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Abstract
Redox signalling in mitochondria plays an important role in myocardial ischaemia/rep-
erfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species 
(ROS/RNS) modify cellular structures and functions by means of covalent changes in 
proteins including among others S-nitros(yl)ation by nitric oxide (NO) and its deriva-
tives, and S-sulphydration by hydrogen sulphide (H2S). Many enzymes are involved 
in the mitochondrial formation and handling of ROS, NO and H2S under physiologi-
cal and pathological conditions. In particular, the balance between formation and 
removal of reactive species is impaired during I/R favouring their accumulation. 
Therefore, various interventions aimed at decreasing mitochondrial ROS accumula-
tion have been developed and have shown cardioprotective effects in experimental 
settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, 
as in the case of ischaemic pre-conditioning, so that preventing their increase might 
hamper self-defence mechanisms. The aim of the present review was to provide a 
critical analysis of formation and role of reactive species, NO and H2S in mitochon-
dria, with a special emphasis on mechanisms of injury and protection that determine 
the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, 
NO and H2S is likely to reveal novel molecular targets for cardioprotection that could 
be modulated by pharmacological agents to prevent I/R injury.
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1  | INTRODUC TORY REMARKS

Chemically reactive species containing oxygen and/or nitrogen (ie 
ROS and RNS) are produced in virtually all cells during both physi-
ological processes and pathological conditions. The contribution of 
reactive species to physiological signalling or pathological alterations 
depends on the frequency, intensity and duration of their availabil-
ity. Indeed, a transient and mild increase in ROS/RNS levels is re-
quired for the intracellular transduction of several hormonal stimuli, 
whereas a prolonged and large increase is likely to cause profound 
derangements of cellular structures due to oxidative alterations of 
carbohydrates, lipids, proteins and nucleic acids. Changes in ROS/
RNS levels are generally the result of an increased formation (or ex-
posure to exogenous oxidants) along with a decrease in antioxidant 
defences. The term oxidative stress is commonly used to define a 
condition of imbalance between generation and removal of ROS or 
repair of resulting oxidative damage,1 along with less frequent ter-
minology of nitrosative or nitro-oxidative stress to describe RNS 
accumulation.

A solid and mechanistic characterization of ROS/RNS involve-
ment in a given process is usually provided by the combination of 
the following approaches: (a) measurement of ROS/RNS levels; (b) 
assessment of oxidative changes of relevant targets; and (c) inhibi-
tion of the process of interest by antioxidant interventions (ie com-
pounds or genetic manipulations). Not only are these approaches 
rarely used together, but also each of them has intrinsic limitations 
that hamper data interpretation, as well as the reliability of several 
studies in the field.2 For instance, besides methodological issues for 
ROS/RNS detection, due to their transient nature ROS/RNS levels 
might appear normal when oxidative damage is already produced, 
especially in intact organs or living animals (not to mention clinical 
studies).3 Regarding oxidative alterations of biomolecules, the causal 
relationships with a given phenomenon can hardly be defined in 
vivo, unless it is caused by a ROS/RNS source that can be specif-
ically inhibited by pharmacological or genetic approaches. From a 
clinical point of view, it is worth pointing out that many biomarkers 
are available for detecting oxidative stress in plasma, yet their prog-
nostic value is questionable.4

Despite these methodological and conceptual limitations, an in-
crease in ROS and/or RNS has been linked to essentially any type 
of cardiac disease. This concept holds especially valid for oxidative 
stress supported by countless experimental data and many epide-
miological studies. However, clinical trials, mostly carried out with 
non-specific antioxidants, have so far failed to prove both a causal 
role for oxidative stress and the beneficial effects of its decrease.5

As far as the heart is concerned, considering the large frac-
tion of the cardiomyocyte volume occupied by mitochondria that 
utilize more than 90% of oxygen reaching the cardiac muscle, it is 
hardly surprising that ROS generation occurs in mitochondria, thus 
making them an inevitable target of reactive species involved in 
cardiac pathophysiology. Mitochondria are also key targets of sig-
nalling pathways involved in cardioprotection.6,7 In this respect, a 
crucial role is attributed to redox signalling generated by ROS, NO 

and hydrogen sulphide (H2S) that act mainly by means of covalent 
changes of target proteins and lipids.8

This review aims at providing a critical analysis of formation 
and role of reactive species in mitochondria, the role of NO and 
H2S with a special emphasis on mechanisms of injury and protec-
tion that determine the fate of hearts subjected to ischaemia and 
reperfusion (I/R).

2  | MITOCHONDRIA AND ROS

2.1 | Sources and targets

Mechanisms including specific enzymes responsible for mitochon-
drial ROS formation have been described by many excellent re-
views.6,9–11 Briefly, the mitochondrial formation of superoxide and 
hydrogen peroxide (H2O2) is catalysed by 16 (or more) different 
enzymes.6,10 In most cases, ROS formation is a side, possibly unde-
sired, reaction, especially at flavin or quinone sites of various en-
zymes or respiratory chain complexes.12 However, mitochondria 
contain also enzymes that generate H2O2 as an obligatory product 
of their catalytic activity. This is the case with p66Shc,13,14 mono-
amine oxidases (MAOs)15 and possibly nicotinamide adenine dinu-
cleotide phosphate oxidase 4 (NOX4),16 although its mitochondrial 
localization in cardiomyocytes is controversial.17 Quantitative 
comparisons among the various ROS sources can be carried out 
in isolated mitochondria.12,18 However, the procedures to isolate 
mitochondria may result in several artefacts, for example in mi-
tochondrial protein quantification.19 The contribution of the dif-
ferent enzymes to the overall mitochondrial ROS formation can 
hardly be quantified in intact cells and not at all in intact hearts or 
in vivo. This is because for most of ROS-producing enzymes, loss-
of-function studies carried out by means of inhibitors or genetic 
manipulations would inevitably compromise mitochondrial bio-
energetics, eventually hampering the maintenance of cell viabil-
ity. Actually, if ROS were produced just, or mostly, by respiratory 
chain complexes, as stated in countless articles, it would prove im-
possible to demonstrate that mitochondria produce ROS in vivo. 
This evidence has been obtained by pharmacological and genetic 
approaches targeting ROS sources, such as MAOs and p66Shc, the 
inhibition of which does not affect mitochondrial bioenergetics.15 
Nevertheless, the question remains whether each pathway pro-
vides a fractional contribution to the overall ROS generation in 
mitochondria that would result from a sum of activities. The con-
tribution of the various sources could vary in different pathological 
conditions. Alternatively, a cross-talk among the various pathways 
exists, whereby the activation of some ROS sources modulates 
the activity of the other enzymes. This concept was supported by 
showing that combination of MAO inhibition, p66Shc deletion and 
antioxidant treatment do not provide any additive effect on the 
decrease of both oxidative stress and I/R-induced cardiac injury.20

The continuous formation of ROS is counterbalanced by 
the synergistic action of superoxide dismutases (SOD) and 
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peroxidases. H2O2 generated by SOD, as well as by MAOs, p66Shc 
and NOX4, is handled by catalase, that is specific for H2O2 out-
side of mitochondria, and several peroxidases localized in various 
cellular compartments including mitochondria. Peroxidases utilize 
the thiol-containing compounds glutathione (GSH and GSSG in its 
reduced and oxidized form, respectively) and thioredoxin (Trx) for 
reducing H2O2 into water. Within mitochondria, peroxide reduc-
tion is catalysed mostly by glutathione peroxidases (Gpx1 and 4) 
and peroxiredoxin 3 (Prx3) that is maintained in its active reduced 
form by Trx.21–23

Peroxidase activities are balanced by the action of various reduc-
tases to readily regenerate the thiol groups in Trx and glutathione at 
the expense of NADPH(H+) oxidation. Therefore, the maintenance 
of an optimal NADPH(H+)/ NADP+ ratio is necessary to fuel thi-
ol-dependent peroxidases with reducing equivalents. Within mito-
chondria, NADP+ reduction into NADPH(H+) is operated mostly by 
malic enzyme, nicotinamide nucleotide transhydrogenase transfer-
ring electrons from NADH to NADP+ that depends on mitochondrial 
membrane potential (Δψm) and isocitric dehydrogenase that is acti-
vated by a rise in intramitochondrial [Ca2+].6 Thus, oxidative metab-
olism and mitochondrial function are coupled to the mitochondrial 
antioxidant system by maintaining a high NADPH(H+)/ NADP+ ratio. 
Besides this short-term control of antioxidant enzymes, long-term 
adaptations to increased ROS levels are under the control of tran-
scriptional factors, such as hypoxia-inducible factors (HIFs) and nu-
clear factor erythroid 2-related factor 2 (Nrf2).23–26

Since mitochondria represent a primary source of ROS, they are 
inevitably a primary target of oxidative stress. Oxidative alterations 
have been described for respiratory chain complexes and several 
other proteins, lipid components, especially cardiolipin, and nucleic 
acids.27,28 Notably, ROS synergizing with Ca2+ favour the opening 
of the permeability transition pore that plays a crucial role in I/R 
injury and represents a major target for cardioprotective interven-
tion,29 as also covered by another article of this same issue. ROS 
target not only mitochondria, but also any cellular compartment, 
so that conditions of severe oxidative stress are hardly compatible 
with cell survival. However, a slight increase in ROS formation plays 
a significant role in many physiological processes trough the mod-
ulation of several transducing pathways.30–32 Although a thorough 
description of these processes is beyond the scope of this review, 
it is worth pointing out that the protective efficacy of conditioning 
protocols is largely contributed by ROS and is abolished by anti-
oxidants.33–35 In a hormetic fashion, the low level ROS generation 
appears to maintain mitochondrial function 36 in a process that has 
recently been shown to contribute to cardioprotection induced by 
remote ischaemic pre-conditioning.37 On the other hand, a large 
increase in ROS formation even at sublethal levels hampers vari-
ous cellular functions. In both, cardiac and skeletal muscles, ROS-
induced alterations have been reported for contractile proteins,38,39 
as well as for channels and transporters involved in intracellular Ca2+ 
homeostasis.40 Therefore, ROS are causally involved in contractile 
impairments characterizing not only I/R injury, but also various car-
diac diseases and muscular dystrophy.38,39,41 The direct involvement 

of mitochondria in contractile abnormalities induced by oxidative 
stress has recently been demonstrated by using a compound, mi-
toParaquat, that causes a primary increase in mitochondrial ROS 
formation.42

Not only ROS alters Ca2+ homeostasis, but also an increase in 
intracellular [Ca2+] is invariably associated with increased ROS lev-
els, as shown for instance by increasing pacing frequency both in 
vitro and in vivo.43–45 Although several mechanisms have been pro-
posed,40,46,47 how an increase in [Ca2+] is paralleled by ROS accumu-
lation, the underlying processes remain to be elucidated conclusively.

In conclusion, ROS formation occurs at various mitochondrial 
sites and is counteracted by a complex scavenging system in both 
acute and long-term responses. ROS produced within mitochondria 
are involved in physiological and pathological processes that mod-
ulate signalling pathways, mitochondrial (dys)function, contractile 
abnormalities and cell death.

2.2 | Protective efficacy and limits of antioxidant 
interventions

The cardioprotective efficacy of interventions aimed at decreasing 
mitochondrial ROS accumulation supports the involvement of mi-
tochondrially generated oxidative stress in many, if not all, cardiac 
diseases.6 However, on a more general standpoint, the experimental 
efficacy of antioxidant interventions has hardly been matched by 
positive results in clinical studies.5 This failure might be generated 
by the use of non-specific antioxidants that do not prevent ROS 
formation and might also remove the fraction of ROS involved in 
endogenous cardioprotective mechanisms,48 such as ischaemic pre-
conditioning,33 or adaptive immune response via mitochondrial ROS-
triggered activation of the NLRP3 inflammasome.49 For instance, a 
role of adaptive or signalling ROS is exemplified by H2O2 which when 
added at very low concentrations decreased ischaemia-reperfusion 
injury in an isolated heart.50–52

So far, no clinical study has been carried out to test interven-
tions aimed at counteracting mitochondrial ROS formation in cardiac 
diseases. Nevertheless, a wide array of experimental data demon-
strates that cardioprotection can be obtained by targeting either 
ROS formation or removal. Non-specific interventions include an-
tioxidant compounds that are targeted to mitochondria by means 
of conjugation to a lipophilic cation, such as triphenylphosphonium 
groups.53 Protection against reperfusion injury or heart failure has 
been obtained with MitoTEMPO54,55 or MitoQ.56–58 Beneficial ef-
fects were also obtained with the small peptide SS-31 that binds to 
cardiolipin preventing its oxidation.9,59

The use of antioxidants does not facilitate the identification of 
specific sources of ROS involved in cardiac pathophysiology. As 
mentioned above, the inhibition of respiratory chain complexes and 
enzymes involved in substrate oxidation would profoundly ham-
per energy-linked processes necessary for the maintenance of cell 
viability. Nevertheless, the specific inhibition of enzymes not in-
volved in respiration and ATP synthesis has been reported to afford 
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cardioprotective effects while unambiguously demonstrating that 
mitochondrial ROS formation increases during and contributes to 
cardiac injury. This is especially the case with p66Shc and MAOs 
(reviewed in Ref. [13,60]). While p66Shc can only be inhibited by its 
genetic down-regulation, MAOs are inhibited by reversible and irre-
versible inhibitors specific for the A or the B isoform. Perhaps more 
importantly, several MAO inhibitors are clinically available for the 
treatment of neurological disorders.61,62 To the best of our knowl-
edge, at present MAO inhibition is the only therapeutic approach 
aimed at mitochondrial ROS formation with compounds in current 
clinical use.62,63

Besides inhibiting ROS sources, the study of ROS removing en-
zymes greatly contributed to the demonstration of the relevance of 
mitochondrial ROS formation in cardiac pathophysiology. In a loss-
of-function approach, Mn-SOD deletion was shown to cause sub-
stantial oxidative stress associated with a lethal cardiomyopathy.64 
On the other hand, gain-of-function studies with catalase expression 
in mitochondria resulted in lifespan extension and protection against 
hypertensive cardiomyopathy.65,66

In conclusion, a decrease in mitochondrial ROS formation is likely 
to inhibit pathological processes, yet it might also hamper signalling 
pathways involved in endogenous protection. Therefore, antioxidant 
interventions should be developed to inhibit specifically enzymes in-
volved in pathological ROS formation rather than using non-specific 
scavengers.

3  | MITOCHONDRIA ,  NO AND 
C ARDIOPROTEC TION

3.1 | Generation, timing and sources

The gaseous transmitter nitric oxide (NO)—although being a free 
radical with an unpaired electron—is considered an endogenous car-
dioprotective agent with multiple targets.67–69 Sources of NO in the 
body are the nitrate-nitrite-NO pathway that is considered as an ex-
ogenous source, since diet is important for the nitrate/nitrite supply,70 
and the endogenous cellular source due to enzymatic production by 
the various nitric oxide synthases (NOS) using oxygen and L-arginine 
as substrates.71 Besides conversion of nitrate to NO by bacteria in the 
oral cavity and gastrointestinal tract as well as reduction of nitrite by 
xanthine oxidase or reduced haemoglobin, inorganic nitrite reduction 
by mitochondrial cytochrome c oxidase was also reported.72 In par-
tial contrast to the in vitro data, supplementation with nitrate in the 
in vivo situation seems to increase both mitochondrial biogenesis and 
efficiency of mitochondrial respiration (oxidative capacity).70

The two constitutive forms of NOS, endothelial NOS (eNOS, 
NOS3) and neuronal NOS (nNOS, NOS1) are present in the healthy 
heart, and the third form, the inducible NOS (iNOS, NOS2), is ex-
pressed as a response to inflammatory stimuli, such as prolonged 
myocardial ischaemia,73 and can also be involved in stress adapta-
tion as illustrated in Figure 1, for example, by its appearance in the 
heart at the second window of protection after pre-conditioning.74 

The subcellular location of NOS in the cardiomyocyte relates to 
identified or proposed effects of NO. eNOS is mostly present in 
the caveolae—whereas the nNOS form is mostly seen close to or 
within the sarcoplasmic reticulum. A mitochondrial NOS (mitoNOS) 
has been indicated in several studies75,76 and is most likely a nNOS 
subtype (NOS1). In humans, single nucleotide polymorphisms exist 
in the genes coding for the NOS enzymes (NOS1, NOS2 and NOS3). 
Interestingly, a nNOS (NOS1) polymorphism was associated with 
coronary heart disease suggesting that NOS is an important player 
in the pathology of cardiac I/R.77

Due to NOs-free diffusion across biological membranes and 
its presence in blood and multiple targets, it has been difficult to 
pinpoint an exact cardioprotective mechanism. Moreover, the local 
concentrations of NO and superoxide determine whether NO is 
mainly converted to peroxynitrite and other RNS that can be detri-
mental8,78,79 or NO can exert its tissue protective effect.

In relation to mitochondria, cardioprotective mechanisms can 
be due to NO acting directly on the mitochondria or could be the 
result of indirect influence leading to protection of mitochondria. 
Interestingly, when exposing isolated mitochondria to NO, most 
studies report a decline in respiration as well as nitro-oxidative dam-
age of mitochondrial structures.80 Inhibition of complex IV (cyto-
chrome C oxidase) and complex III (cytochrome b and c) has been 
described. A central concept is based on the reaction of NO with 
superoxide to produce peroxynitrite (ONOO−) promoting injury to 
the complexes and other molecules by nitration, thiol oxidation and 
redox changes in iron-sulphur complexes,80 if not controlled by thi-
ols and other scavenging molecules.81

Another general mechanism of mitochondria-mediated cardi-
oprotective effects of NO regarding the timing of NO formation 
and degradation is based on widespread S-nitros(yl)ation of mito-
chondrial proteins involved in energy metabolism and apoptosis.82 
Under hypoxic conditions, the lack of oxygen for mitochondrial 
respiration makes electrons from respiratory chain available for 
nitrite reduction into NO. The presence of superoxide triggers a 
complex multistep reaction whereby NO is converted into the po-
tent nitrosating agent N2O3 leading to protein S-nitros(yl)ation.83 
During ischaemia, S-nitros(yl)ated proteins are inactivated, but 
also protected against irreversible oxidative damage. Then during 
reperfusion, due to the increased superoxide formation S-nitros(yl)
ated proteins can be denitrosated recovering native structures 
and functions.

Mitochondrial matrix-free calcium (Ca2+) plays a crucial role, 
stimulating enzymes in Krebs cycle and thereby supplying substrates 
for the respiratory chain. Interestingly, Ca2+ also activates NOS lead-
ing to formation of NO that due to its dampening effect on respira-
tion plays a protective role in hypoxic conditions.84

In conclusion, the mechanism of cardioprotective effects of NO 
is based on a balance between ROS/RNS formation and degradation 
that may favour cardioprotective pathways, such as the NO-cGMP 
(cyclic guanylate monophosphate)-PKG (protein kinase G) axis and 
optimal S-nitros(yl)ation of proteins, or stimulate cardiotoxic path-
ways at high ROS/RNS levels.
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3.2 | Therapeutic interventions

A variety of cardioprotective compounds protects mitochondria 
and increases NO by activating NOS. In addition to diffusion into 
the mitochondrial compartment, the activation of soluble guanylate 
cyclase by NO leading to cGMP and increase in PKG activity sig-
nificantly contribute to mitochondrial protection. Activation of the 
cGMP/PKG pathway delays mitochondrial permeability transition 
pore (mPTP) opening preventing apoptotic cell death in cultured 
astrocytes.85 In addition, stimulation of the cGMP/PKG pathway 
reduces sarcoplasmic reticulum-dependent calcium oscillations and 
thereby prevents hypercontraction and sarcolemmal rupture dur-
ing the onset of reperfusion, also by beneficial regulation of mPTP 
opening.86–88 This interaction between the cGMP/PKG pathway and 
mPTP regulation could be exploited for pre- and post-conditioning 
and improved cardiomyocyte survival during I/R.89 A major protec-
tive component of post-conditioning may be the suppression of ROS 
formation at the onset of reperfusion, which will not only increase 

NO bioavailability and preserve functional cGMP/PKG signalling, 90 
but also delay reperfusion-dependent pH changes, 91 all of which is 
highly cardioprotective. Reports indicating the presence of the com-
ponent of the cGMP-PKG pathway in mitochondria add to the com-
plexity, but also to the understanding of these processes.92 Likewise, 
BNP,93 bradykinin and insulin are examples of NO-dependent acti-
vation of cytosolic PKG that then protects the mitochondria. Besides 
cGMP-mediated mitochondrial cardioprotection, NO can also di-
rectly confer beneficial post-translational changes as exemplified by 
inhibition of the mPTP via S-nitros(yl)ation of cysteine 203 of CypD 
by S-nitrosoglutathione.94 This process represents a highly attrac-
tive redox-regulatory mechanism since hydrogen peroxide caused 
activation of CypD-dependent mPTP opening via thiol oxidation 
of cysteine 203, which is obviously antagonized by nitric oxide-
dependent S-nitros(yl)ation. This concept was recently exploited 
for cardioprotection by nitroglycerin administration to mice under-
going ligation-induced myocardial infarction.95 Short-term adminis-
tration of nitroglycerin reduced the infarct size via increased CypD 

F I G U R E  1   Proposed cardioprotective mechanisms of nitric oxide in cardiac mitochondria during ischaemia/reperfusion. During 
ischaemia, endogenous nitric oxide formation is potentiated from several sources. Mild nitrosative stress from inorganic nitrite conversion 
into nitric oxide, high activity of nitric oxide synthases (NOS) or pharmacological nitric oxide formation from nitroglycerin (GTN) combine 
with low superoxide levels from various mitochondrial sources to generate the potent nitrosating species N2O3. This leads to widespread 
nitros(yl)ation of mitochondrial enzymes involved in energy metabolism, as well as cyclophilin D (CypD). Nitros(yl)ated CypD cannot bind 
properly to the mitochondrial permeability transition pore (mPTP), thereby decreasing its open probability. Nitros(yl)ated enzymes involved 
in energy metabolism are inactive, yet nitros(yl)ation partially protects against irreversible oxidative damage. For instance, nitros(yl)ated 
aldehyde dehydrogenase 2 (ALDH-2) limits GTN-dependent NO formation in mitochondria thereby preventing severe nitrosative stress but 
also partially protects this important antioxidant enzyme against irreversible oxidative damage. Nitros(yl)ation of complex I limit infarct I/R 
injury by reducing/delaying superoxide formation at the onset of reperfusion. During reperfusion, superoxide formation from mentioned 
sources is increased and may lead to the postulated superoxide-dependent denitrosation of enzymes involved in energy metabolism, thus 
restoring their activity for the required energy supply after an ischaemia/reperfusion episode. Superoxide-dependent denitrosation of 
CypD restores its regulatory effect on mPTP favouring its opening. Superoxide-dependent denitrosation of ALDH-2 supports detoxification 
of cardiac damage by excessive formation of the detrimental 4-hydroxynonenal (4HNE). αKGDH, α-ketoglutarate dehydrogenase; ALDH-
2, mitochondrial aldehyde dehydrogenase; Fe2+Hb/Mb, ferrous haemoglobin/myoglobin; ICDH, isocitrate dehydrogenase; mtNOS, 
mitochondrial nitric oxide synthase; SUDH, succinate dehydrogenase; XOR, xanthine oxidoreductase. This scheme contains images from 
Servier Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License
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S-nitros(yl)ation, whereas reduced infarct size was already present 
in CypD knockout mice. All protective effects of nitroglycerin were 
lost in mice rendered nitrate tolerant by chronic nitroglycerin admin-
istration and in eNOS knockout mice suggesting a vital cross-talk 
between exogenous and endogenous NO formation,96 as well as NO 
reaction with superoxide to form peroxynitrite.

One of the key mechanisms of ischaemic pre- and post-condi-
tioning seems to be that mild oxidative stress activates antioxidant 
defence mechanisms (eg via Nrf2) that in the intermediate or long-
term time scale confer cardioprotection. A more direct antioxidant 
mechanism involved in NO-mediated pre-conditioning may be re-
lated to NO-dependent S-nitros(yl)ation of metabolic and survival 
key proteins in mitochondria, thereby protecting these proteins 
from irreversible thiol oxidation but also beneficially influencing mi-
tochondrial oxygen consumption under hypoxic conditions (during 
the ischaemic phase).82 The S-nitros(yl)ation of Cys39 of complex 
I was reported as a key mechanism of cardioprotection during I/R, 
which significantly limits myocardial infarction.97 During reperfu-
sion, the generated superoxide will react with the S-nitrosothiols and 
lead to reactivation of the enzymes via denitrosation. The optimal 
nitros(yl)ation conditions are reached when superoxide and nitric 
oxide are formed at a ratio of 1:3 leading to the formation of the 
potent nitrosating agent N2O3 and nitrite.83 This concept of ‘oxida-
tive nitrosation’ is well accepted 98 and may explain the beneficial 
health effects of mild nitrosative/oxidative stress. This concept is 
supported by several earlier studies showing that mild oxidative/
nitrosative stress triggers pre-conditioning.99–101 This concept also 
goes very well with the mitochondrial bioactivation of nitroglycerin 
by mitochondrial aldehyde dehydrogenase (ALDH-2),102,103 allowing 
a direct mitochondrial action of nitroglycerin-generated NO (eg on 
above described CypD/mPTP inhibition,95 as well as protective ni-
tros(yl)ation of metabolic and survival key enzymes 82). These fea-
tures would make nitroglycerin not only a fast-acting antianginal 
drug and potent nitrovasodilator in stenotic areas of the heart,104 
but also confer protection against I/R damage 105 by limiting the ex-
emplified mitochondrial adverse effects, such as mPTP opening and 
oxidation of redox-sensitive thiol groups leading to inactivation of 
metabolic key enzymes. Nitros(yl)ation of ALDH-2 causes inactiva-
tion of the enzyme preventing excessive formation of NO nitroglyc-
erin 106 and thereby severe cardiac nitrosative stress. In addition, 
S-nitros(yl)ated ALDH-2 would be protected from well-established 
oxidative inactivation of the enzyme.107 Denitrosation of ALDH-2 
during reperfusion would allow detoxification of 4-hydroxynonenal 
by ALDH-2 conferring important cardioprotection during I/R.108,109

In conclusion, the modulation of mitochondrial NO production 
and NO-related cardioprotective mechanisms is a promising ther-
apeutic option; however, further exploration of the complex inter-
action of NO, ROS and RNS is needed to design rational therapy. 
Further challenge of drug development is that major comorbidities 
of ischaemic heart disease, such as diabetes, hyperlipidemia and 
obesity, fundamentally change cardiac NO metabolism that may 
alter or even disrupt NO-related cardioprotective pathways (for ex-
tensive reviews see 8,110–114).

4  | MITOCHONDRIA ,  H2S AND 
C ARDIOPROTEC TION

4.1 | Generation, timing and sources

Hydrogen sulphide (H2S) is well-recognized as a second messenger 
implicated in many physiological processes in mammals, including 
protection from oxidative stress.115–118 The antioxidant effects of 
H2S have been conserved during evolution and described to oper-
ate in both prokaryotes and eukaryotes. H2S has been implicated in 
bacterial defence against ROS and in antibiotic-induced oxidative 
damage.119 Partially through its antioxidant actions, H2S contributes 
to increased lifespan and anti-ageing effects in yeast, Caenorhabditis 
elegans and Drosophila melanogaster.120,121 In mammalian systems, 
reduced expression of endogenous H2S shifts cellular redox state 
towards a more oxidative state and administration of H2S donors 
lowers ROS levels in various cells and tissues.115 H2S can directly 
scavenge ROS (including hypochlorous acid, hydrogen peroxide, 
lipid hydroperoxides) and RNS, such as peroxynitrite.117,118 However, 
H2S is considered a poor ROS/RNS scavenger.122 The relevance of 
the direct scavenging effects of H2S in biological systems has been 
questioned as H2S levels are low (nmol/L) compared to other cellular 
antioxidants that exist in the μmol/L to mmol/L range. On the other 
hand, H2S has been proven to prevent irreversible cysteine overoxi-
dation preserving protein function.123 In addition, H2S has a variety 
of indirect antioxidant effects, many of which are mediated by acti-
vation of the master-regulator of antioxidant responses Nrf2.124 In 
the heart, H2S increases GSH synthesis and up-regulates the expres-
sion of thioredoxin.115,125 Studies have demonstrated that H2S may 
act as an endogenous antioxidant mediator by inhibition of p66Shc-
mediated mitochondrial ROS production, rather than via the direct 
quenching function.126 However, the importance of p66shc for car-
diac I/R injury and cardioprotective interventions has recently been 
questioned.14,127

One of the first protective effects of H2S in the cardiovascular 
system reported in the literature was its ability to limit I/R injury.128 
Endogenously, H2S is mainly generated from three different en-
zymes: cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) 
and 3-mercaptopyruvate sulphurtransferase (3-MST), all of which 
are expressed in the heart (Figure 2).124 Under resting conditions, 
CSE and CBS are mainly present in the cytosol, while 3-MST has 
been found in both the cytosol and the mitochondria.129 Mice over-
expressing CSE were shown to have reduced infarct size compared 
to littermate controls.128 In contrast, obligatory CSE KO mice exhib-
ited increased infarcts following I/R.130

Among other mechanisms, H2S-induced cardioprotection in-
volves preservation of mitochondrial function.128 A possible mech-
anism of action for H2S is based on its ability to modulate cellular 
respiration during reperfusion. Under physiological H2S concentra-
tions, cytochrome c oxidase remains functional, whereas sulphide 
oxidation likely contributes to mitochondrial ATP production.131 It 
has been shown that H2S generated inside mitochondria by 3-MST 
is sufficient to enhance mitochondrial electron transport and cellular 
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bioenergetics.132 In vascular smooth muscle cells cultured under 
resting conditions, CSE is confined to the cytosol. However, pro-
longed elevation of calcium levels by the calcium ionophore A23187 
leads to CSE translocation into mitochondria, increasing total H2S 
production in this organelle.133 If a similar phenomenon is also ob-
served in cardiomyocytes, enhanced H2S output could help support 
ATP production under stress conditions.

The inhibition of mitochondrial respiration protects against 
I/R injury by limiting ROS generation and diminishing the degree 
of mitochondrial uncoupling leading to decreased infarct size and 
preserved contractile function.134,135 When H2S was administered 
in vivo to mice at the time of reperfusion, the function of isolated 
cardiac mitochondria following 24 hours of reperfusion was bet-
ter preserved, as noted by increased complex I and II efficiency. 
Electron microscopy revealed a striking reduction in mitochondrial 

swelling and increased matrix density in mice treated with a H2S 
releasing compound.128

In cardiomyocytes, interfibrillar (IFM) and subsarcolemmal 
(SSM) mitochondria are the two main types of mitochondria.136 
Interestingly, in isolated rat hearts H2S preserves mitochon-
drial function and integrity especially in the IFM fraction.131,137 
Additionally, intramitochondrial H2S is essential for the citric acid 
cycle. Metabolite levels are altered during oxidative stress due to 
increased H2S degradation and reduced H2S production.138,139

In addition to cellular bioenergetics, H2S was recently shown to 
regulate mitochondrial biogenesis. Cardiomyocytes of CSE-deficient 
mice contained fewer mitochondria when compared to wild-type 
hearts.140 In contrast, cardiomyocyte CSE overexpressing mice and 
mice receiving an H2S-releasing prodrug exhibited enhanced mito-
chondrial content. H2S-induced mitochondrial biogenesis involved 

F I G U R E  2   Proposed sources and targets for mitochondrial H2S generation involved in cardioprotection. H2S can be generated from 
3-mercaptopyruvate sulphurtransferase (3-MST), that has been found in both cytosol and mitochondria and from the translocation of 
cystathionine γ-lyase (CSE) from the cytosol to mitochondria after prolonged elevation of Ca2+ levels. H2S induces cardioprotection 
by preservation of mitochondrial function: H2S can inhibit ROS and RNS formation preventing irreversible cysteine overoxidation and 
preserving protein functions. H2S activates the master-regulator of antioxidant responses Nrf2, increases glutathione (GSH) synthesis 
and up-regulates the expression of thioredoxin. H2S may act as an endogenous antioxidant mediator by inhibition of p66Shc-mediated 
mitochondrial ROS production. Another possible mechanism of action for H2S is based on its ability to modulate cellular respiration 
during reperfusion. Under physiological H2S concentrations, cytochrome c oxidase remains functional, whereas sulphide oxidation likely 
contributes to mitochondrial ATP production. Additionally, H2S regulates mitochondrial biogenesis by activation of AMP-activated protein 
kinase and peroxisome proliferator-activated receptor γ coactivator 1α. H2S modulates cellular signalling by sulfhydration, and among the 
proteins confirmed to undergo sulfhydration upon exposure to H2S, several are involved in cardioprotection including the pore forming 
subunit of ATP-sensitive potassium channels (Kir 6.1)
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activation of AMP-activated protein kinase and peroxisome prolifer-
ator-activated receptor γ coactivator 1α.

One of the main mechanisms through which H2S modulates cel-
lular signalling is sulfhydration.141,142 Sulfhydration is a post-trans-
lational modification involving the addition of a thiol to a cysteine 
residue to form a persulphide (–SSH). Several proteins in the car-
diovascular system become sulfhydrated, mediating the effects of 
H2S.143 Among proteins undergoing sulfhydration upon exposure 
to H2S, several ones are involved in cardioprotection including the 
pore forming subunit of ATP-sensitive potassium channels (Kir 6.1), 
MEK1, p66Shc and mitochondrial proteins.143,144

In summary, H2S can be produced in cardiac mitochondria either 
directly by 3-MST or through translocation of CSE from the cytosol 
to mitochondria under conditions of calcium overload and increased 
oxidative stress such as occurring in I/R. H2S can reduce I/R injury 
by preserving mitochondrial function and integrity, especially in the 
IFM fraction, potentially through post-translational modifications of 
mitochondrial proteins.

4.2 | Rationale for clinical use of H2S donors

One of the first protective effects of H2S in the cardiovascular sys-
tem reported in the literature was its ability to limit I/R injury.128 As 
far as endogenous H2S is concerned, it has been demonstrated that 
mice overexpressing CSE were shown to have reduced infarct size 
compared to littermate controls.128 In contrast, obligatory CSE KO 
mice exhibited increased infarcts following I/R.130

Many groups have shown that H2S effectively ameliorates I/R 
injury by activating cardioprotective signalling pathways and by 
attenuating ROS and Ca2+ overload in mitochondria.128,130,145–148 
Depending on the nature of the H2S donor used, differences in the 
NO-dependence of the cardioprotective effect have been noticed. 
The effects of fast releasing H2S donors, like NaHS and Na2S, are 
abolished in the presence of a NOS inhibitor, as well as in eNOS KO 
mice. In contrast, the action of donors that liberate H2S in a slow 
fashion (GYY4137 and thiovaline,149 or in a targeted manner (AP39, 
a mitochondrial donor), is NO-independent.146,150 Fast releasing 
donors reduce I/R injury by alleviating eNOS inhibition caused by 
the protein tyrosine kinase PYK2 phosphorylation of eNOS on 
Y656.151 NaHS pre-conditioning significantly reduced myocardial 
infarct size and preserved the function of IFM; interestingly, the 
cardioprotective effects significantly declined in the presence of 
an inhibitor of endogenous H2S production (dl-propargylglycine, 
PAG, CSE inhibitor).152 A mitochondrial H2S donor, AP39, reduced 
infarct size and significantly attenuated mitochondrial ROS gen-
eration, without affecting respiratory complexes I or II in SSM or 
IFM.150 In addition, AP39 increased the mitochondrial calcium re-
tention capacity.146 Moreover, AP39 inhibited mPTP opening and 
reduced infarct size in mice lacking CypD, an activator of mPTP.146 
Co-incubation of mitochondria with AP39 and cyclosporine A, a 
pharmacological inhibitor of the CypD/mPTP interaction, induced 
an additive inhibitory effect on mPTP opening.150 Taken together, 

these results suggest that AP39 acts on mPTP at a site other than 
CypD binding site.

Among other mechanisms, H2S-induced cardioprotection in-
volves preservation of mitochondrial function.128 The inhibition of 
mitochondrial respiration protects against I/R injury by limiting ROS 
generation and diminishing the degree of mitochondrial uncoupling 
leading to decreased infarct size and preserved contractile func-
tion.134,135 When H2S was administered in vivo to mice at the time of 
reperfusion, the function of isolated cardiac mitochondria following 
24 hours of reperfusion was better preserved, as noted by increased 
complex I and II efficiency. Electron microscopy revealed a striking 
reduction in mitochondrial swelling and increased matrix density in 
mice treated with a H2S releasing compound.128

Diallyl trisulphide (DATS), a polysulphide found in garlic oil ca-
pable of releasing H2S, significantly reduced infarct size in mice 
subjected to I/R; DATS inhibited mitochondrial respiration in a con-
centration-dependent manner and ameliorated mitochondrial cou-
pling after reperfusion.153 At the same time, DATS activated eNOS 
and increased plasma nitrite and nitrate. Mitochondrial damage is 
a central feature of the intrinsic apoptotic pathway. Bax transloca-
tion to mitochondria contributes to the disruption of mitochondrial 
membrane potential and to the release of apoptotic proteins from 
the mitochondrial intermembrane space into the cytoplasm.154,155 
In mice subjected to I/R injury, Bax expression was reduced, while 
Bcl-2 expression was increased in the hearts after treatment with 
NaHS.156 NaHS treatment also reduced the amount of activated 
caspase 3. In line with the above findings, fewer TUNEL-positive 
cardiomyocytes were observed in the infarcted area in animals 
treated with NaHS.

In conclusion, the above-mentioned findings provide a robust in-
dication that direct delivery of H2S to mitochondria may represent 
a novel and effective intervention to mitigate the irreversible myo-
cardial injury associated with I/R. This goal can be achieved either by 
treatment with mitochondria-targeting H2S donors, such as AP39, or 
by conventional donors that increase cellular levels of H2S triggering 
cardioprotective pathways upstream of mitochondria.

5  | UNSOLVED ISSUES AND FUTURE 
PERSPEC TIVES

Despite the current knowledge of enzymes involved in mitochondrial 
ROS formation and removal, several questions remain to be solved 
for a complete understanding of the pathophysiological role of mi-
tochondrial ROS in cardiomyocytes, as well as in other cell types.

Major issues appear to be as follows:

1. ROS and other reactive species. ROS also include peroxides that, 
especially in the case of lipids, might contribute to mitochondria 
and cell injury.157 In addition, when MAO activity is considered, 
along with H2O2, very reactive aldehydes are generated.158 
The cardioprotective effects granted by stimulating aldehyde 
dehydrogenase activity in mitochondria indicate the detrimental 
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role of aldehydes.159 At present, it is not clear whether lipid 
peroxides and aldehydes are more relevant than superoxide 
and H2O2 in generating physiological and pathological effects 
(see also point 3).

2. Relationships with mitochondrial bioenergetics. A decreased ac-
tivity of respiratory complexes with a concomitant increase in 
NADH(H+)/NAD+ ratio generally favours ROS formation due to 
superoxide generation at the level of complex I, II and III, includ-
ing also reverse electron transport.160 Oxidative stress is also 
favoured by an increase in mitochondrial [Ca2+],46 perhaps in 
combination with Zn2+,161 opening of the mPTP162 or opening of 
mitochondrial KATP channels.34,163 However, the molecular mech-
anisms by which these mitochondrial processes involved in I/R in-
jury modulate oxidative stress are far from being elucidated. The 
question is especially relevant and complex in the case of mPTP 
opening, since it is both a consequence and a cause of ROS forma-
tion that appears to be involved either in the detrimental effects 
of post-ischaemic reperfusion and in cardiac protection afforded 
by ischaemic pre-conditioning.164

3. ROS threshold. In keeping with the previous point, it is generally 
accepted that a mild increase in ROS levels triggers protective 
mechanisms, while severe oxidative stress hampers cellular func-
tions and viability. Indeed, it has recently been demonstrated that 
a primary formation of mitochondrial ROS induced by mitochon-
drially targeted paraquat (mitoPQ) causes cell death at high con-
centrations, yet a decrease of more than 10-fold in mitoPQ levels 
protected against I/R injury.42 However, a quantitative method to 
determine the intracellular threshold separating beneficial from 
detrimental ROS is not yet available.

4. Communication with the rest of the cell. The fact that processes 
occurring in the cytosol affect mitochondrial function is docu-
mented by countless reports.6 This concept, including signalling 
pathways, ion homeostasis and proteostasis, holds also valid for 
oxidative stress. Indeed, ROS generated exogenously (ie toxicants 
or inflammatory processes) or within the rest of the cell (ie NOX 
activation) trigger mitochondrial responses by means of covalent 
changes in proteins, lipids and nucleic acids,49 as well as mito-
chondrial ROS formation. On the other hand, it is becoming clear 
that ROS generated within mitochondria are able to affect several 
cellular functions, including intracellular Ca2+ homeostasis and 
excitation-contraction coupling,9,42 as well as cytosolic and extra-
cellular ROS formation.49 Future studies should clarify the mes-
sages released to the rest of the cell downstream of an increase 
in mitochondrial ROS formation. Due to the abundance of SODs 
and peroxidases, the possibility that superoxide and especially 
H2O2 spread from mitochondria into the cytosol appears hardly 
tenable. On the other hand, the molecular mechanisms should be 
clarified by which an initial increase in cytosolic ROS levels is am-
plified by mitochondria.49,165,166

5. Contributions from cells other than cardiomyocytes. The abundance 
of mitochondria in cardiomyocytes has hindered the interest in mi-
tochondrial formation of reactive species in other cell types of the 
heart. Although the available information is limited, mitochondria 

from non-myocytes appear to play a significant role in cardiac 
pathophysiology. For instance, endothelial mitochondria gener-
ate ROS and RNS that are likely to be involved in both vascular 
and cardiomyocyte responses to physiological and pathological 
stimuli.167,168 Although likely, reactive species cross-talk between 
vascular cells and cardiomyocytes is far from being defined. The 
same applies to cells involved in inflammatory and immune re-
sponses that are present in any disease of the heart. An additional 
contribution as both source and target of reactive species is likely 
to be provided by fibroblasts, the number of which increases sig-
nificantly in failing hearts. Interestingly, recent reports show that 
knockdown of the mitochondrial uncoupling protein 2 (UCP2) 
in fibroblasts resulted in a decreased ROS formation 169 that, 
however, was not observed in cardiomyocytes lacking UCP2.170 
Future studies should investigate whether antioxidant interven-
tions elicit similar or different effects in the various cell types of 
the heart under physiological and pathological conditions.
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