In vitro COX-1/COX-2 inhibition (IC50, mmol/L), selectivity index and in vivo anti-inflammation activity (doseZ 150 mmol/kg)

for compounds 52e55, and standard agents.

Compd. COX-1a COX-2a COX-2 selectivityb Rat paw edema (% edema inhibition, 5 h)

52 54.99 0.74 74.31 41.06 � 2.64

53 63.76 0.48 132.83 58.04 � 1.30

54 55.05 0.81 67.96 46.38 � 2.47

55 60.61 0.89 68.10 59.33 � 2.19

Celecoxib 37.98 0.10 379.80 49.81 � 1.92

Indomethacin 98.23 50.99 ‒ ‒

aThe result (IC50, mmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical,

MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).

Figure 10 Chemical structures of compounds 56e70.

Figure 11 Chemical structures of compounds 71e79.
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Table 5 In vitro COX-1/COX-2 inhibition (IC50, mmol/L),

selectivity index, ulcerogenic evaluation for compounds 75‒‒79,

and standard agent.

Compd. COX-1a COX-2a COX-2

selectivityb
Ulcer index

75 276.44 4.320 63.99 0.603 � 0.15

76 76.67 25.87 2.963 ‒

77 300.72 11.48 26.19 0.642 � 0.25

78 33.58 7.750 4.332 ‒

79 225.68 21.87 10.31 1.991 � 0.34

Celecoxib >50 0.34 147.05 1.204 � 0.06

aThe result (IC50, mmol/L) is the mean of three determinations

acquired using a COX fluorescent inhibitor screening assay kit

(Cayman Chemical, MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).
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identical to that of celecoxib. Several new benzimidazole de-
rivatives endowed with oxadiazole were described by Rathore
et al.58 in 2014. Compound 68 displayed reasonable COX-2 inhi-
bition (EIA) (IC50 Z 8.2 mmol/L) and selectivity (SI > 12.1).
Moreover, compound 68was much safer in terms of gastric toxicity
with a severity index of 0.48, lower than that of indomethacin. The
SAR studies revealed that the electron-withdrawing compounds
showed better COX-2 inhibitory activity than those of the electron-
releasing ones. An oxadiazole analog 69 was reported by Iyer
et al.59 in 2016 and exerted good COX-2 inhibition but associated
with moderate COX-1 inhibition in vitro. The undesirable COX-2
selectivity indicated that compound 69 need further modification.
In the same year, Nesaragi’s group60 prepared some novel cou-
marinyl-1,3,4-oxadiazolyl-2-mercaptobenzoxazoles. Of these,
compounds 70e72 displayed moderate and selective COX-2 in-
hibitions (IC50 Z 23.71, 33.47 and 23.95 mmol/L, respectively,
SI Z 33.95, 20.25 and 24.98, respectively). The results suggested
that the activity is influenced by the bulkiness and lipophilicity of
substituent on the benzene ring. Abdu-Allah et al.61 synthesized two
novel 4-aminosalicylate based thiazolinone derivatives 73 and 74,
both of which showed excellent COX-2 inhibitory efficacy
(IC50Z 44 and 39 nmol/L) and selectivity indexes (SIZ 66.82 and
68.46). Unfortunately, the selectivity indices of tested compounds
(73 and 74) were lower than celecoxib but still higher than diclo-
fenac sodium and indomethacin. Additionally, compounds 73 and
74 showed improved safety profiles than indomethacin. Analysis of
the biological data revealed that the bulkiness of the substituent at
heterocyclic ring enhanced the COX-2 inhibition activity. Murahari
et al.62 introduced five active azomethine derivatives 75e79.
Compounds 75e79 showed potent and selective COX-2 inhibition
revealing that substitution with electron donors such as methoxyl
and hydroxyl has unfavorable effect on anti-inflammatory activity.
Meanwhile, compounds 75e79 were subjected to an ulcerogenic
activity assay, and showed safer profiles with low ulcer indices
when compared to the clinically used drug celecoxib (Table 5).
3. Chemistry and pharmacology of structurally modified
COX-2 inhibitors

3.1. Derivatives of existing market drugs

Structural modification of existing drugs is an effective approach for
drug development. The structures of bumetanide, celecoxib, indo-
methacin, and nimesulide have also been altered to develop new
derivatives (Fig. 12). In 2020, Ibrahim et al.63 have reported several
novel benzenesulfonamide analogs which aim to developed as COX-
2 inhibitors. Structurally, bumetanide was used as a precursor to
synthesized new analogues. Of interest, the replacement of an acetic
group by the bulky triazole moieties led to the potent COX-2 in-
hibitors, compounds 80 and 81. Compounds 80 and 81
exhibited excellent inhibition (Cayman’s COX (ovine) Colorimetric
Inhibitor Screening Assay) of COX-2 with IC50 values of 0.28 and
0.17 mmol/L, and a considerable selectivity index (SI Z 71.93 and
115.82) in comparison to celecoxib (SI Z 4.93). Further investiga-
tion indicated that compounds 80 and 81 showed good anti-
inflammatory activity and lower ulcerogenicity when administered
orally. On the basis of the structure of indomethacin. Ikeda’s group64

reported a fluorinated analog 82 of indomethacin, which bearing a
lipophilic 3,3,3-trifluoroprop-1-enyl group at C-2 position. Com-
pound 82 displayed greater COX-2 inhibitory activity and selectivity
than indomethacin. Molecular docking results indicated that fluorine
substituent of compound 82 contributed to a significant gain of the
binding affinity for COX-2 by increasing van der Waals contacts.
Aiming to discover novel selective COX-2 inhibitor. Chandna et al.65

designed two series of celecoxib derivatives containing 1,5-diaryl
fragments by bioisosteric replacement. The first series of celecoxib
analogue were synthesized bearing a cyano group in place of sul-
fonamide moiety and then carbothioamide moiety was introduced
and prepared the second series of analogues. Among these com-
pounds, 83e86 exhibited potential selective COX-2 inhibitions
(IC50 Z 7.07e19.22 mmol/L), but the activity of compounds 83e86
is weaker than that of celecoxib (Table 6). Nevertheless, compounds
83e86 showed potent in vivo anti-inflammatory activity which is
comparable to indomethacin. Based on SAR study, the carbothioa-
mide substituent compounds displayed better activity and selectivity
than those of cyano substituent ones. In another study, Hassan et al.66

reported a series of anti-inflammatory celecoxib analogs 87e91 by
introducing a benzofuran moiety. It’s worth noting that phenyl sul-
fonamide is an indispensable pharmacophore to maintain COX-2
selectivity. Accordingly, compounds 87e91 presented potent and
selective COX-2 inhibitions with IC50 values of 0.34e0.52 mmol/L.
Meanwhile, changing the hydrogen in 87 into methyl in 89 led to
minor decrease in COX-2 inhibition. The celecoxib analogue 91with
trifluoromethyl also had better COX-2 inhibition than fluoro
analogue 90. Compounds 87e91 also possess better gastric safety
profile and less gastric ulceration effect compared to clinical drug
celecoxib (Table 7). Renard et al.67 prepared a series of nimesulide
analogs 92e94 in accordance with its favorable gastric and cardio-
vascular safety profile. Chemically, these derivatives were designed
in which the nitrobenzene ring was replaced by pyridine nucleus
based on isosteric replacement. The oxygen atom also has been
replaced with nitrogen to construct a new linker between two aro-
matic rings. As a consequence, compounds 92e94 exhibited
remarkable inhibitory activity associated to a COX-2/COX-1 selec-
tivity ratio (7.46, 15.35, and 7.67, respectively; IC50 Z 0.26, 0.09,
and 0.30 mmol/L) similar or higher than that of celecoxib (ratio: 7.46,
IC50Z 0.35 mmol/L) in a humanwhole bloodmodel. The SAR study
indicated that the various substitutions on the benzene ring are the
main factor affecting their activity towards COXs.

3.2. Derivatives having fragments of natural products

Pharmaceutical chemists continuously design new chemical
scaffolds inspired by reported natural products from 2011 to 2021,
including examples that were displayed in Fig. 13. Ribeiro et al.68

designed a series of cinnamic acid derivatives, and found three



Figure 12 Chemical structures of compounds 80e94.

Development on COX-2 inhibitors as promising anti-inflammatory agents 2799
active compounds 95e97 as new COX-2 inhibitors. Compounds
95e97 exhibited moderate inhibition of COX-2 (human whole
blood assay) (IC50 Z 3.0, 2.4, and 1.09 mmol/L; SI � 33, 10.0,
and 3.9, respectively). The results confirmed that phenolic hy-
droxyl fragment is a potential pharmacological core for COXs
inhibition. The data acquired also indicated that by introducing a
couple of bulky hydrophobic groups may be a fruitful approach to
increase the COX-2 selective inhibition. Takahash et al.69 reported
a new synthetic serotonin derivative: compound 98. Compound 98
showed weak inhibition on COX-2 (IC50 Z 42.5 mmol/L) and
considerable selectivity in serotonin derivatives testing assay. In
this study, it was confirmed that extending amide linkage of 98 is
crucial to increase COX-2 inhibitory activity. Rayar et al.70 pre-
pared a cyclocoumarol analog 99, which exhibited good inhibitory
activity against PGE2 production, and no inhibitory activity
against the COX-1 was observed. Further study indicated that
compound 99 showed considerable anti-inflammatory activity in a
concentration-dependent manner.
4. Chemistry and pharmacology of potential COX-2 inhibitors
from nature origin

Naturally occurring compounds have been reported to inhibit
COX-2 enzyme, thereby possessing beneficial effects against
inflammation. In the past ten years, a large number of natural
compounds were identified as COX-2 inhibitors or exerting COX-
2 inhibitory activity, examples as natural phenols, flavonoids,
terpenoids, alkaloids, and other hybrids. The characteristics of
their structural core scaffolds, COX-2 inhibitory activity, anti-
inflammatory effects, and structure‒activity relationships are
introduced as follows:



Table 6 In vitro COX-1/COX-2 inhibition (IC50, mmol/L), selectivity index and in vivo anti-inflammation activity for compounds

83e86, and standard agents.

Compd. COX-1a COX-2a COX-2 selectivityb Rat paw edema (% edema inhibition, 4 h)

83 >30 19.22 >1.56 0.24 � 0.05

84 >30 7.07 >4.24 0.84 � 0.01

85 >30 9.07 >3.31 0.7 � 0.07

86 >30 17.43 >1.72 0.3 � 0.01

Celecoxib >30 0.15 >200 ‒

Indomethacin 0.18 >30 ‒ 0.17 � 0.03

aThe result (IC50, mmol/L) is the mean of three determinations acquired using a COX fluorescent inhibitor screening assay kit (Cayman Chemical,

MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).
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4.1. Phenols

�Culenová et al.71 investigated a phenolic compound 100 from
Morus alba root bark. Compound 100 showed significant more
in vitro COX-2 inhibition with the IC50 value of 15.85 mmol/L
than indomethacin (IC50 Z 27.04 mmol/L, SI Z 0.16), but the
selectivity of COX-2 is low (SI Z 0.47). Natu’s group72 isolated
an anti-inflammatory compound 101 from Alpinia officinarum
Hance. Biological investigation indicated that compound 101
exhibited potent anti-inflammatory ability by the inhibition of
the release and/or action of histamine, serotonin and kinin, and
by COX-2 inhibition. Liu et al.73 recently discovered two novel
anti-inflammatory compounds 102 and 103 from Carissa spi-
narum. Compounds 102 and 103 were identified and showed
good COX-2 inhibition by the COX-2 inhibition screening
method (EIA) and the activity of compound 102 (IC50

value Z 0.3 mmol/L) was comparable to indomethacin
(IC50 Z 1.1 mmol/L). Nile et al.74 investigated the anti-
inflammatory potency of three natural acids: ferulic acid (104),
caffeicacid (105), and gallic acid (106). Compounds 104e106
showed potent COX-2 inhibitory activity (EIA) (IC50 Z 68.5,
62.5, and 65.2 mg/mL, respectively). Further investigation sug-
gested that compounds 104e106 exerted anti-inflammatory ef-
fect through suppressing the activity of xanthine oxidase and
COX-2 enzyme. Paulino et al.75 extracted and analyzed the
phenols of propolis and grape pomace from Uruguayan species.
Z-Fertaric acid 107 was identified and demonstrated good anti-
inflammatory activity, and COX-2 inhibitory activity. The po-
tential pharmacological activity of curcumin 108 was investi-
gated76. Briefly, curcumin exhibited anti-inflammatory activity
by significantly reducing the production of pro-inflammatory
Table 7 In vitro COX-1/COX-2 inhibition (IC50, mmol/L),

selectivity index, ulcerogenic evaluation (rat 50 mg/kg) and for

compounds 87‒‒91, and standard agent.

Compd. COX-1a COX-2a COX-2 selectivityb Ulcer index

87 >50 0.40 >6.67 13.82 � 0.62

88 >50 0.52 >96.15 11.56 � 0.54

89 >50 0.36 >138.90 10.50 � 0.63

90 >50 0.46 >108.70 11.75 � 0.63

91 >50 0.34 >147.06 10.50 � 0.59

Celecoxib >50 0.28 >178.57 16.12 � 0.86

aThe result (IC50, mmol/L) is the mean of three determinations

acquired using a COX fluorescent inhibitor screening assay kit

(Cayman Chemical, MI, USA).
bCOX-2 selectivity index (COX-1 IC50/COX-2 IC50).
mediators including COX-2 and PGE2 through NF-kB
pathway. A new homoegonol 109 was isolated from the extracts
of Mamuyo (Styrax ramirezii Greenm)77. 109 displayed anti-
inflammatory activity by nitric oxide reduction. In addition,
109 was able to decrease the LPS-induced transcription of
inducible pro-inflammatory enzyme coding genes of COX-2.
Cheng’s group78 reported the isolation and anti-inflammatory
evaluation of two phenols, Periplanetol A (110) and Peri-
planetol B (111) (Fig. 14), from Periplaneta americana. 110 and
111 exhibited good COX-2 inhibition activity with IC50 values
of 0.768 and 0.617 mmol/L, but it is lower than that of celecoxib
(IC50 Z 0.041 mmol/L).
4.2. Flavonoids

Honmore et al.72 discovered a flavonoid derivative 112, which
exhibited selective COX-2 inhibition. The in vivomice assay showed
that 112 had potential anti-inflammatory activity in paw edema in
comparison with diclofenac. Paulino et al.75 extracted several fla-
vonoids from propolis and grape pomace, flavonoid glycosylate
(113), pinobanksin (114), and anthocyanin (115). 113e115 showed
potent anti-inflammatory and selective COX-2 inhibitory activity
(EIA) (SIZ 1.82, 1.52, and 1.64, respectively). Hu et al.79 identified
a flavonoid, kaempferol-3-O-rutinoside 116, which showed VEGF-
C-mediated anti-inflammation by interfering with VEGF-C-related
signal transduction and interfered with the NF-kB signaling
pathway. Compound 116 exhibited high potency to trigger the re-
ceptor activation and inhibited the production of IL-6, TNF-a, and
the expression of iNOS and COX-2. The anti-inflammatory effects of
compound 116 was investigated in LPS-induced macrophages, and
indicated that 116, as a natural compound, could be developed as an
anti-inflammatory agent with good drug likeness. Nobiletin 117
(NOB) is a potential anti-inflammatory candidate. Xiao’s group80

recently reported their work on the anti-inflammatory potency of
117. 117 showed significant anti-inflammatory activity by inhibiting
the expression of pro-inflammatory markers. Further investigation
demonstrated that compound 117 sharply reduced the levels of iNOS
and COX-2 protein in a concentration-dependent manner. Three new
flavonoids 18e20 (Fig. 15) were found from the leaves of Myrica
rubra sieb81, which can inhibit the expression levels of iNOS and
COX-2 protein in a dose-dependent manner, and they also showed
significant anti-inflammatory activity by inhibiting LPS-stimulated
pro-inflammatory cytokines. Hanákova et al.82 isolated a new ger-
anylated flavanone 121 fromPaulownia tomentosa fruits. Compound
121 had moderate COX-2 inhibition activity (EIA) (IC50 Z
9.5 mmol/L, SI Z 2.8) and was more selective than ibuprofen
(IC50 Z 4.2 mmol/L, SI Z 1.5). Hosek et al.83 reported a new



Figure 13 Chemical structures of compounds 95e99.
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geranylated flavonoid, diplacone 122, which can significantly down-
regulated the expression of COX-2 inWestern blot assay.Meanwhile,
a new flavonoid 123 was purified from licorice residues84, which
displayed potent NO inhibitory effect (IC50 Z 9.89 mmol/L)
compared withminocycline (IC50Z 33.20 mmol/L). Compound 123
also notably exhibited IL-1b, IL-6, iNOS, and COX-2 inhibition. A
new compound 124 was identified from Daphne genkwa Sieb and
showed anti-inflammatory activity through NF-kB signaling
pathway85, decreased expression levels of iNOS and COX-2 mRNA
were observed. A large family of flavonoids, comprising compounds
125‒‒132 (Fig. 16), was isolated from lotus plumule86. Compounds
125‒‒132 displayed significant anti-inflammatory activity by inhib-
iting the production of pro-inflammatory cytokines. Further study
demonstrated that compounds 125‒‒132were considered as potential
COX-2 ligands by computer modeling calculations. An et al.87

analyzed the anti-inflammatory effect of Saxifragin (133) which is
founded abundantly in plants, especially in Saxifrage stolonifera.
Compound 133 showed outstanding anti-inflammatory activity and
decreased the production of PGE2 through suppressing the level of
protein expression of COX-2. Puerarin (134) is a flavonoid derivative
and possesses antipyretic and sedation activity. Pharmacological
experiments indicated that puerarin exerted anti-inflammatory ac-
tivity via the ERK/Nrf2/ARE pathway by inhibiting the production
of pro-inflammatorymarkers including iNOSandCOX-288, it has the
Figure 14 Chemical structure
potential to be a COX-2 inhibitor. Toyama’s group89 reported their
work on the anti-inflammatory activity of 8-C-rhamnosyl apigenin
135, which demonstrated selective COX-2 inhibitory activity with an
IC50 value of 28.6 mmol/L and potent in vivo anti-inflammatory ac-
tivity. Waller et al.90 evaluated the COX-2 inhibitory activity of four
flavonoids 136e139 from the bulbs of the Southern African Lede-
bouria socialis. Compounds 136e139 showed good activity towards
COX-2. Notably, compounds 136 and 137 had reasonable and se-
lective COX-2 inhibitory activity (EIA) (IC50Z 1.12 and 2.87 mmol/
L, respectively). Kim et al.91 evaluated the anti-inflammatory activity
of a new chalcone 140 from Alpinia species. Compound 140
demonstrated inhibition of COX-2 expression and NF-kB activation
in a luciferase transcriptional assay. Recently, Zhou et al.92 detected
the anti-inflammatory therapeutic effects of a natural chalcone, iso-
bavachalcone 141, which showed strong iNOS, COX-2, and NF-kB
p65 inhibitory activity and attenuated the production levels of pro-
inflammatory cytokine PGE2. This compound is also a potential
lead for further modifications and pharmacological evaluation. In
addition, the methanol extract of Boerhaavia diffusa roots was
investigated and led to the discovery of two active rotenoids 142 and
14393, both of which showed moderate COX-2 inhibition with IC50

value of 31.4 and 25.5 mmol/L, respectively. However, both com-
pounds 142 and 143 exerted less COX-2 selectivity indices of 1.09
and 0.79.
s of compounds 100e111.



Figure 15 Chemical structures of compounds 112e123.
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4.3. Terpenoids

Bauer’s group94 reported two new terpenoid derivatives: 144 and 145
fromHypericum cistifolium. Compounds 144 and 145 exhibited anti-
inflammatory activity by inhibiting COXs activities (EIA). However,
both of compounds 144 and 145 displayed relative low COX-1 and
COX-2 inhibition. Zhang et al.95 isolated and evaluated the ethyl
acetate fraction of the ethanol extract from Mallotus conspurcatus
croizat, and found two new terpenoids 146 and 147, both of which
demonstrated marked suppression of the secretion of PGE2 and the
expression of TNF-a, iNOS, NF-kB, and COX-2 proteins. Three new
Figure 16 Chemical structur
sesquiterpenoids 148, 149, and 150 were isolated from the rhizomes
and roots of Nardostachys jatamansi (Fig. 15)96, which inhibit the
expression of pro-inflammatory mediators COX-2 protein and
cytokine PGE2. An’s group

97 reported a novel triterpenoid 151 from
Rosa rugosa root, which potently inhibited the expression of COX-2
protein and also suppressed the production of PGE2. Five new anti-
inflammatory sesquiterpenes 152e156 (Fig. 17) were found from
the leaves of Artemisia lavandulaefolia98, the biological evaluation
results showed that compounds 152e156 had weak COX-2 inhibi-
tory activity with IC50 values of 43.29e236.33 mmol/L. In 2020,
Choo group99 investigated the potential activity of a sesquiterpene
es of compounds 124e143.



Figure 17 Chemical structures of compounds 144-160.
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lactone, costunolide 157. Compound 157 decreased the expression
level of COX-2 protein and have good anti-inflammatory activity
through NF-kB signaling pathway. Gao’s group100 recently isolated
several new cyathane diterpenoids from the bird’s nest fungus Cya-
thus africanus. Of the new compounds, compound 158 exhibited the
most active COX-2 and iNOS inhibitory effects. Kim’s group101

reported two anti-inflammatory compounds, elatoside (159) and
kalopanax-saponin F (160), which were first isolated from Aralia
elata. Compounds 159 and 160 suppressed the NF-kB activation
induced by TNF-a with IC50 values of 4.1 and 9.5 mmol/L, respec-
tively. Compounds 159 and 160 also showed inhibitory activity to-
wards COX-2 in a dose-dependent manner.

4.4. Alkaloids

More recently, a large family of quinolizidine alkaloids were
purified from the seeds of Sophora alopecuroides (Fig. 18)102.
Among them, a new anti-inflammatory alkaloid 161 exhibited
higher NO inhibition with IC50 values of 29.19 mmol/L than
matrine (IC50 Z 38.90 mmol/L). Compound 161 also showed anti-
inflammatory activity through decreasing the protein levels of
COX-2. Feng et al.103 had investigated the COX-2 inhibitory ac-
tivity of berberine hydrochloride 162, which showed inhibitory
activity of the overexpressed COX-2 through PPAR-g pathway.
Figure 18 Chemical structures of compounds 161e166.
Kang et al.104 reported a new alkaloid 163 extracted from
Amaryllidaceae, which exhibited anti-inflammatory activity via
the P38 and STATs signal pathways. The expression levels of
iNOS and COX-2 protein inhibited by 163 were observed, but
didn’t suppress the transcription of the COX-2 gene, suggesting
that 163 may serve as a COX-2 inhibitor. Mohan et al.105 inves-
tigated and assessed a major carbazole alkaloid girinimbine 164
presents in curry leaves, which exhibited potential anti-
inflammatory activity. Compound 164 demonstrated suppressing
effect on COX-2 enzyme, but no effect on COX-1 in an EIA assay.
The result indicated that girinimbine 164 significantly inhibited
COX-2 enzyme (% inhibition Z 52.5; Dose Z 25 mg/mL). Rui’s
group106 reported an isoquinoline alkaloid (coptisine, 165) from
Coptidis rhizome. Similarly, compound 165 showed anti-
inflammatory activity via the inhibition of NF-kB pathway. In
particular, compound 165 effectively blocked the production of
PGE2 through COX-2 inhibition. Lee’s group107 evaluated and
assessed the anti-platelet activity of a major alkaloid of black
pepper and long pepper: piperine 166, which showed anti-
inflammatory activity by regulating the AA-metabolizing en-
zymes. In the downstream mechanism, compound 166 decreased
the production of PGE2 and PGD2 via COX-2 inhibition.

4.5. Others

In addition to the typical classes of natural products as introduced
above, hybrid natural compounds (Fig. 19) were also discovered and
showed COX-2 inhibitory and anti-inflammatory activity. Lin
et al.108 isolated and identified a novel quinone 167 from soft coral
Sinularia flexibilis. The expression of COX-2 protein was signifi-
cantly inhibited by compound 167 at 20mmol/Lwith no cytotoxicity.
Choi et al.109 examined the anti-inflammatory activity of several
naturally occurring anthraquinone derivatives, which were isolated
from the Rhubarb Rhizome. The results indicated that compound
168 was the most potent of the compounds in inhibiting the protein
expression of COX-2. Liu’s group110 reported a new phenyl com-
pound 169, which was identified from a mangrove plant derived
fungus Botryosphaeria sp. Compound 169 exhibited remarkable
COX-2 inhibitory activity (IC50 Z 1.12 mmol/L). A few



Figure 19 Chemical structures of compounds 167e176.
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phenylpropanoid derivatives 170e172 were purified from Chinese
Olive by He’s group111. Western blot analyses were performed in
this study and found that they significantly and dose-dependently
reduced the expression level of COX-2 protein. Shen’s group112

isolated a new phenylpropanoid (þ)-episesaminone 173 from Cin-
namomum camphora,which prominently suppressed the expression
levels of COX-2 protein. Additionally, three phenylpropanoids
174e176 were isolated from Lilium Asiatic hybrids flowers by
Baek’s group113. At a concentration of 50 mg/mL, compounds
174e176 can effectively decreased COX-2 expressions.

5. Conclusions and future perspectives

COX-2 is a bio-functional enzyme that catalyzes the biosynthesis
of PGs during inflammation, and has become a significant thera-
peutic target when searching for anti-inflammatory drugs. Since
2011, more efforts have been focused on mining new chemical
scaffolds as COX-2 inhibitors. The main emphasis of this review
was on the potent COX-2 inhibitory and anti-inflammatory ac-
tivity of various structural families of compounds, which have
been reported within the last decade. With respect to the SAR,
pyrazole analogs showed the most potent and selective inhibition
of COX-2. Derivatives having fragments of natural products only
showed moderate COX-2 inhibition and thereby demand more
structural modification to improve their activity. Moreover, de-
rivatives having indole, oxadiazole, thiazole, and tetrazole phar-
macological cores also displayed acceptable COX-2 inhibitory
activity. His90, Arg120 and Arg513 were found to be most important
amino acids for the inhibition and selectivity of COX-2. Mean-
while, extensive in vitro and in vivo pharmacological tests were
performed and aim to discover new selective COX-2 inhibitors
with safety profiles. In addition, a lot of natural compounds with
good COX-2 inhibitory and anti-inflammatory activity were
included herein. Natural products described in this review may
provide inspiration for pharmaceutical chemists and also could
serve as a foundation for novel COX-2 inhibitor design to avoid
undesirable adverse effects.

Selective inhibition of COX-2 is a major feature of the new
generation of NSAIDs, there are several prospects need to be
considered for the development of next-generation of NSAIDs.

1) The new COX-2 inhibitors must be able to reduce stomach
irritation and the risk of peptic ulcers.

2) In some respects, COX-1/COX-2 balanced inhibitors maybe a
new direction for the development of NSAIDs, when the
serious adverse effects of either non-selective or selective in-
hibitors are considered.
3) Majority of derivatives require the presence of aryl group as
the basic scaffold for COX-2 inhibitors and thereby the solu-
bility of the new compounds need to be further considered in
clinical use. Introducing hydrophilic groups into the structures
may be helpful to address this problem.

The above discussion will undoubtedly attract more interest in
the coming years. Regarding the future research on COX-2 in-
hibitor, we strongly feel that utilizing the traditional medicinal
chemistry approach seems to be insufficient for current clinical
needs, combing genetic engineering, enzyme engineering, and
computer science may be a fruitful way to confront future
challenges.
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