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A B S T R A C T

Immune signalling is a crucial component in the progression of fibrosis. However, approaches for the safety 
assessment of potentially profibrotic substances, that provide information on mechanistic immune responses, are 
underdeveloped. This study aimed to develop a novel framework for assessing the immunotoxicity of fibrotic 
compounds. We exposed macrophages in vitro to multiple sublethal concentrations of the profibrotic agent 
bleomycin, over multiple timepoints, and generated RNA sequencing data. Using a toxicogenomic approach, we 
performed dose-dependent analysis to discover genes dysregulated by bleomycin exposure in a dose-responsive 
manner. A subset of immune genes displayed a sustained dose-dependent and differential expression response to 
profibrotic challenge. An immunoassay revealed cytokines and proteinases responding to bleomycin exposure 
that closely correlated to transcriptomic alterations, underscoring the integration between transcriptional im
mune response and external immune signalling activity. This study not only increases our understanding of the 
immunological mechanisms of fibrosis, but also offers an innovative framework for the toxicological evaluation 
of substances with potential fibrogenic effects on macrophage signalling. Our work brings a new immunotox
icogenomic direction for hazard assessment of fibrotic compounds, through the implementation of a time and 
resource efficient in vitro methodology.

1. Introduction

Pulmonary fibrosis (PF), originating from interstitial lung diseases, 
encompasses a range of underlying aetiologies. Occupational exposures 
to asbestos, silica, metal dusts, and nanoparticles such as multi-walled 
carbon nanotubes are well-recognized causal events [1–4]. Viral in
fections, for example SARS-CoV-2, have emerged as potent triggers for 
fibrotic alterations to the lung [5,6]. Drug-induced fibrosis, from agents 
such as bleomycin, represent a notable iatrogenic cause [7]. There are 
also cases of idiopathic PF, aggravated by lifestyle factors such as 
smoking, where the causative factors remain elusive [8,9]. Whilst the 
aetiology of PF is multifaceted, each initiating event shares a common 
subsequent step in the progression to fibrosis, whereby immune cells are 
recruited to clear the profibrotic insult and resolve damage to the 
epithelial cell layer [10]. These immune cells externally signal for the 
recruitment of fibroblasts, which are the principal effector cells driving 

fibrosis [11]. An overproduction of extracellular matrix components 
(ECM), particularly collagen, fibronectin and hyaluronic acid, ulti
mately leads to scarring and the impairment of gas exchange and 
diminished lung function [12,13]. Despite knowledge of a common 
immune response to varied profibrotic exposures in PF, a method to 
rigorously assess the mechanistic immunotoxic potential of fibrogenic 
substances is lacking.

The most prominent immune cells, both in number and activity in 
the lung, are macrophages [10,14]. Lung macrophages are broadly 
categorised into alveolar and interstitial macrophages [15]. Recruited 
monocytes that differentiate into macrophages at the site of the lung, 
have been shown in murine models to play a greater role in the pro
gression of pulmonary fibrosis than alveolar macrophages [16]. Simi
larly, CCR2 full knock out mice, missing a receptor required for 
monocyte infiltration into the lung, are protected from lung fibrosis [17, 
18]. One of the primary forms of macrophage communication is via 
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cytokine signalling. TGFB is the most studied cytokine in the context of 
pulmonary fibrosis. Acting through SMAD signalling and the 
JNK/MAPK pathways, it promotes the production of fibronectin, pro
teoglycans, and collagen and inhibits the degradation of ECM by matrix 
metalloproteinases [19,20]. The interleukins IL-1B, IL-17A and IL-18 are 
well known pro-inflammatory interleukins elevated in both IPF patients 
and murine models of pulmonary fibrosis [21,22]. However, whilst the 
importance of macrophages and their cytokine signalling is well un
derstood in the progression of PF, a comprehensive understanding of the 
mechanistic response of macrophages to profibrotic challenge is 
understudied. The ability of profibrotic compounds to alter the immune 
activity of macrophages at a mechanistic level is yet to be fully explored.

The paradigmatic understanding of M1 and M2 macrophage polari
zation, whereby macrophages take on pro-inflammatory and anti- 
inflammatory states [23,24], is overly simple in the context of com
plex diseases such as lung fibrosis. The recent availability of single cell 
data has shown that distinct populations of macrophages are observed in 
the fibrotic niche of lung tissue from IPF patients [25–28]. That said, 
these single cell studies are also limited to only observing macrophage 
transcriptomes at the end stages of PF and not informing on acute, 
early-stage responses by macrophages when they have just arrived at the 
lung to clear the initial profibrotic insult. It is this early interaction with 
profibrotic agents that shifts the macrophages into an activated state 
capable of driving fibrosis. Thus, gaining a mechanistic understanding of 
the early-stage modulation of immune signalling by profibrotic agents is 
necessary. This is particularly the case in chemical safety assessment, 
where it is the initial cellular response to a substance, before its clear
ance, that is of interest and determines the substance’s toxic profile. 
Greater mechanistic understanding of these early stages of pathological 
development necessitates the development of resource-efficient testing 
methodologies that accurately encompass the initial phase of disease 
progression.

Bleomycin is a cytotoxic glycopeptide derived from the bacterium 
Streptomyces verticillus and used as an antineoplastic in the treatment of 
Hodgkin’s Lymphoma, testicular cancer and in other chemotherapeutic 
regimes [29–31]. Bleomycin’s cytotoxic activity is onset by its ability to 
cause single- and double-stranded DNA breaks. Due to the high oxygen 
environment in the lung enabling effective oxidative damage by bleo
mycin to DNA, and due to the lack of bleomycin hydrolase to enzy
matically degrade bleomycin in lung cells, treatment with bleomycin 
often leads to pulmonary toxicity [7,32,33]. As a well-known profibrotic 
agent, bleomycin is used in rodent studies to consistently model the 
onset of PF with its associated hallmarks of epithelial damage, inflam
mation and altered immune signalling, epithelial–mesenchymal transi
tion (EMT), and myofibroblast activation [34–36].

To model the early effects of a direct profibrotic insult on macro
phage activity and immune signalling, we exposed differentiated THP-1 
macrophages, a model of monocyte derived macrophages [37,38], to 
multiple sublethal concentrations of bleomycin over multiple time
points, generating what can be considered fibrotically activated mac
rophages (FAMs). Employing an approach used in toxicogenomics, we 
performed dose-dependent analysis to discover genes altered by bleo
mycin exposure in a dose-responsive manner [39,40]. Our results indi
cated a cohort of 108 differentially and dose-dependently expressed 
immune genes showing consistent expression changes over 72 hours of 
bleomycin exposure. We also measured a panel of cytokines and pro
teinases, known to be important in the progression of fibrosis. We 
correlated expression the implicated cytokine-proteinases to the 
expression of the differentially and dose-dependently regulated genes, 
highlighting a close link between immune gene regulation and cytokine 
and proteinase secretion by the FAMs. The panel of immune genes un
covered using this framework represents an early immune signature 
caused by profibrotic exposure. This methodology embodies an efficient 
approach for the safety assessment of substances with potential profi
brotic and immunotoxic effects.

2. Materials and methods

2.1. Cell culture

THP-1 cells (ATCC TIB-202, USA) were cultured in RPMI-1640 
(Gibco, USA) supplemented with 10 % FBS (Gibco, USA) (culture 
media). Cells were cultured in 75 cm^2 flasks at 37 ◦C with a humidified 
atmosphere of 5 % CO2, at a density < 1 × 106 cells/mL. Cells were 
plated and differentiated in 12 well plates at a density of 0.445 × 10^6 
cells/mL (148333 cells/cm2), in culture media supplemented with 50 
nM of phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, USA) for 
48 h prior to bleomycin exposure. In all experiments, THP-1 cells were at 
passage number 7 when activated with PMA and subsequently exposed 
to bleomycin.

2.2. Bleomycin exposure

THP-1 cells were exposed to 0–100 µg/mL of bleomycin ready-made 
solution (Sigma-Aldrich, #B7216) in 1 mL of THP-1 culture media, using 
water as the vehicle at 1.8 % v/v concentration for all conditions 
including 0 µg/mL control, with continuous exposure for either 24, 48 or 
72 h. Exposure was randomised on 12 well plates using the R package 
Well Plate Maker [41].

2.3. WST-1 viability assay

For the viability assay there were 4 samples for each concentration of 
bleomycin (0,20,40,60,80, and 100 µg/mL) at each time point (24, 48 or 
72 h). A WST-1 assay was used to measure cell viability. Briefly, 100 µL 
of cell proliferation reagent WST-1 (Roche, #11 644 807 001) was 
added to each well. Cells were left to incubate with WST-1 for 2 h in a 
37 ◦C, 5 % CO2 incubator. Absorbance at 450 nm was measured with a 
Spark microplate reader (Tecan). Full results can be found in Supple
mentary File S1.

2.4. Procartaplex immunoassay

Supernatant was collected for cytokine and proteinase profiling 
using a custom 22-plex Procartaplex assay (ThermoFisher, #PPX-22- 
MXRWGMP, custom kit) for the following targets: CXCL11, FGF-2, IFN 
gamma, IL-1 alpha, IL-1 beta, IL-10, IL-13, IL-17A, IL-18, IL-6, IL-8, IP- 
10, MCP-1, MIG, MIP-1 alpha, MMP-1, MMP-7, MMP-9, PDGF-BB, SDF-1 
alpha, TNF alpha, VEGF-R2. Supernatant was collected from the same 
samples used for RNA extraction for RNA sequencing, and frozen at 
− 80 ◦C. Supernatant samples were thawed on ice, vortexed, and 
centrifuged at 10,000 x g for 5 min prior to analysis. Standards, blanks, 
and samples were prepared according to manufacturer’s instructions 
and were dispensed into designated wells in a random layout created 
using the R package Well Plate Maker [41]. Results were measured using 
a Bio-plex 200 system (Bio-Rad). The following targets were undetected 
in the range of the standard curves and therefore could not be used for 
further analysis: CXCL11, IL-13, IL-8, MIP-1 alpha, VEGF-R2. For each 
detected target, background (blank) fluorescence was subtracted and 
the remaining fluorescence was extrapolated to the relevant standard 
curve to derive concentration measurements in pg/mL. Full immuno
assay results can be found in Supplementary File S1.

2.5. RNA extraction

For both RNA sequencing and the independent repeat experiment for 
qPCR validation, there were 4 samples for each concentration of bleo
mycin (0,20,40,60,80, and 100 µg/mL) at each time point (24, 48 or 72 
h). Media was removed and cells were washed briefly with 500 µL of 
cold PBS. 350 µL of lysis buffer from the QIAGEN RNeasy mini kit 
(Qiagen, #74104) was added to each well to lyse the cells. Total RNA 
was then extracted from these samples using the QIAGEN RNeasy mini 
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kit (Qiagen, #74104) following manufacturer’s instructions. DNase 
treatment was performed using DNase1 RNaseFree (ThermoFisher, 
#EN0521) according to the manufacturer’s instructions.

2.6. RNA sequencing

RNA sequencing was performed by the company Novogene. Quantity 
and quality of the RNA samples were assessed with their in-house 
quality checks as follows: preliminary quality control was performed 
on 1 % agarose gel electrophoresis to test RNA degradation and potential 
contamination, sample purity and preliminary quantitation and RNA 
integrity were measured using Bioanalyzer 2100 (Agilent Technologies, 
USA). For library preparation, the Novogene NGS RNA Library Prep Set 
(PT042) was used. The mRNA present in the total RNA sample was 
isolated with magnetic beads of oligos d(T)25 using polyA-tailed mRNA 
enrichment. Subsequently, mRNA was randomly fragmented and cDNA 
synthesis using random hexamers and reverse transcription was per
formed. Once first chain synthesis was finished, the second chain is 
synthesised with the addition of an Illumina buffer (non-directional li
brary preparation). Together with the presence of dNTPs, RNase H and 
polymerase I from E. Coli, the second chain was obtained by Nick 
translation. Resulting products then underwent purification, end-repair, 
A-tailing and adapter ligation. Fragments of the appropriate size were 
enriched by PCR, where indexed P5 and P7 primers (Illumina) were 
introduced, and final products are purified. The library was checked 
with Qubit 2.0 and real-time PCR for quantification and bioanalyzer 
Agilent 2100 for size distribution detection. Quantified libraries were 
pooled and sequenced on the Illumina Novaseq X platform, according to 
effective library concentrations and data amounts using the paired-end 
150 strategy (PE150).

2.7. RNA sequencing analysis

Raw sequencing reads were subjected to initial quality assessment 
using FastQC v0.11.7 [42], followed by the trimming of Illumina 
adapters and the removal of low-quality bases using TrimGalore 
v0.4.4_dev [43]. Subsequent quality control was reassessed using 
FastQC v0.11.7. The processed reads were aligned to the human refer
ence genome (GRCh38) using HISAT2 v2.1.0 [44]. Post-alignment, BAM 
file indexing was performed and uniquely mapped reads were generated 
using SAMtools v1.8–27-g0896262 [45]. Gene-level read count matrices 
were generated using the featureCounts function from the package 
Rsubread v1.34.6 [46]. Low expressed genes were filtered out by 
applying a proportion test, as implemented in the R package NOIseq 
v2.28.0 [47]. The raw sequencing data and pre-processed counts 
matrices are accessible at: https://doi.org/10.5281/zenodo.11371243. 
For exploratory data analysis, including principal component analysis 
(PCA) to visualize data structure and upset plotting to explore in
tersections of differentially expressed genes across conditions, reads 
were normalized using the variance stabilizing transformation (VST) 
method from the R package DESeq2 v1.34.0 [48]. Differential expres
sion analysis was performed using DESeq2 v1.34.0, modelling gene 
expression as a function of bleomycin concentration contrasted to con
centration 0 µg/mL. Significantly differentially expressed genes were 
identified at an adjusted p-value (FDR) ≤ 0.01 and an absolute log2 fold 
change ≥ 0.58 (equivalent to a fold change of ≥ 1.5). Enrichment 
analysis of significantly differentially expressed genes to analyse altered 
biological pathways and processes was performed using the cluster
Profiler package [49].

2.8. Dose-dependent expression analysis using BMDx

Dose-dependent gene expression in THP-1 macrophages exposed to 
bleomycin was assessed using BMDx software [39]. Counts matrices for 
each time point (24, 48, and 72 h) was transformed using DESeq2 
Variance Stabilizing Transformation (VST) and used as input. Selection 

of dose-dependent genes was based on an R-squared (R^2) threshold of 
0.6 to ensure a robust dose-response relationship. Statistical models, 
specifically exponential (exp2), hill, linear, polynomial (poly2), and 
power models, were fitted to the VST-transformed RNA expression data 
from RNA sequencing to determine dose-dependent expression, and the 
model with the lowest Akaike Information Criterion (AIC) for each gene 
was selected. The BMD and BMDL values were computed from these 
models were utilized to evaluate the fidelity of model fittings at each 
timepoint. The same procedure, with the same parameters and models 
fitted (with the addition of Log-Logistic Model (llog2), 
Michaelis-Menten Model (mm2) and Weibull (weibul12)), was used to 
perform dose-dependent analysis on the log2FC expression changes of 
the procartaplex immunoassay cytokine and proteinase targets that 
passed an ANOVA filtering with an adjusted p value < 0.05 (Supple
mentary File S1).

2.9. Correlation analysis of gene and cytokine-proteinase expression

To examine the relationship between gene expression and cytokine- 
proteinase secretion in response to bleomycin, a Spearman correlation 
analysis was performed (Supplementary File S1). Log2 fold change 
(log2FC) data for both gene expression and cytokine-proteinase secre
tion were used. The gene expression data encompassed differentially 
expressed and dose-dependent (DE∩DD) genes in THP-1 macrophages 
exposed to bleomycin (0–100 µg/mL). The cytokine-proteinase data 
included log2FC values for eight identified proteins that were signifi
cantly differentially secreted (ANOVA p < 0.05, Fig. S3, Supplemen
tary File S1). The correlation at each timepoint (24, 48, and 72 h) was 
analysed separately. Correlations were calculated using the Spearman’s 
rho, filtering for strong associations (|ρ| > 0.8) and adjusted for multiple 
testing using the false discovery rate (FDR, p < 0.05). Significant cor
relations were further filtered for genes involved in the immune system 
process (GO:0002376), ensuring relevance to immunological responses 
in our analysis. Full correlation results can be found in Supplementary 
File S1.

2.10. BiomarkHD qPCR validation

qPCR was performed for bleomycin concentrations 0,20,80, and 100 
µg/mL. Synthesis of cDNA, from 277 ng of DNase treated RNA for each 
sample, was performed using the high-capacity cDNA reverse tran
scription kit (Thermo Fisher Scientific, #4368813), according to man
ufacturer’s instructions. Expression levels of target genes were 
determined by high-throughput multiplex qRT-PCR using the Bio
markHD and IFC Controller MX system (Standard Biotools). Primers 
used were D3 deltagene assays designed and ordered with Standard 
Biotools (See Supplementary File S1). Fluidigm Preamp Master Mix 
(Fluidigm, #100–5581), Exonuclease 1 (ThermoFisher, #EN0581), 
SsoFast EvaGreen Supermix with Low ROX (Bio-Rad, #1725211) and a 
Deltagene chemistry; EG=Eva Green kit (AH Diagnostics, #BMK- 
M10–48.48-EG) were used with a 48.48 integrated fluidic circuit (IFC) 
chip, according to the BiomarkHD manufacturer’s instructions. Pre
amplified cDNA was diluted 5-fold in TE buffer [1 mM EDTA] (Invi
trogen, #AM9849) and the BiomarkHD thermal protocol GE Fast 48 ×
48 PCR+Melt v2 was used for the final run. Specificity of single site 
amplification was confirmed by performing a melt curve analysis. 
GeNorm analysis [50] of 6 reference genes (PUM1, RPL37A, SNW1, 
IPO8, GAPDH, ACTB) was performed using R packages ReadqPCR 
v1.40.0 and NormqPCR v1.40.0 [51] to assess and select the most stable 
reference genes for relative expression analysis. Fold change (FC) values 
from RT-qPCR data were calculated using the comparative CT(2 
− (ddCt)) method [52]. The FC values were log2 transformed (log2(FC)). 
For each gene and for each concentration, an outlier detection was 
performed by removing all the samples with log2(FC) values above or 
below the 75th and 25th percentiles of the distribution. Ct values, dCt 
values, FC values and log2(FC) values and full results are available in 
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Supplementary File S1, along with ANOVA tables and tukey HSD 
posthoc test results.

2.11. Discriminant Fuzzy Pattern analysis of DE∩DD immune genes

To estimate baseline expression of the 108 DE∩DD immune genes, 
single cell gene expression data from the tabula sapiens dataset [53], 
was queried from a previously introduced Knowledge Graph (KG) 
framework [54], concentrating on tissue specific macrophages at the 
steady state, and transformed into categorical values using the 
Discriminant Fuzzy Pattern (DFP) method [55]. Briefly, continuous gene 
expression scores were classified into low, medium, or high categories 
by fitting Gaussian functions to each dataset and gene, estimating class 
probabilities. Genes were assigned class labels if the probability was ≥
0.5; genes with an expression value of zero across all samples were 
considered non-measured. In case of genes with multiple labels, priority 
was given to higher labels (for example, if a gene would have both high 
and medium label, high would be selected). Expression data for 74 of the 
108 genes was present in the tabula sapiens dataset.

2.12. Ranking analysis of DE∩DD immune genes

The ranking of genes in Table S1 was determined using a compre
hensive scoring system for the panel of 108 differentially expressed and 
dose-dependent (DE∩DD) immune genes responding to bleomycin 
exposure. Each gene received a score based on multiple criteria: 1) 
correlation with cytokine-proteinase secretion, 2) identification as a 
cytokine or cytokine receptor, 3) Implication in PF as listed in the Dis
GeNET database [56], which contains information on genes associated 
with human diseases, 4) presence in genome-wide association studies 
(GWAS) data for idiopathic pulmonary fibrosis (IPF) retrieved from the 
GWAS catalog [57], 5) status as a target for approved drugs retrieved 
from the Open Targets Platform [58], 6) frequency of implication in 
eleven harmonised public RNA sequencing datasets comparing biopsies 
from IPF patients to healthy lung tissue (harmonised data available at: 
https://doi.org/10.5281/zenodo.10692129); briefly, RNA sequencing 
datasets were retrieved from the European Nucleotide Archive (ENA); 
differential gene expression was performed with DESeq2 v1.34.0 [48]; 
in total, 629 samples, consisting of 360 disease samples and 269 healthy 
samples, were represented across the 11 datasets; and a score for 
Table S1 from 0 to 1.1 in steps of 0.1 was given depending on how many 
datasets each gene was represented in. The scores from all 6 of these 
categories were finally summed to generate a rank for the prioritization 
of genes according to their relevance in the immunotoxic signature of 
macrophages exposed to bleomycin.

3. Results and discussion

To develop a toxicological safety assessment framework for com
pounds with immune altering fibrogenic potential, we selected bleo
mycin as a case study due to its well-known profibrotic activity. The 
fibrosis caused by bleomycin exposure is mediated in part by the 
continuous recruitment and infiltration of monocyte derived macro
phages (MDM) [16]. Despite the known role of MDM in the progression 
of PF, the mechanistic response of these cells upon direct interaction 
with bleomycin, is yet to be fully explored. We exposed differentiated 
THP-1 macrophages to multiple doses of bleomycin (0–100 µg/mL) over 
multiple timepoints (24 h, 48 h, 72 h). We then analysed the mechanistic 
processes and immune signature of these fibrotically activated macro
phages (FAMs) by RNA sequencing and immunoassay.

3.1. Sublethal concentrations of bleomycin exposure leads to dose- 
dependent shifts in macrophage gene expression

We first established a sublethal range for continuous exposure to 
bleomycin over a 72-hour period (Fig. S1). We ensured that the viability 

at the highest concentration (100 µg/mL) did not go below 75 % of that 
observed in the vehicle control, to prevent the masking influence of gene 
expression changes associated with cell death. Cell death related gene 
expression would otherwise obscure the underlying mechanistic insights 
into bleomycin exposure in downstream RNA sequencing analysis [59]. 
We then used these sublethal concentrations and reran the same 
experiment, exposing THP-1 macrophages to bleomycin but this time 
extracting RNA at all 3 timepoints (24 h, 48 h, 72 h) for sequencing. PCA 
plots from the resultant RNA count matrices show a visible dispersion of 
samples across PC1, indicating a concentration-dependent separation in 
gene expression profiles, with each concentration significantly distinct 
from the control (Fig. 1A). At 48 h, the variance explained by PC1 in
creases to 83 %, and by 72 h, PC1 explains 89 % of the variance 
(Fig. 1A). A tighter clustering of low bleomycin concentration samples is 
seen at 72 h, indicating less variation at these concentration levels over 
time (Fig. 1A). The clear distinction between concentrations, with the 
highest concentrations showing the greatest displacement along PC1, 
indicates a pronounced gene expression response due to multi-dose 
exposure to bleomycin, with greater resolution of the variation within 
and between groups over time (Fig. 1A). At 24 h, the number of 
differentially expressed (DE) genes is relatively modest at lower con
centrations, but there is a linear increase in DE genes peaking at the 
highest concentration (100 µg/mL) (Fig. 1B). This linear increase in DE 
genes across concentrations is also observed at 48 h and 72 h. Moreover, 
the total number of DE genes also increases as the length of time of 
continuous exposure increases, indicating a linear increase in DE genes 
not only across concentrations, but also across timepoints (Fig. 1B).

Whilst differential expression analysis indicated genes that are DE at 
specific concentrations, many of these genes do not follow a dose- 
dependent pattern of expression. Due to the redundancy and resilience 
of regulatory gene expression circuits, simple RNA expression analysis of 
experiments designed using single dose, treated vs untreated setups, 
misses crucial information generating both false positive (e.g. differen
tially expressed but only randomly at a single dose) and false negative 
results (e.g. differentially expressed at other exposure concentrations 
but not detected at the single concentration measured). Novel tox
icogenomic approaches have begun to use statistical modelling to 
distinguish genes that follow a dose-dependent pattern of expression, 
thereby highlighting dose-dependent (DD) genes that can confidently be 
said to be dysregulated due to an exposure [39,40]. DD gene expression 
indicates that the gene is under regulatory control that responds quan
titatively to the level of exposure and not just a binary on/off expression. 
Through the detection of DD genes, we are discovering genes that are 
directly affected by the exposure itself and not as an indirect response to 
exposure resulting from the inherent redundancy and resilience of gene 
signalling pathways, ensuring we focus on assessing and detecting the 
most relevant genes in the context of a toxicological safety assessment. 
When applied to the count matrices from our bleomycin exposure, DD 
analysis discovered 1723, 2299 and 4646 DD genes at 24 h, 48 h, and 
72 h respectively, fitting common statistical models and displaying 
consistent BMD/BMDL ratios indicating few outliers and consistent 
quality of model fitting (Fig. S2). However, many of these DD genes may 
not be DE genes in our analysis of differential expression. As such, for 
each timepoint, we found the intersection of DE genes with DD genes 
(Fig. 2A). This DE∩DD intersection represents the macrophage genes 
directly responding to bleomycin exposures in a dose-dependent 
fashion.

Our analysis highlighted that 580 of these DE∩DD genes were 
commonly dysregulated at all 3 timepoints (Fig. 2B), representing a 
subset of genes that have an acutely onset and sustained response to 
bleomycin exposure in macrophages. Enrichment analysis of these genes 
primarily indicated terms involved in the internal response to the DNA- 
damage and cytostatic mechanism of action (MOA) of bleomycin. With 
biological processes including, nuclear division, chromosome segregation 
and DNA conformation change in the top 5 significant categories (Fig. 2C). 
Whilst these processes would otherwise indicate ongoing cell division, 
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the bleomycin exposed THP-1 cells are in a differentiated and non- 
proliferating state, and these terms likely represent pathways involved 
in repairing the DNA damage caused by bleomycin. In the progression of 
PF however, and when assessing the fibrogenic potential of a compound 
(in this case bleomycin), it is the external immune activity of macro
phages, such as cytokine signalling, that are of interest regarding 
downstream fibroblast and immune cell recruitment and activation, 
ultimately resulting in pulmonary toxicity. The immune categories 
positive regulation of cytokine production, cell chemotaxis, leukocyte cell-cell 
adhesion, regulation of chemotaxis, myeloid leukocyte migration and regu
lation of leukocyte chemotaxis, were all found in the top 25 significantly 
enriched biological processes for the 580 sustained DE∩DD genes 
(Fig. 2C). Chemotaxis is an essential process in the recruitment of im
mune cells and fibrocytes to the site of damage in PF. Bronchoalveolar 
lavage fluid from patients with IPF shows increased immune cell 
chemotactic activity [60], with IL-8, CXCL1 and CCL18 cytokines 
showing potent immune cell chemoattractant activity [61]. A subpop
ulation of lung interstitial macrophages residing next to blood vessels 
increase recruitment and infiltration of further monocyte derived mac
rophages, mediated in part by CCL3 (MIP-1α) and CCL22 chemotactic 
cytokine secretion, creating a cycle of increasing immune cell infiltra
tion and fibrosis progression [62]. Thus, the chemotaxis and cytokine 
regulation categories observed in our enrichment analysis of bleomycin 
responding DE∩DD genes was expected, but to assess in detail the 
immunotoxicity of bleomycin exposure in the context of chemical safety 
assessment, the immune component of the transcriptomic response 
deserved further exploration.

3.2. Toxicogenomic assessment of immunotoxicity in fibrotically 
activated macrophages

We focussed on the immune response of macrophages to bleomycin 
exposure by filtering the DE∩DD genes for immune genes only, 
belonging to the gene ontology GO:0002376, immune system process 

(Fig. 3A). Our analysis revealed a cohort of 108 immune-specific DE∩DD 
genes that consistently responded to bleomycin across all three exam
ined time points (Fig. 3B, Table S1). This consistent response un
derscores a sustained immune signature from macrophages exposed to a 
profibrotic challenge. Further investigation into the biological processes 
enriched among these 108 immune genes again highlighted the signif
icance of leukocyte chemotaxis and migration, alongside cytokine sig
nalling, in mediating the macrophage response (Fig. 3C). Our functional 
analysis also featured a pronounced enrichment in T-cell activation- 
related processes. Specifically, the terms T cell activation, regulation of 
T cell activation, and positive regulation of T cell activation were among the 
top 25 significantly enriched categories (Fig. 3C). The exact role of T cell 
activity in PF remains unclear despite research showing their involve
ment [63]. Knockout of γδ T cells in mice can increase the severity of 
bleomycin induced PF, decreasing the concentration of IL-6, CXCL1, and 
CXCL10 suggesting a role of these specific T cells in mitigating fibrosis 
[64]. Linked to this, the entire family of BTN3A butyrophilins (BTN3A1, 
BTN3A2, BTN3A3) were down regulated in the 108 immune-specific 
DE∩DD genes at all 3 timepoints in our bleomycin exposed macro
phages (Fig. 5). Whilst these butyrophilins activate γδ T cells in an 
intracellular manner in response to phosphoantigens, they are also 
found on the surface of multiple cells types (including macrophages), 
regulating the activity of γδ T cells by binding their T cell receptor [65]. 
Our FAMs are potentially down-regulating BTN3A expression to miti
gate γδ T cell activity and drive fibrosis for wound repair. Our results 
show that FAMs likely play an important role in regulating T cell activity 
in response to profibrotic insult [11]. By focussing in on the immune 
response of macrophages to bleomycin, we illustrate how toxicogenomic 
assessment in the form of dose-dependent and differential analysis of 
RNA sequencing data does not only inform on the immunotoxic alter
ations of significant immune processes, but can also highlight specific 
dysregulated biological activities that may have relevance for complex 
diseases that are known outcomes of the substances being tested, such as 
PF.

Fig. 1. Differential Expression (DE,) of genes from THP-1 macrophages exposed to 0–100 µg/mL of Bleomycin at 24 h, 48 h and 72 h. (A) PCA plots of VST 
transformed counts (Deseq2 VST transformation) for all genes measured with RNA-seq. (B) Upset plots show the intersection of differentially expressed genes be
tween concentrations (Blue vertical bars and Black intersect points) and show the number of genes differentially expressed at each concentration of bleomycin (Green 
horizontal bars) (Deseq2 differential analysis, FDR padj <= 0.01, Log2FC = 0.58 (1.5FC)).
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3.3. An immune gene response to profibrotic insult controls external 
cytokine-proteinase secretion

Macrophages orchestrate in-situ immune activity, and the recruit
ment of immune cells and fibroblasts, through the release of cytokines. 
Macrophages also contribute to the remodelling of the extracellular 
matrix (ECM) by secreting proteinases to facilitate functional and 
structural alterations necessary for tissue repair and fibrosis. Thus, a 
comprehensive assessment of the profibrotic potential of test substances 
should encompass an analysis of cytokine and proteinase activity. We 
selected a panel comprising 14 cytokines and 3 matrix metal
loproteinases (MMPs), recognized for their contributions to the devel
opment of pulmonary fibrosis (Fig. S3). Once again, dose-dependent 
analysis was employed to ensure that indicated cytokines or pro
teinases were directly responding to the exposure compound, bleomy
cin. An immunoassay revealed that 8 out of these 17 cytokine- 
proteinases were secreted in a differential and dose-dependent manner 
in response to bleomycin exposure (Fig. 4A, Fig. S3).

A dose-dependent increase in Fibroblast growth factor 2 (FGF-2) was 
seen at all 3 timepoints of bleomycin exposure, with the biggest in
creases seen at 48 h and 72 h at the highest concentration of bleomycin 
(Fig. 4A, Fig. S3). As well as having a role in PF by acting as a potent 
mitogen in the differentiation and proliferation of myofibroblasts, FGF2 
is also a strong activator of angiogenesis in respiratory disorders, and 
along with VEGF represents a potential treatment target in PF [66]. 
Here, in our model of early-stage macrophage activity in PF, we also saw 
a dose-dependent increase in macrophage secreted IL-1 alpha, IL-1 beta, 
IL-17A and IL-18, sustained across 72 h of bleomycin exposure (Fig. 4A). 
IL-1 beta, IL-17A and IL-18 are known to be increased in the bron
choalveolar lavage fluid of patients with IPF [21,22]. We saw an 

increase in Interferon gamma-induced protein 10 (IP-10) in response to 
bleomycin exposure (Fig. 4A). IP-10 is involved in the recruitment of 
monocytes during pulmonary inflammation events which can conse
quently advance fibrosis progression [67]. Another monocyte recruiting 
signal is Monocyte Chemoattractant Protein-1 (MCP-1). The linear in
crease seen here in MCP-1 (also known as CCL2) upon bleomycin 
exposure, is a signal by the macrophages to recruit and aggregate 
increased numbers of monocyte derived macrophages (Fig. 4A). The 
ablation of the MCP-1 receptor CCR2 in mice is known to limit the 
progression of bleomycin induced lung fibrosis by inhibiting the infil
tration of monocytes into the lung [17,18].

Finally, out of the three MMPs measured (MMP-1, MMP-7, MMP-9, 
Fig. S3), only MMP-1 (also known as Interstitial Collagenase) demon
strated a dose-dependent decrease (Fig. 4A, Fig. S3). It has been 
considered paradoxical that, in IPF patients, elevated levels of MMP-1 
are observed but are ineffective in degrading fibrillar collagens and do 
not contribute to the resolution of fibrotic foci in the lungs [68,69]. An 
advantage of the approach we take here, is that we are observing effects 
representative of the early, acute response to profibrotic insult. Our 
observation of decreased macrophage MMP-1 secretion caused by 
bleomycin (Fig. 4A) illustrates an early response to profibrotic insult, 
whereas the increased MMP-1 seen in IPF patient lungs is potentially a 
late stage adaptation that has come too delayed to effectively resolve the 
overaccumulation of ECM [68,69]. In the early stages of lung fibrosis, 
the decrease in macrophage MMP-1 secretion we show here in response 
to profibrotic insult (Fig. 4A), may well be contributing to fibrotic pro
gression by decreasing the enzymatic degradation of collagen, allowing 
it to accumulate and contribute to ECM stiffness and scarring.

As cytokine and proteinase secretion is sustained by a transcriptional 
programme, we incorporated the analysis of these proteins into our 

Fig. 2. Analysis of RNA sequencing data for THP-1 macrophages exposed to 0–100 µg/mL of Bleomycin at 24 h, 48 h and 72 h. (A) The intersection (∩) of 
differentially expressed (DE) and dose-dependent (DD) genes responding to bleomycin at each timepoint is indicated in blue (B) A Venn diagram shows the subsection 
of DE∩DD genes sustained across all three timepoints. (C) Enrichment analysis of DE∩DD genes sustained across all three timepoints. Count shows the number of 
genes represented in each ontology. Gene ratio shows the ratio of genes in this ontology to all genes used for this enrichment (580 in total). Adjusted p-value is 
indicated by shade of blue. Ontologies that are immune related (GO:0002376 Immune System Process) are emboldened.
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toxicological assessment framework for profibrotic substances by 
examining the correlation between gene expression changes induced by 
bleomycin and the secretion of these cytokine-proteinases. We per
formed a correlation analysis between all DE∩DD genes responding to 
bleomycin and the secretion levels of the eight identified cytokine- 
proteinases also responding to bleomycin (See Supplementary File 
S1). The resulting correlating genes were filtered for those included in 
GO:0002376, immune system process. Among the correlating immune- 
related genes, 40 were consistently DE∩DD across all timepoints 
(Fig. 4B, Table S1), representing a significant subset of the 108 total 
DE∩DD immune genes identified in our study (Fig. 3B, Table S1). This 
indicates that the DE∩DD immune genes we identified are closely linked 
to external signalling by macrophages in response to bleomycin expo
sure, reinforcing the likelihood that these genes are implicated in the 
acute response to profibrotic insult and are involved in the progression 
of PF. The close correlation we find between dose-dependent gene 
expression regulation and cytokine-proteinase secretion also shows the 
validity of our approach to chemical safety assessment to resolve the 
immunotoxic alterations caused by profibrotic substances.

3.4. A safety assessment framework utilising immunotoxic gene panels

Taken together, the panel of 108 DE∩DD immune genes showing 

sustained response to bleomycin (Fig. 3B), including 40 genes corre
lating with known PF cytokine-proteinases that also responded to 
bleomycin (Fig. 4B), indicates the immunotoxic propensity of bleomycin 
in the early stages of PF progression. There are 19 cytokines and cyto
kine receptors in our panel of 108 genes, along with 22 immune genes 
representing signalling receptors and DE∩DD immune gene families, all 
of which are shown in the heatmap in Fig. 5. Each of these genes showed 
the same consistent direction of regulation (up or down regulation) 
across all 3 timepoints, suggesting a sustained regulation of these genes 
in FAMs. We performed qPCR validation for this subset of immune genes 
in a completely independent repeat of the bleomycin exposure experi
ment, that showed agreement with the RNA sequencing data, indicating 
consistency and reproducibility of our findings (Fig. 5). Such repro
ducibility is an important element in the development of chemical safety 
assessment models.

Whilst our panel of genes represents an immune signature in the very 
early stages of PF, we also aimed to determine whether these genes are 
implicated in diagnosed PF patients at later stages of the disease. Im
mune genes that are dysregulated across all stages of fibrosis progression 
following initial exposure to a profibrotic agent are likely to be of sig
nificant importance. As such, we gave a score to each of the 108 DE∩DD 
immune genes based on whether they have been suggested to be 
implicated in pulmonary fibrosis in the DisGeNET database of genes and 

Fig. 3. Immune gene expression in THP-1 macrophages exposed to 0–100 µg/mL of Bleomycin at 24 h, 48 h and 72 h. (A) The intersection (∩) of differentially 
expressed (DE) and dose-dependent (DD) genes responding to bleomycin at each timepoint (blue) is filtered for immune genes found under GO:0002376 (green). A 
barplot shows the proportion of immune genes (green) from total DE∩DD genes (blue) at each timepoint (B) A Venn diagram shows the subsection of immune DE∩DD 
genes sustained across all three timepoints. (C) Enrichment analysis of immune DE∩DD genes sustained across all three timepoints. Count shows the number of genes 
represented in each ontology. Gene ratio shows the ratio of genes in this ontology to all genes used for this enrichment (108 in total). Adjusted p-value is indicated by 
shade of green.
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variants associated to human diseases, whether they are found in a set of 
GWAS data for IPF and whether they can be considered targets of 
currently approved drugs. Additionally, we took a set of 10 harmonised 
public RNA sequencing datasets representing biopsies from IPF patients 
vs healthy lung biopsies and assigned a score from 0 to 1 for each of the 
108 DE∩DD immune genes in our panel based on how many times they 
were implicated in these biopsy experiments. We also gave a score if 
they were correlated to cytokine-proteinase secretion and if they were a 
cytokine or cytokine receptor themselves. Using these combined scores, 
we were able to rank the genes according to their importance in the 
immunotoxic signature of macrophages exposed to bleomycin 
(Table S1).

The top two highest ranked genes with the highest score were IL1B 
and C5AR1 (Table S1). C5AR1 and C3AR1 are G-protein coupled re
ceptors that mediate innate immune complement activation pathways. 
Both receptors were dose-dependently up-regulated at all 3 timepoints 
of bleomycin exposure in FAMs (Fig. 5). Antagonising these receptors 
has been shown to suppress bleomycin induced PF in mice by inhibiting 
TGFB levels and signalling activity [70,71]. The known role of C5AR1 
and IL1B in PF highlights the validity of our approach. The top-ranking 
genes in Table S1 are therefore a representation of the immune activity 
of macrophages driving the pulmonary toxicity associated with bleo
mycin treatment that is sustained over the full course of progression to 
pulmonary fibrosis. Utilising the toxicological assessment framework 
established in this investigation, we were able to establish the immu
notoxic profile induced by bleomycin in monocyte-derived macro
phages. Whether this immunotoxic signature is also characteristic of 
other profibrotic agents remains to be elucidated. Nevertheless, the 
methodology applied herein offers a promising approach for fast and 
resource-efficient safety evaluation of other compounds suspected to 

induce fibrotic alterations.
Previous studies have demonstrated that the THP-1 cell line can 

effectively mimic the immune response to various stimuli, including LPS 
stimulation. However, there is a valid concern that the cancerous origin 
and immortalization of these cells may influence the results of tran
scriptomic assessments, such as the response to bleomycin observed in 
this study [38,72]. Going forward, it would be important to confirm that 
the sustained immune signatures identified in THP-1 cells are also pre
sent in primary macrophages to ensure the relevance of these findings to 
normal physiological conditions, but it is encouraging that the immune 
signature we see here was partially represented in PF patients 
(Table S1). In the context of chemical safety assessment, the use of 
secondary or immortalized cell lines, like THP-1, is advantageous due to 
their consistent and reproducible responses, which are critical for 
standardizing assays. Primary macrophages are characterized by het
erogeneity of response and limited availability, which presents chal
lenges for reproducibility and scalability in toxicogenomic studies. The 
future development of non-cancerous immortalized macrophages would 
allow for more accurate hazard assessment while maintaining the 
reproducibility necessary for regulatory purposes.

Beyond using the methodology in this study as a safety assessment 
framework for profiling immunotoxic profibrotic potential, this study 
was also able to inform on the immune response to bleomycin. Targeting 
the 108 DE∩DD immune genes in our panel could be a means to extend 
the use of bleomycin as an anti-cancer agent. Either that, or the 
expression of these genes might be explored for use during bleomycin 
treatment to monitor the likelihood of pulmonary side effects. When 
taken individually, these immune genes represent potential biomarkers 
for PF. An ideal biomarker should be measurable, reproducible, as well 
as specific and plausible for the disease or phenotype in question. On top 

Fig. 4. The correlation of differentially expressed (DE) and dose-dependent (DD) genes to a panel of cytokine-proteinases in THP-1 macrophages exposed to 
0–100 µg/mL of Bleomycin at 24 h, 48 h and 72 h. (A) From a total of 17 cytokine-proteinases analysed, 8 were found to be differentially secreted (ANOVA padj 
<0.05, see Fig. S3 and Supplementary File S1) and dose-dependent (see Fig. S3). Scatter plots indicate the mean concentration of each protein (y-axis) across 
bleomycin concentrations (x-axis) for each timepoint. Whiskers represent standard deviation of around the mean (n = 3–4). (B) Venn diagram shows differentially 
expressed (DE) and dose-dependent (DD) immune genes responding to bleomycin and correlating to cytokine-proteinase secretion at each timepoint (Spearman 
correlation − 0.8 <ρ > 0.8, FDR adjusted p-value <0.05, see Supplementary File S1) filtered for immune genes in GO:0002376.
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of this, the biomarker should have a known temporal expression and a 
known gradient or dose-responsive expression to reflect the variability 
in underlying exposures or causes of the disease being looked at [73]. 
Many of these properties apply to each of the panel of 108 DE∩DD im
mune genes. We looked at the baseline expression of these 108 DE∩DD 
immune genes in lung specific macrophages as compared to macro
phages found in other tissues, using discriminant fuzzy pattern analysis 
on gene expression data for tissue specific macrophages, queried from 
the tabula sapiens dataset contained within a previously established 
knowledge graph (Fig. S4) [53–55]. When compared to other tissue 
macrophages, of the 74 out of 108 genes with expression data present, 
low baseline expression was seen in the majority of our panel of DE∩DD 
immune genes, where expression was often absent in macrophages from 
other tissues (Fig. S4). This detectable but low baseline expression can 
also be considered an important attribute for useful biomarkers [73]. 

Finally, the top ranked genes in Table S1, and their respective pathways, 
can also be considered potential targets for biologic treatments in PF due 
to their likely dysregulation at all stages of disease, but this requires 
further exploration beyond the scope of this study.

4. Conclusions

In this study, we exposed THP-1 macrophages to sublethal concen
trations of bleomycin across multiple timepoints, and analysed the 
resulting RNA sequencing data using a novel toxicogenomic approach 
that establishes dose-dependently expressed genes. By correlating the 
sequencing data with the expression profiles of a panel of cytokines 
known to be involved in pulmonary fibrosis, we were able to highlight 
immune genes involved in external immune signalling, modulated in 
response to a profibrotic stimulus. This methodology and safety 

Fig. 5. THP-1 macrophages exposed to 0–100 µg/mL of Bleomycin at 24 H, 48 H and 72 H have a distinct immune gene expression signature. A total of 108 immune 
genes were both differentially expressed and dose-dependently expressed across all three timepoints upon exposure to bleomycin. Of these genes the dose-dependent 
dysregulation direction (up or down regulated) of a select panel of cytokines and receptors, upon exposure to bleomycin is indicated in the heatmap across all 3 
timepoints (24 h, 48 h, 72 h). An exact repeat independent bleomycin exposure of THP-1 macrophages was then performed and qPCR for these genes was performed, 
with results comparing the highest bleomycin concentration (100 µg/mL) to unexposed cells shown. Bars show Log2 Fold Change with std deviation. One-way 
ANOVA followed by Tukey’s HSD was performed (See Supplementary File S1). N = 4 in all cases. * p < 0.05, * * p < 0.01, * ** p < 0.001. † = Gene was detec
ted in 100 µg/mL bleomycin condition but undetected in 0 µg/mL bleomycin control condition preventing relative expression quantitation. The grey shaded areas 
indicate a log2 fold change (log2fc) of ± 0.58, equivalent to a fold change (FC) of ± 1.5.
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assessment framework found a distinct immunotoxic profile, charac
teristic of macrophages subjected to bleomycin exposure. The relevance 
of this immunotoxic profile may extend beyond bleomycin exposure to 
encompass a broader range of profibrotic substances, and may even 
extend to other fibrotic diseases than PF. Therefore, adaptations of the 
workflow in this study have the potential to be used for in vitro toxicity 
assessments for compounds with suspected fibrogenic effects. Our 
findings set the stage for further investigations to determine whether the 
immune signature we have identified is specific to bleomycin-induced 
fibrosis or if it holds broader applicability to other fibrotic triggers. 
Such research could solidify our approach as a standard framework for 
the development of novel safety assessment strategies for suspected 
profibrotic compounds.
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