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Abstract: In this paper, the compressive stress of pristine and coated vertically-aligned
(VA) multi-walled (MW) carbon nanotube (CNT) pillars were investigated using flat-punch
nano-indentation. VA-MWCNT pillars of various diameters (30–150 µm) grown by low-pressure
chemical vapor deposition on silicon wafer. A conformal brittle coating of niobium-titanium-nitride
with high superconductivity temperature was deposited on the VA-MWCNT pillars using atomic layer
deposition. The coating together with the pillars could form a superconductive vertical interconnect.
The indentation tests showed foam-like behavior of pristine CNTs and ceramic-like fracture of
conformal coated CNTs. The compressive strength and the elastic modulus for pristine CNTs could
be divided into three regimes of linear elastic, oscillatory plateau, and exponential densification.
The elastic modulus of pristine CNTs increased for a smaller pillar diameter. The response of the
coated VA-MWCNTs depended on the diffusion depth of the coating in the pillar and their elastic
modulus increased with pillar diameter due to the higher sidewall area. Tuning the material properties
by conformal coating on various diameter pillars enhanced the mechanical performance and the
vertical interconnect access (via) reliability. The results could be useful for quantum computing
applications that require high-density superconducting vertical interconnects and reliable operation
at reduced temperatures.
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1. Introduction

Carbon nanotube (CNT) based structures have attracted widespread scientific interest due to
their exceptional mechanical and electrical performance rendering them as promising candidates
for advanced applications on various scales [1]. On the macroscopic scale, great progress has been
made in CNT actuations by coupling their mechanical and electrical properties in electrostatic [2],
electrochemical [3], and electro-thermal [4] actuations. On the micro/nanoscopic scale, CNTs have
demonstrated promising applications in Nano Electro Mechanical Systems (NEMS) through successful
demonstrations on high-frequency oscillators [5], rotational actuators [6], nanometer tweezers [7],
drug delivery [8], and vertical interconnect access (via) [9]. Extremely attractive performances of
individual tubes are difficult to reach when they are assembled in the large bundles necessary to make
real vias or lines in integrated chips. Two proposed approaches to overcome the current limitations are
either to make very tiny local connections that will be needed in future advanced chips or to make
carbon–metal composite structures that will be compatible with existing microelectronic processes.

CNTs for electrical interconnects application in integrated chips (IC) have been studied since
2001 [10], but few researchers have investigated CNTs as superconductor interconnect applications
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and specifically the mechanical strength of the structure under compression for practical applications.
One of the required functions for superconductive via is operating under the mechanical loads of
packaging. Using the CNT pillar as through silicon via (TSV) filling material [11] or as microbumps in
flip-chip packaging [12], needs mechanical strength under compression. To make the superconductive
vias, a thin layer of superconducting material with a thickness larger than the London penetration
depth (50 nm) is needed to effectively shield radiation [13]. The usual method for superconductive VIA
is to deposit a thin layer of superconductive material inside the TSV [14] or to use superconductive
microbumps [15].

CNTs are the strongest and stiffest materials in terms of tensile strength, but not nearly as strong
under compression. Because of their hollow structure and high aspect ratio, individual tubes tend to
undergo buckling when placed under compressive, torsional, or bending stress [16]. Compressive
performance of various pristine CNT forms such as individual [17], forest [18], film [19], turf [20],
array [21,22], and pillars [23], have been considered in the literature. Among them, vertically aligned
(VA) CNT pillars have been recognized as a promising structural material for the fabrication of high
aspect ratio (AR) 3D micro- and nano-architectures [24,25]. VACNT pillars represent a promising
class of mechanically strong and resilient lightweight materials, capable of supporting large reversible
deformation and absorbing mechanical energy [26]. The mechanical response of VACNTs to uniaxial
compression depends on various factors, including the material microstructure, density, height, rate of
deformation, and the nature of the interaction between the CNTs and the compressing indenter [27].
For instance, vertical gradients in CNT morphology dictate the location of incipient buckling and
distinct deformation mechanisms [18]. In addition, the horizontal gradient along the direction of the
precursor flow varies bulk density and affects the peak stress and the modulus of the freestanding
CNT arrays [28]. In order to tune the compressive strength of CNTs, various methods of mixing with
epoxy composite [29], processing with CVD treatment [30], and coating with hard materials [31] have
been investigated.

Beside the investigation of pristine CNTs, researchers have made a considerable effort to optimize
the full potential of individual CNTs by application of conformal coatings of metal [32], ceramic [33]
or even graphene [34]. Coated CNT arrays have received significant attention for potential use
in electrical [35], optical [36], thermal [37], chemical [38], and mechanical [31] fields. Though the
compressive performance of coated CNTs is expected to contribute significantly to the performance of
these applications, relatively little is known about the collective mechanical behavior of coated CNT
arrays and how their morphology may influence the mechanical response. Abadi et al. [39] investigated
the mechanical properties of CNT forests coated with alumina using an atomic layer deposition (ALD)
process. Poelma et al. [40] investigated the compressive strength of CNT arrays coated with SiC using
the low-pressure chemical vapor deposition (LPCVD) process. In both publications, the material
properties could be accurately tuned using different coating thicknesses and the compressive strength
increased as a function of the coating thickness.

Recently the use of coated CNT as an electrical superconductor was presented. Kim et al. [41]
fabricated superconducting fiber by sputter deposition of an NbN layer on free-standing CNT sheets,
followed by post-twisting. Salvato et al. [42] proposed using Nb deposited on MWCNT film as a
horizontal interconnect in superconducting nanoelectronics. The coating approach offers an interesting
solution to fabricate fine pitch, high aspect ratio (AR), and superconductive interconnect by conformal
superconductive coating to vertically aligned CNT pillars. The CNT bundle can provide sufficient
toughness and high AR matrix, and meanwhile, the superconductive coatings do not only provide
superconductivity, but can also improve the morphology and density of the CNT pillar, and therefore
the mechanical properties of the pillar.

In this study, we first fabricated various diameter (30–150 µm) MWCNT pillars with a height
of 120 µm by catalytic LPCVD. Then, the conformal coating of VA-MWCNT pillars was performed
by ALD, with 20 nm thickness of niobium-titanium-nitride (NbTiN) as superconductor material.
The morphology and structure of pristine and coated VA-MWCNT were investigated with scanning
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electron microscopy (SEM), transmission electron microscopy (TEM), focused ion beam (FIB) and
energy-dispersive X-ray spectroscopy (EDX). To characterize the compressive response, flat-punch
nano-indentation measurements on pristine and coated CNT pillars were performed. We analyzed the
mechanical response by measuring the force-displacement curve and SEM inspection after compression.
The proposed structure opens new perspectives on the possibility of using VA-MWCNT pillar as
vertical interconnect for superconducting applications.

2. Materials and Methods

2.1. VA-MWCNT Pillar Growth with LPCVD

Growth of CNT on a silicon wafer needs three main ingredients: a barrier layer, catalyst
nanoparticles, and a carbon source. The barrier layer prevents the diffusion of the catalyst into the
silicon substrate and enables the transition metal catalyst film to break up into nanoparticles instead
of forming an agglomeration. Regarding superconductor interconnect applications, an electrically
conductive layer has to be used. Particularly, TiN is a diffusion barrier often used in semiconductor
technology, which has the advantage of being electrically conductive at room temperature and can
be superconductive at 4K. A transition metal catalyst which can be used on TiN to form CNTs is Fe,
as was shown in previous work [43]. Fe nanoparticles are among the most used catalysts due to their
high surface energy. However, it is important to point out that their size, structure, composition, type,
and state of catalyst all influence CNT growth. In this study, LPCVD was employed to grow vertically
aligned CNTs due to its scalability and the ability to grow long, high-density CNTs on controllable
locations by patterning the catalyst.

Figure 1 represents the fabrication process of the coated VA-MWCNT pillars. We use a 100 mm
p-type (100) silicon wafer as a substrate for CNT growth [44]. First, a 500 nm thick thermal silicon
oxide layer is grown for electrical insulation of the TiN from the substrate. Next, a 10/50 nm layer of
Ti/TiN is sputtered to enable the CNT growth from the catalyst particles. Then, a 5 nm thin layer of
iron (Fe) catalyst is deposited by electron beam evaporation. The catalyst is patterned using optical
lithography and a lift-off process. For the lift-off process, we spin coat a film of 1.5 µm thick negative
photo-resist (AZ Nlof2020, Microchemicals GmbH) and use an NMP solvent at 70 ◦C for dissolving
the resist during the lift-off. Next, MWCNT pillars are grown by LPCVD in a commercial deposition
system (Black Magic Pro, Aixtron, Herzogenrath, Germany). The CNTs are grown at a temperature of
650 ◦C using a gas flow mixture of 700 sccm hydrogen over 50 sccm acetylene (H2/C2H2) at 80 mbar
for 10 min.
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Figure 1. Schematic of microfabrication process; (1) SiO2 deposited and Ti/TiN (10/50 nm) sputtered
on a silicon wafer as a barrier layer, (2) photoresist (1.4 µm) coated and baked, (3) wafer aligned and
exposed under the photomask, (4) pattern developed, (5) Fe nanoparticle (5 nm thickness) evaporated
as a catalyst, followed by, (6) a lift-off process to define the CNT growth regions, (7) Vertically aligned
multi-walled carbon nanotube (MWCNT) bundles (120 µm) grown in an AIXTRON Black Magic
chemical vapor deposition reactor, (8) Finally, NbTiN (20 nm) deposited by atomic layer deposition
(ALD) on the structure.
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2.2. NbTiN Coating on CNT Pillar with ALD

NbTiN is widely applied in superconducting electronic devices due to its merits of having a wide
energy gap, high superconducting temperature, and mitigated requirement as well as compatibility
with microfabrication processes [45]. For uniform deposition on high aspect ratio CNTs, atomic layer
deposition (ALD) was used because it provides excellent homogeneity, high surface conformity, and low
pinhole density along with nearly perfect thickness control.

NbTiN with a thickness of 20 nm was deposited on VA-CNT pillar with an Ultratech/CNT Fiji
ALD system. Tris(diethylamido)(tert-butylimido) niobium (TBTDEN) and tetrakis(dimethylamino)
titanium (TDMAT) were used as the niobium and titanium precursors and were maintained at 100 ◦C
and 75 ◦C, respectively. The precursors were delivered to the system with a BoostTM system which
introduces a charge of argon gas into the precursor cylinder before pulsing the precursor into the ALD
reactor and substantially improving the transfer of low vapor pressure material from the cylinder to
the substrate surface [46]. The ALD process consisted of repeated supercycles of precursor pulses
and plasma exposure alternated with fixed purge periods. An individual Nb sequence consisted of a
500 ms boosted pulse of TBTDEN followed by a 5 s purge, repeated 3 times. An individual Ti sequence
consisted of a 750 ms pulse of TDMAT followed by a 5 s purge. The plasma exposure times for the
Nb and Ti sequences were 40 s and 20 s, respectively. For Ti cycles, the plasma gas contained 5 sccm
N2, while an additional 80 sccm H2 was delivered during the Nb cycles. The plasma power was
kept at 300 W for ALD runs. The layer thickness was controlled by the number of cycle/timing of the
deposition process for 122 cycles, with a deposition rate of about 0.5 Å/min.

2.3. Compression Testing with Nano-Indentation

Nano-indentation can be used for testing the mechanical properties of microscale materials.
The method employs high precision instrumentation to monitor the force and displacement of an
indenter tip during compressive loading of a sample [47]. To evaluate the elastic properties as a
continuous function of penetration depth, the continuous stiffness measurement (CSM) technique
introduces relatively high-frequency loading and unloading cycles by imparting a small sinusoidal
displacement at the indenter tip superimposed upon the larger steady tip displacement rate [48].
In such a way, stiffness and elastic properties may be evaluated at each data collection interval.
The measurement of critical strain and average modulus is determined according to the classical
three-region stress–strain curves, which have been reported widely in polymer and foam/cell material
compression [49].

In this research, Nano-indentation was used to understand the effect of brittle coating on the
mechanical performance of superconductive interconnects which is vital to the reliability of microsystem
packages. The effect of coating on the compressive response of CNT pillars was characterized using
an Agilent MTS nano-indenter XP G200. The Nano Indenter G200 is powered by electromagnetic
transducers and utilizes the XP indentation head with a loading capability of 500 mN, delivering
500µm maximum indentation depth and 10 pm displacement resolution. Vertically oriented cylindrical
pillars with an average height of about (120 ± 5) µm and diameters ranging from (30 ± 1) µm to
(150 ± 2) µm were synthesized for cyclic compression tests. The uniaxial compression test of the CNT
pillars was performed in air using a diamond punch tip of 150 µm diameter. The flat surface of the
tip enables accurate detection of the CNT pillar surface and maintains a uniform contact area during
compression. The pillars were compressed for 70% of strain and the compressive stress–strain response
was recorded only for the loading process. The CSM parameters used were 2 nm amplitude, 45 Hz
frequency, sensitive 100 N.m−1 surface detection and a strain rate of 0.01 s−1.

2.4. Pillar Characterization

The microstructure and morphology of the pristine and 20 nm-coated VACNT along the
longitudinal direction were characterized by SEM (FEI XL50, Hillsboro, OR, USA). TEM and elemental
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mapping were measured using an FEI Titan. For the TEM analyses of all the synthesized samples,
cross-section lamella preparation was prepared within a Scios DualBeam instrument, a combination of
an SEM operating at 30 kV that produces enlarged images of the studied materials and an FIB system
containing a Gallium(Ga) source that enables fast and precise milling of the materials [50]. The average
CNT diameters and number of layers were obtained with over 10 individual multi-walled carbon
nanotubes (MWCNTs) in different TEM images. The cross-section area and second moment of the area
were deduced from the average outer/inner diameters of the nanotubes.

The chemical inertness of CNT requires some degree of defect for controlled deposition through
ALD. The type, quantity, and distribution of such defects rules the deposition rate and defines the
growth behavior. Raman spectroscopy was used to gather further information on the defect degree of
the VACNTs. We conducted Raman spectroscopy measurements on three VACNT samples of each type
at five different characterization positions along the longitudinal direction from the top to the bottom
of each sample. We used the IG/ID ratio to correlate the structural purity of the graphitic materials to
the disordered graphite via X-ray diffraction. Raman characterization was done using a Renishaw
inVia system with a 514 nm wavelength Ar+ laser to determine the presence of defects on the CNTs
and the effects of NbTiN deposition.

3. Results

3.1. Morphological and Structural Characterization

3.1.1. SEM and TEM Images

The surface morphology of the VACNTs pillars and their CNTs structure were examined by
SEM and TEM. Figure 2 summarizes the as-grown CNT pillar with circular cross-sections and their
nanostructures. Figure 2a shows SEM images that qualitatively illustrate the aligned distribution and
morphology of the VACNTs along the longitudinal CNT direction. Figure 2b shows representative
TEM images of MWCNTs extracted from the VA-MWCNT pillar. From the ensemble of these images,
it was calculated that the nanotube average diameter, is 30 ± 4 nm and the tube density within the
pillar is around 110 ± 10 tubes/µm2 with homogeneity, high surface conformity, and low pinhole
density along with nearly perfect thickness control.
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Figure 3 shows the morphology analysis of the MWCNT pillar after 20 nm NbTiN coating.
Figure 3a shows the SEM images at different magnifications which reflect uniform deposition around
the nanotube at top and bottom. The initial vertical orientation and the high surface area of the CNT
array are retained, while in correspondence to the CNT–CNT junctions some localized aggregations
are formed. The average coated CNT diameter is 60 ± 7 nm. Therefore, the average coating thicknesses
deposited on the MWCNT surface is about 18 nm. To investigate the morphology and the coating
infiltration depth within the VA-CNT arrays, we performed FIB preparation in Figure 3b with further
analysis by TEM, as shown in Figure 3c. Due to changing the coating structure by using high
energy ion milling, we also scratched the pillar with the needle to estimate the penetration of coating.
The coating uniformity and the penetration depth was investigated along the radial and vertical
direction. Cycle-to-cycle variations in both precursor dose and purging time were used to achieve a
uniform monolayer on a CNT [51]. The coating thickness reduces roughly 2 nm for every 1 µm from
the sidewall to the core. The penetration depth from the top is less than 5 µm. The low penetration
depth and the uneven uniformity of the ALD coating within the intricate CNT foam-like morphology
has been the object of several studies [52,53]. Figure 3d shows the emission profiles of carbon, titanium,
nitrogen, and niobium. The Ti, N, and Nb elements are relatively homogeneously concentrated on top
of the pillar, indicating a low diffusion of coating inside the dense pillar, which agrees well with the
FIB results.
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Figure 3. VA-MWCNT pillar with 20 nm NbTiN coated. (a) SEM images of coated VA-MWCNT pillar;
(b) SEM image of FIB on pillar; (c) STEM and TEM images of focused ion beam (FIB) prepared lamella;
(d) energy-dispersive X-ray spectroscopy (EDX) mapping of the lamella.
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3.1.2. Raman Spectroscopy

Figure 4a shows the Raman spectrum intensity of the CNT pillar which was normalized to the
G-peak intensity. The peaks near 1350 cm−1 and 1580 cm−1 in the first-order region correspond with
the defects of any kind (D) and sp2 carbon (G) modes of the CNTs. The G-peak has convolved with a
shoulder peak at 1620 cm−1, which is known as the D’-peak and is also associated with defects within
the graphite hexagons originating from different points in the Brillouin zone. The intensity of the
disordered graphite peak, with respect to the G-peak, refers to the number of defects present in the
graphitic shells. The intensity ratio IG/ID of the peaks can be used to evaluate the quality of the CNTs,
a higher ratio generally indicates better quality.
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Figure 4. Normalized Raman spectra of (a) coated MWCNT with different thicknesses of NbTiN and
(b) 20 nm NbTiN on various points of the substrate.

The data shows modulation of the graphite (G) and disordered graphite (D) peaks due to the
broad NbTiN Raman features at lower wavenumbers, as is also visible in the spectrum of NbTiN on
TiN in Figure 4b. For thicker NbTiN coatings the noise in the spectrum also increases, as the signal
from the CNT is reduced. Deconvolution of the peaks using a least-square fitting procedure showed
that the intensity ratio IG/ID is equal to 0.67 for uncoated tubes, revealing the low crystallinity degree
of the CNT sample. Therefore, due to their intrinsic defectivity, no functionalization treatments were
performed on the CNT scaffold before the coating procedures as defects can act as absorption sites.
No relevant changes of the spectra of the CNTs occurred during the ALD deposition, suggesting that
the CNTs were not damaged by the coating process, the apparent increase in IG/ID (which suggests an
improvement of crystallinity) is attributed to inaccuracies in the fitting.

Figure 4b shows the Raman spectra from various points on the substrate of a 20 nm NbTiN layer.
Deposition of NbTiN directly on bare and oxidized Si substrate shows a sharp feature at 520 cm−1

and a smaller feature around 970 cm−1 which originate from the crystalline Si substrate. Besides that
several broad features are visible below 1000 cm−1 which likely originate from the NbTiN.

3.2. Mechanical Characterization

3.2.1. Stiffness of VA-MWCNT with Various Diameters

Indentation testing was performed on CNT pillars with the same height and various diameters.
SEM images of pristine CNT pillars after 70% compression, as shown in Figure 5, reveal that the
pillar failure mode is a type of localized periodic buckling. The deformation was similar to the
deformation of uncoated CNT pillars in a prior study [40]; the buckling moves spatially along the pillar
axis, which initiates at the base and propagates upwards throughout the entire bundle for increased
compression depth. Large diameter pillars with an aspect ratio (AR) about 1 (D ~ 80–150 µm) show
buckles at wavelength of about 2–5 µm and the smaller diameter pillars with AR of 0.5 (D ~ 40–60 µm)
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show buckling in the wavelength range of 10 to 15 µm. For needle-like pillars with AR of less than 0.25
(D ~ 20–30 µm), the bending occurs from the middle of the pillar. These typical buckling characteristics
appear to be unique for CNT pillars. More importantly, the localized periodic buckling events are very
reproducible and in excellent agreement with the in-situ CNT pillar compression observations from
Hutchens et al. [54]. Smaller pillars tend to recover most of their original height upon release of a
compressive load, allowing them to be repeatedly loaded.
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Figure 5. SEM images of pristine CNT pillars after 70% compressed strain of various diameters.

The criterion for ductile behavior according to classical continuum mechanics cannot be directly
satisfied for pristine VA-MWCNT arrays. Collective bending of the individual CNTs inside the discrete
structure of the pristine array during compression causes interacts which stick to each other through
van der Waals forces. During unloading, the CNTs remain stuck to each other thus preventing full
elastic recovery. This localized bending and stiction-like deformation of the CNTs inside the pillar can
be perceived as a permanent deformation of the pillar which can exhibit as high ductility.

The compressive load-displacement and stress–strain response of uncoated CNT pillars are shown
in Figure 6a,b, respectively. Engineering stress and strain were calculated using the initial diameter and
height of the pillar [55]. Despite their complex hierarchical microstructure, the general compressive
behavior of VACNTs is akin to that of typical open-cell foams, as was first reported by Cao et al. [56].
In the spirit of the overall foam-like response, the stress–strain curves of VACNTs are characterized
by three distinct regimes: (1) a short initial linear elastic section (<5%) up to the yield point followed
by (2) a sloped oscillatory plateau (5–50%) with characteristic wavy features corresponding to buckle
formation and (3) subsequent hardening to densification (>50%) characterized by rapid stress increase
and finally locking. At the scale of its constituents, however, the response of VACNTs is quite different
from that of traditional foams. In VACNT bundles, the post-elastic compressive strain is accommodated
entirely via the formation of lateral folds or buckles usually close to the bottom of the bundle, while the
remaining portion remains virtually unscathed. This is in contrast to traditional foams, where cell-edge
bending and cell collapse are primarily responsible for the elastic-plastic foam response. In our VACNT
samples, the formation of the first buckle at the bottom signals the transition from elastic to plateau
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regime. The inherent axial property gradient is responsible for the sequential nature of the buckling.
Each buckle is of the order of 10–20 µm in size (depending on pillar diameter) so that several tens of
buckles form during deformation. The post-elastic plateau region in the stress–strain curve also shows
marked differences from that of an open-cell foam response, as evidenced by its nonzero positive slope
and wave-like shape, where each undulation can be traced to subsequent buckling events. Unstable
deformation and localization showing plateaus and serrations is highly stochastic, as the stress–strain
curves are manifested by multiple strain bursts [57] and the size-dependent serrated behavior can be
interpreted through combined gradient-stochastic models [58].
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Figure 6. (a) Compression force-displacement and (b) stress–strain curves for pristine CNT pillars of
various diameters.

3.2.2. Stiffness of 20 nm Coated VA-MWCNT with Various Diameters

Figure 7 shows the deformation of the CNT pillar coated by the ALD method. For all pillar
diameters, for the NbTiN that coats the pillars the brittle fails, and the MWCNTs exhibited formation of
local periodic buckles starting from the bottom of the CNT pillar, as evidenced in Figure 8, where coated
and pristine pillars are shown. It was concluded that NbTiN only penetrates inside the pillar for a
few micrometers as already characterized. Therefore, the MWCNTs at the surfaces of the pillar are
coated instead with internal MWCNTs in the pillar. This coating mode explains that CNTs buckle at
the top of the buckled nanotubes and gradually develop upwards with applied loading. In this way,
the buckling waves progressively develop upwards one by one with strain increase.
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Figure 7. SEM images of 20 nm NbTiN coated CNT pillars after 70% compressed strain of various diameters.
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Figure 8. SEM images of compressed coated and pristine CNT pillars with 100 µm diameters after
40 µm compression.

As shown in Figure 8, for coated and pristine CNTs as an example of the nanotube buckling process,
the bottom of the nanotubes have already buckled and deformed, while the top of the nanotubes
have started to buckle progressively. The plastic deformation of pristine CNTs is linearly dependent
on strain and reaches up to 40% when the strain is 60%; while the coated CNTs have less than 30%
plastic deformation in the same strain range. Theoretically, the larger bending stiffness of individual
CNTs within the arrays could lead to better recovery effects and resilience. Localized damage of
the coating material in foams causes softening in concentrated regions and leads to fluctuations on
the stress plateau in its macroscopic behavior. Hybrid foam with high-ductility coating will have a
failure mode similar to that exhibited by homogeneous metal foams. Otherwise, hybrid foams with
low-ductility coatings will exhibit a more brittle failure and non-uniform damage regions; especially
highly reinforced foams through thicker or stronger coatings.

Figure 9 reveals that the larger CNT pillars show the highest elastic modulus, suggesting that an
area of coated CNT structure may play an important role in large strain compression when nanotubes
start to contact each other and the behavior of CNTs changes from buckling to packing and folding.
Plateau stress increases stepwise with some variation corresponding to the formation and propagation
of localized strain bands [59]. It seems that the coating prevents the densification phase under
compression. In comparison to pristine pillars, the compressive stress magnitude of larger coated
CNTs is more due to the area of the coating. For smaller pillars (D < 60 µm) the stress magnitude of the
coated pillar is less than a pristine pillar. Besides, the plateau regime in coated pillars increases with
more stable steps in magnitude in comparison to pristine CNTs.

3.3. Modelling

Despite the difference in local response of the foam with CNT, it is possible to use the foam-like
model to predict the behavior of CNT pillar with highly porous nature. In CNTs, the accommodation
of strain during uniaxial compression is accomplished entirely through the formation of folds or
buckles of small regions of the structure while the remaining portion remains nearly undeformed.
This superposition of an overall foam-like response with localized strain accommodation is the key
characteristic of CNT deformation [60].
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Figure 9. (a) Compression force-displacement and (b) stress–strain curves for 20 nm NbTiN coated
CNT in various diameters.

Stress–strain experimental data were fitted to Equation (A8) in Appendix A using MATLAB and
the build-in curve fitting toolbox. The extracted parameters for pristine MWCNT are presented in
Table 1. Figure 10 shows good agreement between the curve fitting of the foam models with the
experimental tests from pristine pillars with diameters ranging from 30 µm to 150 µm. Even for 30 µm
pillars with no plateau region which is attributed to the different bending behaviors, we observed a
good match. By increasing the diameter of the pillars, the Young’s modulus generally decreased which
might be attributed to better alignment and a lower level of waviness along the length for smaller
diameters. From a material point of view, it is interesting to specify the relaxation time which is given
by the ratio of the damping coefficient C to the spring coefficient K of the Maxwell arm. Relaxation
time is a characteristic time length that indicates the amount of viscous forces of the Maxwell arm
with respect to elastic forces with unit of time. In Table 1, extracted relation times (T) revealed that
pillars with a 100 µm diameter have the highest viscoelastic behavior, which drastically decreases for
pillars ranging from 80 µm to 30 µm. Plateau regime represents the bulk of energy absorption in the
material, since the area under this region of the stress–strain curve corresponds to the work done on
the material. Regarding the plateau region, CNT pillars of 150 µm and 100 µm have similar positive
values, revealing the fact that the stress is higher than the damper viscosity, which is not the case for
CNT pillars with lower diameters. The intensification region is characterized by a strong non-linear
behavior with an exponential function, which is determined by the parameters γ and n of the proposed
model. The γ values are similar for all CNT pillars diameters, except for pillars with 30 µm diameter.
This can be attributed to the fact that the intensification regime is not fully reached in this case.

Table 1. Model parameters for foam-like behavior of pristine vertically-aligned multi-walled carbon
nanotube (VA-MWCNT) pillars.

Pillar Diameter [µm] K [MPa] C [MPa·Sec] T = C/K [Sec] kP [MPa] γ [MPa] n

150 43 ± 0.5 215 ± 5 5.0 ± 0.2 1.8 ± 0.1 13.1 ± 0.1 8

100 30 ± 1 226 ± 12 7.5 ± 0.6 2.2 ± 0.2 16.0 ± 0.1 10

80 108 ± 3 270 ± 3 2.5 ± 0.1 −1.30 ± 0.07 17.5 ± 0.5 6

60 307 ± 18 209 ± 3 0.70 ± 0.05 −1.10 ± 0.06 16.5 ± 0.1 6

50 270 ± 11 185 ± 6 0.70 ± 0.05 −1.90 ± 0.06 14.0 ± 0.6 6

30 344 ± 50 212 ± 4 0.6 ± 0.1 −3.00 ± 0.15 4.4 ± 0.2 4



Nanomaterials 2020, 10, 1189 12 of 16

Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 16 

 

Figure 9. (a) Compression force-displacement and (b) stress–strain curves for 20 nm NbTiN coated 
CNT in various diameters. 

3.3. Modelling 

Despite the difference in local response of the foam with CNT, it is possible to use the foam-like 
model to predict the behavior of CNT pillar with highly porous nature. In CNTs, the accommodation 
of strain during uniaxial compression is accomplished entirely through the formation of folds or 
buckles of small regions of the structure while the remaining portion remains nearly undeformed. 
This superposition of an overall foam-like response with localized strain accommodation is the key 
characteristic of CNT deformation [60]. 

Stress–strain experimental data were fitted to Equation 8 in Appendix A using MATLAB and 
the build-in curve fitting toolbox. The extracted parameters for pristine MWCNT are presented in 
Table 1. Figure 10 shows good agreement between the curve fitting of the foam models with the 
experimental tests from pristine pillars with diameters ranging from 30 µm to 150 µm. Even for 
30  µm pillars with no plateau region which is attributed to the different bending behaviors, we 
observed a good match. By increasing the diameter of the pillars, the Young’s modulus generally 
decreased which might be attributed to better alignment and a lower level of waviness along the 
length for smaller diameters. From a material point of view, it is interesting to specify the relaxation 
time which is given by the ratio of the damping coefficient C to the spring coefficient K of the Maxwell 
arm. Relaxation time is a characteristic time length that indicates the amount of viscous forces of the 
Maxwell arm with respect to elastic forces with unit of time. In Table 1, extracted relation times (T) 
revealed that pillars with a 100 µm diameter have the highest viscoelastic behavior, which drastically 
decreases for pillars ranging from 80 µm to 30 µm. Plateau regime represents the bulk of energy 
absorption in the material, since the area under this region of the stress–strain curve corresponds to 
the work done on the material. Regarding the plateau region, CNT pillars of 150 µm and 100 µm have 
similar positive values, revealing the fact that the stress is higher than the damper viscosity, which is 
not the case for CNT pillars with lower diameters. The intensification region is characterized by a 
strong non-linear behavior with an exponential function, which is determined by the parameters γ 
and n of the proposed model. The γ values are similar for all CNT pillars diameters, except for pillars 
with 30 µm diameter. This can be attributed to the fact that the intensification regime is not fully 
reached in this case. 

Table 1. Model parameters for foam-like behavior of pristine vertically-aligned multi- walled 
carbon nanotube (VA-MWCNT) pillars. 

Pillar Diameter [µm] K [MPa] C [MPa·Sec] T = C/K [Sec] kP [MPa] γ [MPa] n 
150 43 ± 0.5 215 ± 5 5.0 ± 0.2 1.8 ± 0.1 13.1 ± 0.1 8 
100 30 ± 1 226 ± 12 7.5 ± 0.6 2.2 ± 0.2 16.0 ± 0.1 10 
80 108 ± 3 270 ± 3 2.5 ± 0.1 -1.30 ± 0.07 17.5 ± 0.5 6 
60 307 ± 18 209 ± 3 0.70 ± 0.05 -1.10 ± 0.06 16.5 ± 0.1 6 
50 270 ± 11 185 ± 6 0.70 ± 0.05 -1.90 ± 0.06 14.0 ± 0.6 6 
30 344 ± 50 212 ± 4 0.6 ± 0.1 -3.00 ± 0.15 4.4 ± 0.2 4 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

14
σ(

M
Pa

)

ε (%)

 Compressive stress
 Model 

150 μm

 
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

14

16

100 μm

σ(
M

Pa
)

ε (%)

 Compressive stress
 Model 

 
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

14

80 μm

σ(
M

Pa
)

ε (%)

 Compressive stress
 Model 

 
Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 16 

 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

60 μm

σ(
M

Pa
)

ε (%)

 Compressive stress
 Model 

 
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

6

8

10

12

50 μm

σ(
M

Pa
)

ε (%)

 Compressive stress
 Model 

 
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0

2

4

30μm

σ(
M

Pa
)

ε (%)

 Compressive stress
 Model 

 

Figure 10. Measured and fitting curves for stress–strain curves for pristine CNT pillars with diameters 
ranging from 150 µm to 30 µm. 

The future directions of the present research must include experimentation of in situ and 
operando SEM nanoindentation observations to consider the complex deformation mechanisms 
involved in the VACNT pillar arrays. These can shed light on array deformation and the permanent 
deformation through damage mechanisms in order to obtain a better understanding of the transitions 
among the three compression regimes which can be incorporated in a future model. 
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Appendix A

The foam model consists of three systems in parallel (Figure 6a). The first, referred to as the
Maxwell arm, contains a spring (stiffness k) and dashpot (viscosity c) in series. The other two systems
contain only springs (kP and kD). This model can be used to accurately predict the general shape of
the compressive stress–strain curve. Stiffness coefficient k is equivalent to the foam Young’s modulus,
damping coefficient C is equivalent to plateau stress, stiffness kP represents the slope of the plateau
stress and stiffness coefficient kD is a function of strain.

To model this system, the following physical relations for parallel and series components must be
realized [61]. The compressive stress (σ) and strain (ε) satisfy:

σM = σK = σC (A1a)

εM = εC + εK (A1b)

σ = σM + σP + σD (A1c)

ε = εM = εP = εD (A1d)

σ and ε are related as:
σK = kεK (A2a)

σC = c
dεC
dt

(A2b)

σP = kPεP (A2c)

σD = kDεD = γ(1− eεD)nεD (A2d)

where kD is 2-parameters exponential function of strain.

kD(ε) = γ(1− eε)n (A3)

Then, the time evolution is governed by:

dεM

dt
=

d(εC + εK)

dt
=

1
K

dσM

dt
+

1
C

dσC
dt

=
1
K

dσM

dt
+

1
C
σM (A4)

During our experiment strain rate was 0.01 s−1. Then, σ(t) satisfies:

σM(t) = e
−Kt

C

(
e

Kt
C − 1

)
C

dεM

dt
(A5)

Applying a substitution of time t by strain εM, gives:

t =
εM
dεC
dt

and
dεC
dt

= 0.01 s−1 (A6)

and substitution in Equation (A5) results in:

σM(ε) = e

−KεM
CdεC

dt

e

KεM
CdεC

dt − 1

 C
100

= e
−Kε

C/100

(
e

Kε
C/100 − 1

) C
100

(A7)

Then the final expression of σ as a function of ε is expressed in terms of the parameters K, kP, C, γ
and n:

σ(ε) = e
−Kε

C/100

(
e

Kε
C/100 − 1

) C
100

+ ε
(
kP + γ(1− eε)n

)
(A8)
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In summary, we could fit these curves with the experimental data and extract the value of each
parameter [1].
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