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Abstract: The proposed study examined the characterization and stability of solid-state amorphous
imatinib mesylate (IM) after 15 months under controlled relative humidity (60 ± 5%) and
temperature (25 ± 2 ◦C) conditions. After 2 weeks, and 1, 3, 6, and 15 months, the samples were
characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray
powder diffractometry (XRPD), attenuated total reflectance-Fourier transform infrared spectroscopy
(ATR-FTIR) and scanning electron microscopy (SEM). Additionally, the amorphous form of imatinib
mesylate was obtained via supercooling of the melt in a DSC apparatus, and aged at various
temperatures (3, 15, 25 and 30 ◦C) and time periods (1–16 h). Glass transition and enthalpy relaxation
were used to calculate molecular-relaxation-time parameters. The Kohlrausch–Williams–Watts
(KWW) equation was applied to fit the experimental enthalpy-relaxation data. The mean
molecular-relaxation-time constant (τ) increased with decreasing ageing temperature. The results
showed a high stability of amorphous imatinib mesylate adequate to enable its use in solid dosage form.

Keywords: imatinib mesylate; amorphous form; stability; molecular mobility; thermal analysis; mean
relaxation-time constant

1. Introduction

Amorphous substances form a separate class of solids, which are distinct from the more common
and well-known crystalline solid. Crystalline materials consist of a three-dimensional long-range
structure, which is not present in the amorphous state. Furthermore, compared to crystalline
state, the positioning of amorphous state molecules are more irregular, as well as possessing high
internal energy and specific volume, which improves dissolution and bioavailability [1–3]. The most
common methods of amorphization include rapid precipitation from solution, quench-cooling,
spray-drying, freeze-drying, and hot melt extrusion [4–8]. Mechanical stress associated with grinding
and milling can also transform crystalline solids into amorphous form [9]. Amorphous substances are
generally hygroscopic, with high solubility and bioavailability, and can possess superior compression
characteristics than corresponding crystals [10,11]. The role of molecular mobility in time-dependent
nucleation, chemical degradation, crystallization, and structural collapse of amorphous materials
has been recognized in several studies [12–14]. In terms of stability, the amorphous state can
unexpectedly transform into the crystalline state during production or storage [15,16]. Information
regarding physicochemical stability of the amorphous state of drugs is invaluable in accurately
determining pharmaceutical dosage [17,18]. To classify amorphous substances as stable, they must
exhibit relaxation times comparable to their shelf life (3 years for pharmaceuticals) [19]. Therefore,
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the objective of this study is to characterize the behavior and performance of imatinib mesylate
(IM) in its amorphous state in order to predict its stability as a pharmaceutical raw material.
IM (Figure 1), i.e., 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-
ylamino)phenyl]benzamide methanesulfonate, is a tyrosine-kinase inhibitor commonly used in
the treatment of chronic myeloid leukemia [20–22] and gastrointestinal stromal tumors [23–25].
It can be useful in the treatment of atherosclerosis [26,27], thrombosis [28,29], and restenosis [30,31].
Imatinib therapy is a good option for unresectable, recurrent, or metastatic dermatofibrosarcoma
protuberans [32–37]. IM is known to exist in various polymorphic forms, including hydrated and
solvated forms, as well as hydrated and anhydrous amorphous forms [38–44]. The most extensively
examined IM polymorphs are α- and β-form. Grillo et al. showed that these forms transform into
amorphous IM upon grinding, followed by conversion to the crystalline phase during aging or
thermal treatment. Furthermore, recent studies have found that α and β-forms are enantiotropically
related. Detailed reports have confirmed these solid forms based on crystallographic and spectroscopic
techniques [45,46].

To the best of our knowledge, information related to the stability and characterization of IM
amorphous form in the literature is non-excitant. However, there is a strong relationship between
molecular mobility and stability of amorphous form in pharmaceutical substances. To predict the
life expectancy of pure amorphous compounds in the study, we searched for correlations between
crystallization tendency of glass formers with molecular mobility and thermodynamic properties of
the amorphous state. It was recognized that storage well below Tg prevents crystallization and ensures
a physically stable drug during its shelf-life [13,47,48]. In this paper, the physical stability of IM was
investigated using thermal methods by considering the onset temperature and enthalpy relaxation
at the glass transition of the ageing time. The stability of IM in the amorphous state was estimated
by the mean molecular relaxation-time constant “τ” and relaxation-time distribution parameter β
using the Kohlrausch–Williams–Watts (KWW) equation. Moreover, the physicochemical characteristics
of IM at time ageing were determined by thermal techniques X-ray powder diffractometry (XRPD),
attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron
microscopy (SEM). This is the first time such a study of amorphous IM was presented.
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Figure 1. Chemical structure of imatinib mesylate prepared by means of ChemDraw Professional
software (PerkinElmer, Waltham, MA, USA).

2. Materials and Methods

2.1. Materials

Crystalline imatinib mesylate α form used in this study was synthetized in a new continuous-flow
microwave reactor, described in [49] and donated by Silesian Catalysts Sp. z o.o (Wrocław, Poland).
Residual solvents (below 0.5%) were determined using gas chromatography–mass spectrometry
(GC-MS) method. Reference material: commercial IM of a grade useful for R&D was purchased
from LC Laboratories (Woburn, MA, USA). According to the certificate attached by the manufacturer,
the declared purity of the substance was 94.66% (by nuclear magnetic resonance (NMR) method).
The verification of purity by the method of differential scanning calorimetry (DSC) in our study
confirmed 93.99% ± 0.08 purity.
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Our previous studies confirmed that both commercial and synthetized IM occur in crystalline α
form [50].

2.2. Preparation of Amorphous Sample

Preparation of the amorphous form of a drug for physical stability studies was achieved by
melting the drug in a stainless-steel beaker on a hot plate, followed by subsequent quenching by
cooling the melt over crushed ice (method A). The quench-cooled product was ground, sieved using
315 µm sieve, and examined after 2 weeks, 1 month, 3 months, 6 months, and 15 months, respectively.

Additionally, the amorphous form of IM was obtained by supercooling the melt in a DSC apparatus
(method B), and aged at various temperatures (3, 15, 25, and 30 ◦C) for periods of time between 1 and
16 h.

2.3. Physical Stability Studies

The physical stability of amorphous IM was monitored for fifteen months under controlled relative
humidity (60 ± 5%) and temperature (25 ± 2 ◦C), which was the long-term stability condition, selected
based on Guideline for Industry Q1A (R2) Stability Testing of new Drug Substances and Products [51].
Periodically (0 day, 2 weeks, 1 month, 3 months, 6 months, and 15 months), the samples were removed
and examined for solid-state transitions using DSC, TGA, XRD, ATR-FTIR, and SEM methods.

2.4. Differential Scanning Calorimetry (DSC)

Differential scanning calorimeter DSC 214 Polyma instrument (Netzsch, Selb, Germany) equipped
with an Intracooler IC70 (Netzsch, Selb, Germany) was used. Measurements of the amorphous samples
were performed using the heat-flow measurement method at a heating rate of 10 ◦C per minute over a
temperature range of 10–250 ◦C in a nitrogen dynamic atmosphere (25 mL/min). The samples of approx.
8.5 mg were placed in an aluminium pan (25 µL) with a pierced lid, and subsequently sealed. An empty
pan of the same type was employed as reference. DSC peak area and transition temperatures were
determined using Netzsch Proteus® 7.1.0 analysis software (Netzsch, Selb, Germany). The apparatus
was calibrated using standard samples from calibration set 6.239.2-91.3 supplied by Netzsch (Selb,
Germany). All samples were weighed on a Sartorius CPA225D-0CE analytical balance (Sartorius AG,
Gottingen, Germany) with a resolution of 0.01 mg.

In this study, the ageing experiments of IM crystals were also performed. The schematic
representation of the entire temperature program is illustrated in Figure 2. The samples were melted in
an aluminium pan at 175 ◦C and maintained for 5 min to avoid incomplete melting. The melt was
quench-cooled at approx. 200 ◦C per minute cooling rate to different ageing temperatures (Ta) (3, 15, 25,
and 30 ◦C) for a predetermined period of ageing time (ta) (1, 2, 4, 8, and 16 h). Following the specified
aging time, the glassy materials were heated at 10 ◦C per minute to 185 ◦C. A cycle for unaged sample
was processed. This second heating determined the change heat capacity (∆Cp), the extrapolated onset
glass transition temperature (Tg) and the enthalpy recovery (∆Ht).

2.5. Thermogravimetric Analysis (TGA)

The thermal stability of the samples was investigated by thermogravimetric analysis using TG
209 F1 Libra (Netzsch, Selb, Germany) thermobalance. The experiments were carried out in alumina
crucibles (150 µL), under nitrogen atmosphere (25 mL/min) at a heating rate of 10 ◦C per minute.
TGA/DTG curves were obtained in the temperature range of 25–600 ◦C. Netzsch Proteus® 7.1.0 analysis
software (Selb, Germany) was used to determine the mass change of the samples and DTG curves.

2.6. Powder X-ray Diffraction Analysis (XRPD)

Crystalline/amorphous nature of IM was determined using Bruker D2 PHASER diffractometer
(BRUKER AXS, Karlsruhe, Germany) with a LynxEYe detector. Cu Kα radiation (1.5418 Å) was used at
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30 kV and 10 mA. Diffractograms were obtained in the Bragg-Brentano (θ/2θ) horizontal geometry
between 7◦ and 40◦ (2θ) (step size 0.02◦ and 0.1 s/step) at 295 K. XRD patterns were analyzed using the
software Diffrac.EVA v.2.1 (BRUKER AXS, Karlsruhe, Germany)Pharmaceutics 2019, 11, x 4 of 14 
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ageing experiments.

2.7. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

A Nicolet 380 FTIR (Thermo Scientific, Waltham, MA, USA) analyzer equipped with OMNIC
analysis software was used for FTIR spectra registration. Spectra were collected in attenuated total
reflectance (ATR) mode. A small amount of each sample was placed on the diamond crystal and
scanned over a wavelength of 400 cm−1 to 4000 cm−1 with a resolution of 4 cm−1.

2.8. Scanning Electron Microscopy (SEM)

Scanning electron microscope (SEM) images were taken on Zeiss EVO MA25 (Carl Zeiss NTS
GmbH, Oberkochen, Germany) apparatus at an accelerating voltage of 20 kV. The samples were
covered with gold and palladium (60:40; sputter current, 40 mA; sputter time, 50 s) using a Quorum
machine (Quorum International, Fort Worth, TX, USA).

3. Results and Discussion

DSC curves of amorphous IM samples stored at 25 ◦C under controlled relative humidity at
different ageing times are presented in Figure 3. After 1 month (Figure 3c–f), it can be observed
that the moisture is adsorbed by samples, which also corroborated with the results obtained from
TGA. Water evaporation occurred between 40–130 ◦C, followed by recrystallization and melting of the
sample. The glass transition temperature of amorphous IM with increasing ageing time at an ageing
temperature of 25 ◦C was determined at approx. 100 ◦C. No significant changes were observed at
the ageing temperature. In the case of samples stored longer than 6 and 15 months (Figure 3e,f), the
glass transition was difficult to detect due to moisture absorption. Compared to DSC curves of IM
amorphous form, only one thermal (endothermic) effect corresponding to the melting was visible for
crystalline form (Figure 3g). DSC parameters of amorphous imatinib mesylate are presented in Table 1.

Based on DSC curves recorded at various temperatures (3, 15, 25, and 30 ◦C), enthalpy recovery
(∆Ht) data for amorphous IM were obtained. Using the KWW equation, the average relaxation
time constant τ and dimensionless relaxation time distribution parameter β were estimated (Table 2).
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Figure 4 shows the best fits of the KWW equation to the experimental data (solid lines). The initial
parameters were τ = 100 s and β = 0.5. The KWW equation is as follows:

∅t = 1−
∆Ht

∆H∞
= Exp

[
−

( t
τ

)β]
, (1)

where ∅t is the extent of impending relaxation at the annealing temperature, ∆H∞ is the maximum
enthalpy recovery, t is the ageing time, τ is the mean relaxation-time constant, and β is the
non-exponential parameter, respectively.

Table 1. Differential scanning calorimetry (DSC) parameters of amorphous imatinib mesylate (IM).

Time Tp
[oC]

TOnset
[oC]

TEndset
[oC]

∆Hf
[J g−1]

Tg
[◦C]

∆Cp
[J g−1]

0 day 218.7 212.4 224.5 10.73 100.9 0.168

2 weeks 218.9 212.3 224.5 11.42 101.0 0.238

1 month 218.8 212.1 224.8 10.52 99.0 0.140

3 months 218.5 212.0 224.4 11.37 100.0 0.208

6 months 219.1 213.8 222.6 10.70 105.2 0.301

15 months 218.3 211.9 224.3 11.76 106.4 0.302

Tp - peak melting temperature; TOnset - onset melting temperature; TEndset - endset melting temperature; ∆Hf -
enthalpy of fusion; Tg - glass transition; ∆Cp - heat capacity.
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at 25 ◦C under controlled relative humidity at different ageing times: (a) day 0, (b) 2 weeks, (c) 1 month,
(d) 3 months, (e) 6 months, and (f) 15 months, and (g) crystalline IM.

∆H∞ was calculated from the following equation:

∆H∞ = ∆Cp ·
(
Tg − Ta

)
, (2)
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where ∆Cp is the heat capacity change at Tg and Ta ageing temperature.
Values of τ and β estimators presented in Table 3 were determined using two non-linear

optimization algorithms: Levenberg–Marquardt and Quasi–Newton, which minimize the loss function
L according to the equation:

L(τ, β) = minRRS(τ, β) = min
∑(

yi − f
(
xi, τ̂, β̂

))2
, (3)

where RSS is the residual sum of squares, yi is the experimental values, and f (xi) the values predicted
by the estimated model.

Table 2. The results for the best fit to the Kohlrausch–Williams–Watts (KWW) equation.

T
[◦C]

Maximum
Enthalpy

∆H∞
[J·g−1]

Estimated Parameters

R-Value t50% [h]

Mean molecular Relaxation Time Constant
τ [s]

Relaxation Time Distribution Parameter
β

Estimate
τ

Standard
Error

SE

Confidence
Interval
−95%

CI/+95% CI

P-Value Estimate
β

Standard
Error

SE

Confidence
Interval
−95%

CI/+95% CI

P-Value

3 43.4 3.6 × 1039 2.8 × 1035 2.80 × 1035/
1.72 × 1036 0.0161 0.0689 0.000267 0.0682/

0.0697 1.29 × 10−9 0.998 4.92 × 1033

15 38.3 2.95 ×·1028 8.62 × 1023 5.99 × 1024/
1.04 × 1025 0.000216 0.098 0.000206 0.0979/

0.099
1.15 ×
10−10 0.999 1.98 × 1023

25 34.1 4.13 ×·1022 2.04 × 1018 6.23 × 1018/
1.67 × 1019 0.00245 0.122 0.000570 0.121/

0.124 2.84 × 10−9 0.997 5.73 × 1017

30 32.0 6.39 ×·1021 3.93 × 1017 7.66 × 1017/
2.79 × 1018 0.006289 0.119 0.000724 0.117/

0.121 8.17 × 10−9 0.997 8.22 × 1016

The statistical significance of τ and β estimators was evaluated using the t-test, assuming the
confidence level p = 0.05, and 95% confidence interval (−95% CI/+95% CI). The quality of matching
the KWW functions to the experimental data was determined by coefficients of determination R2

(R-squared). The correctness of the entire model was additionally checked by residual analysis
(Table 3). For each measurement point, the value predicted by the model f

(
xi, τ̂, β̂

)
was determined

as L(τ, β) =
∑(

yi − f
(
xi, τ̂, β̂

))2
. The values of residues were determined according to the formula

Li =
(
yi − f

(
xi, τ̂, β̂

))
. A standard error, and 95% confidence interval for f

(
xi, τ̂, β̂

)
and values of the

entire model were also determined. The normality of the distribution of calculated Li residues was
assessed using the Shapiro–Wilk W-test with the assumed confidence level p = 0.05. The distribution
of standardized values Li is shown in Figure 4. The times t50% listed in Table 3 are defined as the times
required for half completion (50%) of the possible maximum enthalpy relaxation at a single relaxation
temperature, which corresponds to the value of relaxation time τ in the KWW equation when ∅t = 0.50.
By comparing τΦ(t) = 50% values of each glass at each aging temperature, it was found that as aging
temperature decreased, τΦ(t) = 50% values increased dramatically, hence, the rate of the aging process
dramatically decreased at lower aging temperatures. A rapid decrease in t50% values was observed
with increasing aging temperatures from 4.91695 × 1033 h at 3 ◦C to 8.21992 × 1016 h at 30 ◦C, which
again slowed the aging process at lower temperatures. Calculated mean molecular relaxation time
constants for amorphous IM range from 3.609324 × 1039 to 6.393168 × 1021 s, which are comparable
with values obtained for griseofulvin, tolbutamide, troglitazone, and simvastatin [52].

The width of relaxation-time distribution parameter β ranging from 0 to 1 were characterized.
The smaller the β value, a greater distribution of molecular motion deviates from a single exponential
behavior was obtained. Estimated values of β parameters were comparable at different ageing
temperatures but vary significantly from the unit. Therefore, this indicates a distribution of time scale
rather than one single relaxation time. Furthermore, with an increase in ageing temperature the mean
relaxation-time constants τ decreased.

The statistical analysis presented in Table 3 was constructed using the following programs:
Mathematica ver. 10.0 by Wolfram Research and Statistica® ver. 13.1 from Dell.



Pharmaceutics 2019, 11, 304 7 of 14

Pharmaceutics 2019, 11, x 7 of 14 

temperatures. A rapid decrease in t50% values was observed with increasing aging temperatures 

from 4.91695 × 1033 h at 3 °C to 8.21992 × 1016 h at 30 °C, which again slowed the aging process at 

lower temperatures. Calculated mean molecular relaxation time constants for amorphous IM range 

from 3.609324 × 1039 to 6.393168 × 1021 s, which are comparable with values obtained for 

griseofulvin, tolbutamide, troglitazone, and simvastatin [52]. 

The width of relaxation-time distribution parameter β ranging from 0 to 1 were characterized. 

The smaller the β value, a greater distribution of molecular motion deviates from a single 

exponential behavior was obtained. Estimated values of β parameters were comparable at different 

ageing temperatures but vary significantly from the unit. Therefore, this indicates a distribution of 

time scale rather than one single relaxation time. Furthermore, with an increase in ageing 

temperature the mean relaxation-time constants τ decreased. 

The statistical analysis presented in Table 3 was constructed using the following programs: 

Mathematica ver. 10.0 by Wolfram Research and Statistica®  ver. 13.1 from Dell. 

 

Figure 4. ΔHt as a function of ageing time for various ageing temperatures. Figure 4. ∆Ht as a function of ageing time for various ageing temperatures.

Table 3. The results of the Residual Analysis.

T
[◦C]

Time
[h]

Observed
Value yi

Predicted
Value

f(xi,τ̂,β̂)

Residual
Li=(yi−f(xi,τ̂,β̂))

Standard
Error SDi

Confidence Interval Residual Sum
of Squares

RRS

Shapiro
Wilk W/p−95% CIi +95% CIi

3 ◦C

0.1 0.130 0.122 0.00791 0.0027 0.115 0.130

0.0002599
W = 0.9426/
p = 0.6808

1.0 0.132 0.143 −0.01145 0.0031 0.134 0.152
2.0 0.151 0.150 0.00056 0.0033 0.141 0.159
4.0 0.152 0.157 −0.00527 0.0034 0.148 0.167
8.0 0.170 0.165 0.00535 0.0035 0.155 0.175
16.0 0.176 0.173 0.00309 0.0037 0.163 0.183

15 ◦C

0.1 0.105 0.108 −0.00315 0.0013 0.104 0.111

0.0000712
W = 0.8655/
p = 0.20908

1.0 0.139 0.135 0.00349 0.0016 0.131 0.140
2.0 0.142 0.145 −0.00254 0.0017 0.140 0.149
4.0 0.160 0.155 0.00557 0.0018 0.150 0.160
8.0 0.166 0.166 −0.00014 0.0018 0.161 0.171

16.0 0.174 0.177 −0.00341 0.0020 0.172 0.183

25 ◦C

0.1 0.112 0.120 −0.00821 0.0032 0.111 0.129

0.0004607
W = 0.9089/
p = 0.42970

1.0 0.155 0.159 −0.00383 0.0040 0.148 0.170
2.0 0.183 0.173 0.0101 0.0042 0.161 0.185
4.0 0.197 0.188 0.00890 0.0046 0.176 0.201
8.0 0.210 0.205 0.00531 0.0049 0.191 0.218

16.0 0.210 0.223 −0.0131 0.0052 0.208 0.237

30 ◦C

0.1 0.181 0.162 0.0188 0.0052 0.147 0.176

0.0012054
W = 0.9593/
p = 0.81450

1.0 0.189 0.212 −0.0234 0.0065 0.195 0.231
2.0 0.227 0.231 −0.00406 0.0069 0.212 0.250
4.0 0.243 0.251 −0.00738 0.0074 0.230 0.271
8.0 0.287 0.272 0.0151 0.0078 0.250 0.294

16.0 0.298 0.296 0.00206 0.0084 0.272 0.319

Thermogravimetry and derivative thermogravimetry (DTG) was used to identify the thermal
stability of amorphous IM. TGA and DTG curve of the substance at 0 time and after a specified time
are presented in Figure 5. The thermal decomposition parameters are as follows: temperature of
maximum weight loss rate (Tm); extrapolated onset temperature of decomposition (TOnset); rate of
mass loss, which corresponds to Tm; extrapolated temperature at which the degradation process ends
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(TEndset); temperature at which 0.5 wt.% and 1.0 wt.% loss occurs and the amount of residue (Res) at
600 ◦C, are presented in Table 4.

From the above results it can be extrapolated that the thermal degradation of the analyzed samples
occurs in one step. The average temperature of maximum weight loss rate for the main effect was
371.57 ◦C, which corresponds to 5.42% min−1, the rate of mass loss. As shown in Figure 6c-f, additional
mass changes in the temperature range 25–140 ◦C was observed, possibly due to a loss of loosely
bound water. The presence of water is evident from the DCS curves (Figure 3c–f). Moisture content
fluctuates depending on ageing times from 1.16 % (1 month aging) to 3.95 % (15 months aging). A fall
in the baseline above 270 ◦C was due to substance degradation. The average temperature at which
0.5 wt.% loss occurs was observed at approximately 274 ◦C, while the average extrapolated onset
temperature of decomposition was 325 ◦C. The differentiation at c.a. 50 ◦C between TOnset and T0.5 wt.%

should be taken into consideration during thermal stability assessment.
According to TGA/DTG curve registered for the crystalline form of the substance, decomposition

occurs in one step. The thermal decomposition parameters: Tm = 376.0 ◦C, rate mass loss = 5.61
%·min−1, TOnset = 325.6 ◦C, TEndset = 424.1 ◦C, T0.5 wt.% = 278.6 ◦C, T1.0 wt.% = 291.7 ◦C, and Res = 40.29%
were determined. In the temperatures ranging between 25–140 ◦C no mass loss was observed related
to moisture.
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Figure 5. Thermogravimetric analysis (TGA)/derivative thermogravimetry (DTG) curves of amorphous
imatinib mesylate (IM) at ageing temperature 25 ◦C at different ageing times: (a) day 0, (b) 2 weeks, (c)
1 month, (d) 3 months, (e) 6 months, and (f) 15 months.

XRPD pattern of crystalline IM confirms its crystalline nature (Figure 6a). The studied sample
displayed peaks at 2θ values of 10.38◦, 11.17◦, 11.89◦, 12.11◦, 12.85◦, 13.78◦, 14.82◦, 16.42◦, 17.62◦,
18.02◦, 18.53◦, 19.03◦, 21.19◦, 19.75◦, 21.19◦, 21.55◦, 22.56◦, 23.12◦, 23.66◦, 24.83◦, 26.24◦, 27.33◦, 27.93◦,
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28.46◦, and 31.92. The obtained results correspond to α form and literature data [50]. The amorphous
sample of the drug stored at 25 ◦C under controlled relative humidity at different ageing times is
shown in Figure 6b–g. All diffractograms display a broad amorphous halo with the absence of sharp
diffraction peaks signals characteristic for crystalline form.

Table 4. The thermal decomposition parameters of amorphous imatinib mesylate (IM).

Time Tm
[oC]

Rate of Mass
Loss [% min−1]

TOnset
[oC]

TEndset
[oC]

Res
[%]

T0.5 wt.%
[oC]

T1.0 wt.%
[oC]

Moisture
Content [%]

0 day 373.9 5.72 326.2 419.6 39.71 271.5 287.6 -

2 weeks 373.6 5.44 327.7 419.4 42.37 269.3 287.2 -

1 month 379.7 5.36 327.8 419.3 42.48 275.5 291.5 1.16

3 months 373.9 5.58 326.3 419.8 38.92 275.7 289.5 2.51

6 months 365.7 5.05 322.6 411.9 43.75 274.6 280.3 2.54

15 months 362.6 5.35 319.9 410.4 41.55 278.4 288.1 3.95

TOnset—extrapolated onset temperature of decomposition; Tm—temperature of maximum weight loss rate;
TEndset—extrapolated temperature at which the degradation process ends; T0.5 wt.%—temperature at which 0.5 wt.%
loss occurs; T1.0 wt.%—temperature at which 1.0 wt.% loss occurs; Res—amount of residue at 600 ◦C.Pharmaceutics 2019, 11, x 10 of 14 
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Figure 6. X-ray powder diffractometry (XRPD) pattern of crystalline imatinib mesylate (IM) (a) and
amorphous IM stored at 25 ◦C under controlled relative humidity at different ageing times: (b) day 0,
(c) 2 weeks, (d) 1 month, (e) 3 months, (f) 6 months, and (g) 15 months.

ATR-FTIR spectra of IM samples in the 4000–400 cm−1 region are presented in Figure 7.
The obtained results correspond well with literature data [53]. ATR-FTIR showed characteristic bands
at 3256 cm−1 (N–H stretching vibration), 1657 cm−1 (C=O band), 1570, 1525, and 1444 cm−1 (aromatic
C=C, C=N stretching vibration), 1158 cm−1 (C–N stretching vibration), 1036 cm−1 (C–O stretching
vibration), and 807 cm−1 (aromatic C–H deformations out of plane). ATR-FTIR spectra for crystalline
and amorphous IM samples were qualitatively similar. The spectra of amorphous forms showed peak
broadening attributed to the relative disorder of the molecules in the amorphous form, resulting in a
broader distribution of bond lengths and energies with respect their crystalline counterparts.

In order to estimate the morphology of IM samples, scanning electron microscopy (SEM) analysis
was performed. SEM images of crystalline and amorphous IM are shown in Figure 8. Synthetized
IM exists as a needles-shape crystalline structure (Figure 8a). IM particles, observed on SEM images
taken after 2 weeks (Figure 8b) and 1 month (Figure 8c) of storage, reveal an irregular spherical shape,



Pharmaceutics 2019, 11, 304 10 of 14

characteristic for amorphous state. After 3, 6, and 15 months of storage (Figure 8d–f, respectively) the
shape of IM particles become less compact, but remain irregular and do not resemble the needles.
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(g) 15 months.
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297x), (e) 6 months (magnification 1540x), and (f) 15 months of storage (magnification 500x).
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4. Conclusions

A delicate balance exists among the chemical and physical properties of amorphous materials.
Slight alterations or disturbances can have a major influence on stability, as well as future production
and dissolution characteristics of the final product [54]. Unfortunately, the storage of such materials
can promote unwanted transformation to their more stable crystalline form [55].

Herein, we showed efficient methodology for the preparation of amorphous IM via its crystalline
form. The process eliminated unwanted chemical degradation and the presence of amorphous
IM was confirmed using analytical techniques: DSC, ATR-FTIR, and XRPD. Glass transition and
enthalpy relaxation were experimentally determined and used to calculate molecular relaxation-time
parameters. The KWW equation fitted the experimental enthalpy relaxation data well. Two non-linear
optimization algorithms: Levenberg–Marquardt and Quasi–Newton were applied to predict the
long-term amorphous stability of IM. It was determined that the mean molecular relaxation time
constant (τ) increased with decreasing ageing temperature.

By calculating the relaxation time of amorphous IM, it was possible to estimate the timescale of
undesirable solid-state degradation or crystallization as a function of temperature. The calculated
mean molecular-relaxation time constants for amorphous IM confirmed the long-term stability of the
examined samples. This amorphous substance could be a potential candidate for the development of
novel drug products.
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