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Abstract Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine

triphosphatases (vATPases), generating a proton electrochemical gradient that drives

neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs,

yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated

clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single

vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in

comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles

regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase,

yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase

and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase

and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.

DOI: https://doi.org/10.7554/eLife.32569.001

Introduction
Neuronal synapses are capable of regenerating SVs locally with high efficiency and fidelity in order

to meet the demands of neuronal activity. The uniquely homogeneous sizes of SVs and their defined

protein composition suggest the existence of a precise endocytic machinery that shapes and pro-

motes the fission of SVs, either from the plasma membrane and/or endosome-like structures

(Takamori et al., 2006; Saheki and De Camilli, 2012; Soykan et al., 2016; Milosevic, 2018a). Cla-

thrin-mediated endocytosis is a classic example of vesicle formation mediated by a coat assembly,

and it occurs at the synapse (Saheki and De Camilli, 2012; Milosevic, 2018a). It has been intensely

studied for over four decades, yet numerous details, including when the endocytosed vesicle initiates

acidification, remain unclear. The timing and regulation of vesicle acidification is an essential ques-

tion, not only in the context of SV recycling and neurotransmitter uptake, but also for other
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endocytic pathways where lowering of the luminal pH is vital for a range of functions, such as separa-

tion of cargo from receptor (e.g. iron from transferrin; Grant and Donaldson, 2009) or the activation

of viral fusion proteins (White et al., 2008).

Acidification of endocytic compartments is primarily mediated by vATPases. These proton pumps

are large complexes composed of 14 different subunits that are organized into an ATP-hydrolytic

domain (V1) and a proton-translocation domain (Vo) (Imamura et al., 2003; Marshansky et al.,

2014; Cotter et al., 2015; Mazhab-Jafari et al., 2016). vATPases are particularly well studied at the

synapse, where they traffic with other SV proteins through the SV cycle and generate a proton elec-

trochemical gradient (DmH+) across the vesicular membrane, fueling the reloading of SVs with neuro-

transmitters. Yet, many details are not well understood: is vATPase fully active during the entire SV

cycle, or is it regulated? If it is regulated, how and when is that done? While some have suggested

that endocytic coated vesicles do not have acidic internal pH (Anderson et al., 1984; Anderson and

Orci, 1988), other studies have shown that membrane-permeable, pH-sensitive, weak bases accu-

mulate in the lumen of CCVs, indicating that acidification occurs in the presence of the coat

(Forgac et al., 1983; Van Dyke et al., 1984; Van Dyke et al., 1985). To weigh in on this debate,

and to investigate whether vATPase is active on CCVs, we have performed a full characterization of

the DmH+ at the single CCV level.

Results
We have prepared CCVs from mouse brain by adapting a published protocol (Maycox et al., 1992)

(Figure 1A, Figure 1—figure supplement 1A). Negative-stained electron microscopy (EM) images

showed that the CCVs were abundant while almost no uncoated structures were present (Figure 1B,

Figure 1—figure supplement 1B). Immunoblotting for organellar marker proteins revealed high

enrichment of synaptic vesicle proteins as well as clathrin and clathrin adaptors, whereas no signifi-

cant presence of plasma membrane, endosome and proteasomal proteins was detected

(Figure 1C). Detailed analysis of CCV samples by mass spectrometry revealed that the large majority

of CCVs seems to be derived from the synapses, yet some CCV come from neuronal cell body/intra-

cellular membranes (according to the AP2/AP1 ratio; Supplementary file 1). Furthermore, cryo-EM

classification of 43,711 individual particles revealed that the majority of vesicles had an intact clathrin

coat (Figure 1—figure supplement 2A). The reconstruction from major classes of the imaged par-

ticles resulted in a highly symmetric structure (Figure 1D; Figure 1—figure supplement 2B–E)

(Video 1), which was comparable in size and symmetry to reconstructed ‘barrel-like’ empty clathrin

cages (Figure 1—figure supplement 2F) (Fotin et al., 2004). The median size of CCVs (detailed in

Figure 1D for the reconstructed CCV structure and in Figure 1—figure supplement 1C for the pop-

ulation of CCVs) is in line with previous measurements of CCVs from pig and bovine brains

(Pearse, 1975; Nossal et al., 1983).

The DmH+ is composed of a chemical (DpH) and an electrical gradient (Dy) which together provide

the free energy required for loading the neurotransmitters in the vesicular lumen. Both DmH+ compo-

nents are important for the efficient import of different neurotransmitters, and can be regulated dif-

ferently in various organelles (Farsi et al., 2017). To fully characterize the DmH+ in CCVs, we

performed measurements of DpH and Dy at a single vesicle level, as described earlier (Farsi et al.,

2016). DpH was measured in CCVs isolated from brains of mice expressing synaptopHluorin (spH,

super-ecliptic pHluorin tagged to the luminal domain of VAMP2; Li et al., 2005) in the vesicular

lumen (spH-CCVs), while Dy was measured in CCVs isolated from the wild-type mouse brains after

labeling with the potentiometric probe VF2.1.Cl (Miller et al., 2012). The isolated CCVs were immo-

bilized on glass coverslips, imaged under total internal reflection fluorescence (TIRF) illumination,

and their fluorescence in response to ATP was measured (Figure 2A–B; Figure 2—figure supple-

ment 1). The same measurements, as well as the basic characterization of vesicle acidification prop-

erties (Figure 2—figure supplement 2), were performed with SVs isolated from the brains of

transgenic mice (spH-SVs) and wild-type mice after labeling with VF2.1.Cl. Upon addition of ATP,

only a minor fluorescence change was detected in CCVs when compared to the respective signals

from the SVs (Figure 2C–D), indicating that the ATP-induced change in pH and membrane potential

was much smaller in CCVs (Figure 2E–F). The distribution of fluorescence response of single CCVs

and SVs clearly showed that the majority of the CCVs did not display any ATP-induced acidification

(Figure 2G–H). The same results were obtained in the presence of chloride in the glycine buffer
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Figure 1. Isolation of clathrin-coated vesicles from mouse brain. (A) Schema illustrating the isolation procedure of CCVs from mouse brains. Numbers 1

and 2 represent steps where Ficol and sucrose (at final conc. of 6.25 (wt/v)) were added to the sample, and where the sample was diluted 5x with buffer,

respectively. See Suppl. Data for details. (B) Electron micrograph of isolated CCVs after negative staining. (C) Immunoblots of fractions collected during

the CCV isolation protocol for various marker proteins (proteins were separated at the 4–15% gradient gel and detected by the Li-COR Odyssey

imaging system). See also Supplementary file 1 for mass spectrometry analysis of SVs and CCVs samples. (D) Reconstructed CCV from 6114 particles

sized up to a diameter of 80 nm, with a D6 symmetry imposed, shows that ex vivo CCVs adopt the same ‘barrel-like’ structure as previously reported,

and reveal the position of vesicle in its center (see also Suppl. Data and Figure 1—figure supplement 2). The median values extracted from the

reconstruction of clathrin coat and vesicle within the coat are (note that the structure is a barrel): coated vesicle diameter 75 nm x 73.5 nm, coat

thickness 15 nm, vesicle diameter 40 � 35 nm.

DOI: https://doi.org/10.7554/eLife.32569.002

The following figure supplements are available for figure 1:

Figure supplement 1. Optimization of a procedure for the CCV isolation from mouse brains, and characterization of CCV size.

DOI: https://doi.org/10.7554/eLife.32569.003

Figure supplement 2. Determining the quality and the properties of clathrin coat of CCVs isolated from mouse brains by cryo-EM.

Figure 1 continued on next page
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(Figure 2—figure supplement 3). The histogram of luminal pH of CCVs after ATP addition was fit to

two Gaussian models revealing that a subpopulation composed of ~6% of the total CCVs acidified

to the same mean extent as SVs (Figure 2I–K). Acidification of this small subpopulation is likely due

to the presence of small SV contamination and/or damaged clathrin coats, as revealed by EM data

(Figure 2—figure supplement 4). Altogether, our data provide evidence that a significantly smaller

DmH+ is formed across the vesicular membrane in the presence of a clathrin coat. This finding com-

plements previous studies where delayed kinetics of spH quenching was observed during post-stim-

ulus recovery at living synapses without synaptojanin-1, auxilin or endophilin-A that show delayed

uncoating and prominently accumulate CCVs (Mani et al., 2007; Yim et al., 2010; Milosevic et al.,

2011).

The disruption of acidification in CCVs is likely not due to the absence of a vATPase complex on

these vesicles (Forgac et al., 1983; Stone et al., 1983). To verify this, we performed mass-spectrom-

etry and immunoblotting for vATPase subunits in both CCV and SV samples (Figure 3A; Figure 3—

figure supplement 1; Supplementary file 1). Indeed, both Vo and V1 complex subunits were pres-

ent on CCVs as well as on SVs. However, due to the abundance of coat proteins in the CCV samples,

we detected lower levels of vATPase subunits as well as other SV proteins in the CCV sample (total

protein levels were equal in both samples; Figure 3B). The Vo/V1 ratio was close to one in both sam-

ples, showing that a complete vATPase complex was present on SVs and CCVs (Figure 3C). Next, in

order to test whether these vATPase complexes are active and able to hydrolyze ATP, we measured

the ATPase activity in both CCVs and SVs (Figure 3—figure supplement 2), and observed that

CCVs show significantly less ATPase activity compared to the same amount of SVs (Figure 3D). In

addition, the ATPase activity in CCVs was not blocked by N-ethylmaleimide (NEM), an inhibitor of

vATPase, showing that the remaining ATPase activity in CCVs was not due to the vATPase

(Figure 3E). These data show that the lower ATPase activity measured in CCVs was likely due to

impaired function of vATPases in CCVs. Taken together, vATPases are present on CCVs, but are not

able to hydrolyze ATP and pump protons, resulting in inhibited DmH+ generation.

The most plausible hypothesis to explain these results is that there are intact and functional vAT-

Pases on CCVs that are inhibited by the clathrin coat. In this scenario, vATPases should regain their

function once the coat is removed. To test this hypothesis, we performed an in vitro uncoating by

treating the CCVs with 300 mM Tris-buffer pH 9.0 (as in Maycox et al., 1992), followed by the meas-

urements of DpH and Dy in uncoated vesicles in the buffer with the neutral pH, as described above.

Firstly, we checked for the uncoating efficiency after alkaline Tris-buffer treatment with negative-

staining EM, and observed that almost all vesicles were uncoated (Figure 4A). The immunoblot anal-

ysis against clathrin heavy chain (HC) and light chain (LC) as well as adaptor proteins AP180 and AP2

on the uncoated vesicles and in the supernatant after uncoating has revealed that almost no clathrin

HC,clathrin LC AP2 and AP180 proteins were detected on uncoated vesicles (all proteins were

detected in the supernatant, Figure 4B), providing further evidence for a complete loss of clathrin

lattice. When DpH and Dy in uncoated vesicles was determined, we observed, intriguingly, that

uncoated vesicles reached the same luminal pH

and membrane potential as SVs upon application

of ATP (Figure 4C–D). As a control, we per-

formed the same alkaline Tris-buffer treatment

with SVs, and observed no difference in the mag-

nitude of DmH+ in Tris-treated SVs, ruling out any

perturbation caused by alkaline Tris-buffer to the

vATPase function (Figure 4C–D). In addition to

the uncoating of CCVs as detailed above, we

have used other approaches to uncoat CCVs,

namely by treating CCVs with 500 mM Tris pH

7.0, 5 mM DTT, 1 mM PMSF at 4˚C for 4 hr

(Prasad and Keen, 1991), or by adding purified

auxilin, Hsp70 and Hsp110 proteins (to mimic

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.32569.004

Video 1. Reconstructed clathrin-coated vesicle from

6114 raw cryo-EM images of coated vesicle sized up to

80 nm, with D6 symmetry imposed.

DOI: https://doi.org/10.7554/eLife.32569.005
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Figure 2. Measurement of the electrochemical gradient in SVs and CCVs. (A–B) Representative images of single (A) spH-CCVs and (B) VF2.1.Cl-labeled

CCVs using TIRF microscopy. (C–D) Averaged fluorescence traces of single (C) spH-SV and spH-CCVs, and (D) VF2.1.Cl-labeled SVs and VF2.1.Cl-

labeled CCVs over time in response to ATP. The control traces indicate the fluorescence response of the spH-CCVs or VF2.1.Cl-labeled CCVs over

experimental timescale without ATP addition (the same traces were obtained for spH-SVs and VF2.1.Cl-labeled SVs). Error bars indicate SD from more

than 1000 vesicles compiled from 4 to 7 experimental replicates. (E) Box plot representation of luminal pH of single SVs and CCVs after addition of 1

mM ATP (box: 1 st and 3rd quartile, line: median, whiskers: the minimum and maximum values). Note that the luminal pH of vesicles equilibrates to 7.4

as shown in Farsi et al. (2016). (F) Box plot representation of membrane potential of single SVs and CCVs after addition of 3 mM ATP. (G–H)

Cumulative frequency plots generated from fluorescence change associated with ATP addition in (G) spH-SVs and spH-CCVs, and (H) VF2.1.Cl-labeled

SVs and VF2.1.Cl-labeled CCVs. The dotted line indicates the fluorescence response of the probes over experimental timescale without ATP addition.

(I–J) Histograms representing the luminal pH of (I) spH-SVs (n = 3,625) and (J) spH-CCVs (n = 2,233) upon addition of 1 mM ATP. Red lines indicate

single and two-Gaussian models to SV and CCV populations, respectively. (K) The population of vesicles contributing to the lower pH (likely CCVs with

damaged coat and/or very few SVs) in the CCV population consists of about 6% of the total vesicles measured.

DOI: https://doi.org/10.7554/eLife.32569.006

The following figure supplements are available for figure 2:

Figure supplement 1. Flow chart of the single vesicle assay for measuring pH and membrane potential of SVs and CCVs.

Figure 2 continued on next page
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physiological conditions) for 15 min at room temperature (Schuermann et al., 2008). Both treat-

ments have successfully uncoated all CCVs as verified by EM (Figure 4—figure supplement 1), and

we have detected full acidification of uncoated vesicles (Figure 4E). Taken together, these experi-

ments demonstrate unequivocally that the vATPase activity is inhibited in the presence of a fully

assembled clathrin coat. This inhibition is reversible and the vATPase regains its function once the

coat is removed.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.32569.007

Figure supplement 2. Full acidification of spH-SVs to low luminal pH.

DOI: https://doi.org/10.7554/eLife.32569.008

Figure supplement 3. Impairment of acidification in CCVs in the presence of chloride.

DOI: https://doi.org/10.7554/eLife.32569.009

Figure supplement 4. EM image of a CCV with a damaged coat.

DOI: https://doi.org/10.7554/eLife.32569.010

Figure 3. Functional analysis of the vATPase on CCVs. (A) Immunoblots of isolated SVs and CCVs for the clathrin light (LC) and heavy chains (HC), and

SV marker proteins synaptophysin (Syph) and VAMP2 (left panel), as well as various Vo and V1 subunits of vATPase (right panel). (B) The ratio of the Vo
and V1 as well as synaptophysin and VAMP2 (as SV markers) detected by immunoblotting in equal protein amount of CCVs and SVs (C) Normalized

levels of Vo and V1 in CCV and SV samples, indicating that Vo:V1 ratio is 1:1 in both preparations. (D) ATPase activity measured in 1.3 mg of isolated SVs

and CCVs. (E) Blocking percentage of ATPase activity by NEM (vATPase inhibitor) in 1.3 mg of SVs and CCVs. Error bars in (B–E) represent SD of 3–4

experimental replicates (p<0.01 for D and E, and >0.05 for C).

DOI: https://doi.org/10.7554/eLife.32569.011

The following figure supplements are available for figure 3:

Figure supplement 1. Both Vo and V1 subunits are present on CCVs.

DOI: https://doi.org/10.7554/eLife.32569.012

Figure supplement 2. ATPase activity measurements in isolated SVs.

DOI: https://doi.org/10.7554/eLife.32569.013
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Figure 4. CCV uncoating revealed that the vATPase is blocked by clathrin coat. (A) Electron micrographs of

negatively stained CCVs before and after uncoating with 300 mM Tris-buffer pH 9.0. (B) Western blot of CCVs,

uncoated vesicles and supernatant after uncoating shows dissociation of clathrin LC and HC, as well as AP180 and

AP2, from the uncoated vesicle (proteins were separated at the 10% gel and detected by chemiluminescence). (C–

D) Membrane potential (C) and luminal pH (D) of acidified SVs and CCVs before and after treatment with Tris-

buffer (pH 9.0). Error bars represent SD of 3–4 experimental replicates done on over 1000 vesicles each. (E)

Membrane potential of acidified CCVs after treatment with 300 mM Tris-buffer (pH 9.0), 500 mM Tris buffer (pH

7.0) and ‘enzymatic’ treatment with 1.7 mg auxilin, 4.8 mg Hsc70 and 1.7 mg Hsp110 proteins. Error bars represent

SD of 3 experimental replicates done on over 1000 vesicles each. (F–G) Model of vATPase block by clathin coat:

solved structures of vATPase, clathrin tripods and AP2 complex were used to check how vATPase fits within the

clathrin lattice. The plasma membrane is depicted in light beige, clathrin triskelia in dark beige/brown; vATPase

complex in gray (when inactive), light blue (when active) and dark green (V1H-subunit); AP2 complex in purple/

blue/light green. As clathrin triskelia are recruited (through AP2), clathrin ring starts building around the vATPase

complex. Insertion of the last triskelion of the clathrin ring would collide with the regulatory V1H-subunit of

vATPase (G), thus we hypothesize that the displacement of regulatory V1H-subunit inwards results in the block of

the vATPase activity. For more details, see Suppl. Data.

DOI: https://doi.org/10.7554/eLife.32569.014

The following figure supplements are available for figure 4:

Figure supplement 1. CCV uncoating revealed that the vATPase is blocked by clathrin coat.

Figure 4 continued on next page
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Discussion
Since, according to our knowledge, there is no

evidence of a specific protein-protein interaction

that blocks the vATPase activity at the newly

formed vesicles at the synapse in the presence

of clathrin or adaptor proteins, we propose that

the vATPase may be sterically hindered by the

three-dimensional clathrin scaffold that includes

both clathrin triskelia and adaptor proteins (e.g.

AP2, AP180, etc., adaptor proteins are essential

to recruit clathrin triskelia to the membrane in

order to initiate and organize the formation of

clathrin coats). To see how the vATPase fits

within the clathrin coat, we used the information

provided by our structural analysis (Figure 1D,

Figure 1—figure supplement 2 and Suppl.

Data), as well as previously solved structures of

the vATPase (Zhao et al., 2015; Mazhab-

Jafari et al., 2016) and the clathrin coat

(Fotin et al., 2004). Considering the size of vAT-

Pase and its V1 domain (~25 nm and ~16 nm,

respectively; Oot et al. (2016); Zhao et al.

(2015), Mazhab-Jafari et al., 2016), we docked

the solved structures of vATPase (Zhao et al.,

2015) into a hexagonal ring of a clathrin coat

(vATPase does not fit into a pentagonal ring)

(Figure 4F–G; Figure 4—figure supplement 2;

Videos 2–4, for more information see Suppl.

Data). Previously published studies, as well as

our cryo-EM analysis of the clathrin coat, have

revealed that upon complete hexagonal ring

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.32569.015

Figure supplement 2. Proposed model of vATPase block by clathin coat.

DOI: https://doi.org/10.7554/eLife.32569.016

Video 2. Animated 3D model of vATPase block by

clathin coat (top view). Note that all animations show

the same process seen from different camera positions.

Solved structures of vATPase, AP2 complex and

clathrin tripods were used to see how vATPase fits

within the clathrin lattice, thus all proteins have their

‘true’ dimensions. The plasma membrane is depicted in

light beige, clathrin triskelia in dark beige/brown;

vATPase complex in gray (when inactive), light blue/

gray/dark green (when active; dark green = V1H-

subunit), AP2 complex in purple/blue/light green. The

plasma membrane starts as a flat surface on which the

clathrin triskelia begin forming the ring formation

around the vATPase (in clockwise direction). Only two

AP2 complexes are depicted: upon cargo (yellow)

binding, the AP2 complex alters its structure and

recruits clathrin triskelia that start the formation of a

clathrin ring around the vATPase. For the clathin ring to

be ‘closed’, the ‘last’ triskelion to be inserted into the

ring collides (gets in direct contact) with the vATPase,

namely its regulatory V1H-subunit. We hypothesize that

the regulatory V1H-subunit needs to be displaced

inwards, resulting in the inhibition of the stalk rotation

and thus block of the vATPase activity. So, upon

insertion of the last triskelion in the clathrin ring, the

vATPase becomes inactive (shown by a loss of color).

The mechanical work of the clathrin coat proteins

results in the membrane being pulled in, and as vesicle

formation progresses, more clathrin triskelia are added.

After vesicle is endocytosed, the clathrin coat

disassembles (i.e. clathrin and adaptor proteins

dissociate from the newly-formed vesicle), and the

vATPase becomes active again. For more details, see

Construction of the animated 3D model in the

Supplementary Methods. A detailed (zoomed) view of

regulatory V1H-subunit displacement is shown in

Video 4.

DOI: https://doi.org/10.7554/eLife.32569.017

Video 3. Animated 3D model of vATPase block by

clathin coat (side view). Note that all animations show

the same process seen from different camera

positions). For details, see legend to Video 2.

DOI: https://doi.org/10.7554/eLife.32569.018
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formation, the terminals of clathrin HCs are placed in a very close proximity (<5 nm) to the vesicle

membrane (Cheng et al., 2007). These terminal domains are suggested to form barrels with diame-

ters ~ 10 nm at the inside surface of the cage (our data and Fotin et al., 2004). To fit in, the neck

region of the vATPase (~13 nm) where the regulatory V1H-subunit of the catalytic V1 domain is

located would need to be constricted (for more information, see Figure 4—figure supplement 2

and Suppl data). Thus, we propose a hypothetical model where the steric hindrance provided by the

formation of the clathrin coat around the vesicles blocks the vATPase activity (Figure 4F, Figure 4—

figure supplement 2, Videos 2–4). Such a model is consistent with numerous publications (e.g.,

Ho et al., 1993; Parra et al., 2000; Jefferies and Forgac, 2008; Diab et al., 2009; Oot and Wilk-

ens, 2012; Oot et al., 2016; Zhao et al., 2015; Suzuki et al., 2016; Mazhab-Jafari et al., 2016)

and all our data, including the significantly reduced vATPase activity that we observed in isolated

CCVs compared to SVs. It also allows for multiple layers of clathrin-coat formation regulation and

provides a simple, yet elegant way by which the presence of a clathrin coat on the vesicle surface

blocks the acidification process during its formation.

Our finding that clathrin coat-mediated vATPase inhibition prevents CCV acidification also

resolves a longstanding debate in the field. It contributes to better understanding of the discrete

steps of the SV cycle, now requiring clathrin uncoating upstream of acidification and neurotransmit-

ter refilling. Interestingly, our model suggests that even partial formation of the clathrin coat around

the vATPase may be sufficient to block its activity - such regulation may conserve ATP at the syn-

apse. Finally, our finding that CCVs isolated from brain do not acidify matches findings in liver CCVs

(Fuchs et al., 1994), and may provide insight into other cellular processes that involve both clathrin

and vATPases.

Materials and methods

Animals
spH21 (Li et al., 2005) mice were provided by Dr. V. N. Murthy (Harvard University, USA) and Dr. W.

Tyler (Virginia Tech Carilion Research Institute, USA). Wild-type mice were obtained from the animal

facility of Max-Planck Institute for Biophysical Chemistry (MPIbpc), Göttingen, Germany, or pur-

chased from Janvier.

Isolation of synaptic vesicles and clathrin coated vesicles
SVs were isolated from brains of mice as described by Ahmed et al. (2013) and Farsi et al. (2016).

To isolate clathrin-coated vesicles (CCVs) from transgenic and wild-type mouse brains, we adapted a

protocol from Maycox et al. (1992). Fifteen wild-type or transgenic mice (6–8 weeks postnatal)

were decapitated and their brains were homogenized in ice-cold Buffer-A (MES 100 mM pH 6.5,

EGTA 1 mM, MgCl20.5 mM) supplemented with 200 mM PMSF (phenymethylsulfonyl fluoride) and 1

mg/ml pepstatin-A. The homogenate (H) was centrifuged (20,000 g, 20 min) and the resulting super-

natant (S1) was further centrifuged at 55,000 g for 1 hr. The obtained pellet (P2) was re-suspended

in Buffer A and diluted in Buffer A containing sucrose and Ficoll at final concentration of 6.25% wt/

vol followed by centrifugation at 40,000 g for 40 min. The supernatant (S3) was then diluted 1:5 in

Buffer A and subjected to ultracentrifugation (100,000 g, 1 hr). The obtained pellet (P4) contained

coated vesicles, as confirmed by EM and immunoblotting. The pellet (P4) was next re-suspended in

Buffer A and subjected to further centrifugation (20,000 g, 20 min). The obtained supernatant (S5)

containing CCVs as well as other portion of SVs was overlaid on top of buffer A prepared with D2O

containing 8% (wt/vol) sucrose and centrifuged at 25,600 rpm for 2 hr in a Beckman SW28 rotor. The

final pellet containing pure clathrin-coated vesicles was resuspended in sucrose buffer (sucrose 320

mM, HEPES 10 mM, pH 6.5). Characterization of purifed SV and CCV samples was performed using

western blotting and antibodies listed in Table 1, as well as mass spectrometry.

Immobilization of SVs and CCVs on glass coverslips
Glass coverslips were cleaned by sonication in 2% Hellmanex-III solution (Hellma Analytics), and

coated with 0.1% (wt/vol) poly-L-lysine (PLL) before use. 50–100 ng of SVs or 0.5–1 mg of CCVs were

diluted in the assay buffer (glycine 300 mM, MOPS 10 mM, pH 7.4) and immobilized on the
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coverslips for 1 hr. The coverslips were then washed to remove the non-adsorbed vesicles and

mounted in custom-made imaging chambers.

Measurement of DpH and Dc in single SVs and CCVs
Single-vesicle imaging was performed as described previously (Farsi et al., 2016). We observed no

difference between ratiometric values of spH in purified vesicles before and after addition of car-

bonyl cyanide-4-(trifluoromethoxy)phenylhydrazon (FCCP) at pH 7.4, while acidifying the lumen by

incubation of vesicles at pH 5.5 in the presence of FCCP significantly decreased the ratiometric

value. This indicates that vesicles lose their luminal proton contents and reach equilibrium with their

surrounding buffer during purification of vesicles and immobilization on glass coverslips. Acidifica-

tion measurements were performed with vesicles isolated from the brain of transgenic mice (spH-

vesicles). Potentiometric measurements were performed with the vesicles isolated from brains of

wild-type animals after labeling with 100 nM of VF2.1.Cl. Acidification and potentiometric assays

were performed in glycine buffer (300 mM glycine, 4 mM MgSO4, 10 mM MOPS, pH 7.4) which was

free of membrane-permeable ions. Thus, it could be assumed that the contribution of ions other

than protons to the acidification was negligible. Moreover, it can be assumed that these buffer con-

ditions vATPase was the main protein responsible for the observed difference between SVs and

CCVs. For both types of measurements, immobilized vesicles were imaged using a total internal

reflection fluorescence (TIRF) microscope (Farsi et al., 2016). The samples were excited with the

488 nm line of an argon laser and the emission was collected through a 515/30 nm filter. Images

were acquired using the Andor IQ2 software. The fluorescence changes induced after addition of

the same concentration of Mg2+-ATP to SVs and CCVs were collected over time and corrected for

bleaching of the fluorophore over the same experimental timescale before conversion to pH and

membrane potential.

Image analysis
The time series images were loaded as 3D stacks in MATLAB (Mathworks, Natrick, MA) and spot

detection was performed using a previously described script (Olivo-Marin, 2002). A size cutoff (<20

pixels), as well as an eccentricity cutoff (<0.8 defining one as a line), were applied to the detected

spots in order to remove aggregated particles from the analysis. The background for each vesicle

was defined locally as the average intensity of neighboring pixels with the lowest intensity, and sub-

tracted from the intensity of the spot in each frame. The fluorescence intensities were normalized to

the integrated intensity of vesicles before the chemical perturbations. The normalized intensity,

Fnorm(t) at time t, was then converted to pH and membrane potential using Equation 1 and 2,

respectively.

pHðtÞ ¼ pKa � log10
1þ 10pKa�7:4
� �

FnormðtÞ

FnormðtÞ

� �

(1)

where the pKa is equal 7.2 (Farsi et al., 2016).

D	¼ kVF2:1:Cl x
F tð Þ�F0

F0

� �

(2)

where kVF2.1Cl is equal 370.37 (Farsi et al., 2016).

Statistical analysis
For comparisons between SVs and CCVs a two-sided Student’s t-test for unpaired samples was used

(p values indicated in the respective figures), unless otherwise indicated.

Electron microscopy
Isolated SVs and CCVs were visualized by negative stain electron microscopy (EM). The main pur-

pose of these experiments was to estimate the purity of the CCV sample (in addition to Western

blotting and mass spectrometry), since the presence of contamination and uncoated SVs could inter-

fere with the measurements. The EM detection of CCVs was also used to determine the size of

CCVs, and the damage possibly inflicted on the coat by the purification procedure. Briefly, vesicles

were applied to a formvar carbon-coated grid, washed with resuspension buffer, stained with 2%
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uranyl acetate for 1 min at room temperature, washed in distilled H2O and dried. Images were

obtained at various magnifications by JEM 1011 electron microscope (80kV, JEOL, Germany), or by

CM120 Philips electron microscope equipped with a TemCam 224A slow scan CCD camera (TVIPS,

Gaunting, Germany). To measure the diameter of the CCVs, the obtained images were analyzed by

Digital Micrograph 3.4 software (Gatan Inc.) (Schuette et al., 2004). The longest and shortest diam-

eter of each vesicle was measured, and an average was calculated in order to determine the mean

CCV diameter, which is then plotted as shown in Figure 1—figure supplement 1.

To determine the ability of primary labeled anti-clathrin heavy chain (CHC) antibody X22 (Abcam)

to detect the clathrin coat in its native-coat conformation, the purified CCV sample was subjected to

immuno-gold labeling and inspected by EM. In short, the purified vesicles were added to coated car-

bon grids and fixing by 1% formaldehyde, followed by quenching with 20 mM glycine buffer and

subsequent immunostaining with anti-clathrin HC antibody.

Uncoating of clathrin-coated vesicles
To remove the clathrin coat from the CCVs, ~90 mg of isolated CCVs were diluted in 850 ml of pre-

warmed uncoating buffer (Tris/Cl 300 mM, pH 9.0), and incubated at 37˚C for 15 min, as described

by Maycox et al. (1992). Alternatively, we also used another approach to uncoat ~30 mg CCVs by

incubating them with 300 ml of 500 mM Tris/Cl, pH 7.0, 5 mM DTT, 1 mM PMSF at 4˚C for 4 hr

(these conditions, sometimes during the overnight incubation, are commonly used to extract coat

proteins including clathrin, adaptor proteins, auxilin and Hsc70 from purified coated vesicles for fur-

ther purification; Prasad and Keen, 1991). Lastly, auxilin, Hsc70 and Hsp110 proteins were

expressed and purified as described previously (Schuermann et al., 2008). Purified auxilin (1.7 mg),

Hsc70 (4.8 mg) and Hsp110 (1.7 mg) proteins were added to 2 mg of isolated CCVs in the presence of

1.2 mM Mg2+-ATP in 100 mM MES pH 7.0, 20 mM imidazole, 25 mM KCl, 10 mM (NH4)2SO4, 2 mM

Mg-acetate, 2 mM DTT (as in Morgan et al., 2013), for 15 min at room temperature.

For single-vesicle imaging of CCVs after uncoating, the vesicles were first immobilized on the

PLL-coated coverslips as described above and were incubated in uncoating buffer for 15 min at 37˚C
before imaging. After uncoating, the coverslips were washed with the assay buffer and incubated in

Table 1. Antibodies used in this study.

Antibody Characteristics Producer

ATP6V1A NBP1-33021 Polyclonal Novus-Biologicals

ATP6V1H Ab187706 Polyclonal Abcam

ATP6V1C1 Ab87163 Polyclonal Abcam

ATP6V1E1 Ab111733 Polyclonal Abcam

AP-2 A2730 Monoclonal Abcam

AP-180 155002 Polyclonal Synaptic Systems (SySy)

Clathrin-heavy chain (HC) Ab2731 Monoclonal Abcam

Clathrin-light chain (LC) Ab9884 Polyclonal EMD-Millipore

EEA1 PA1-063A Polyclonal ThermoFischer Scientific

Na+/K+ ATPase Ab7671 Monoclonal Abcam

RPT4 (PMSF) Ab14715 Monoclonal Abcam

Proton ATPase (116 kDa subunit) 109003 Polyclonal Synaptic Systems (SySy)

Synaptotagmin-1 105 011 Monoclonal Synaptic Systems (SySy)

Synaptophysin-1 101 011 Monoclonal Synaptic Systems (SySy)

Synaptobrevin-2/VAMP-2 104 211 Monoclonal Synaptic Systems (SySy)

anti-mouse IgG (IR680) P/N 925–68070 LI-COR

anti-rabbit IgG (IR800) P/N 926–32211 LI-COR

anti-mouse IgG (H + L) HRP 62–6520 ThermoFischer Scientific

anti-rabbit IgG (H + L) HRP 65–6120 ThermoFischer Scientific

DOI: https://doi.org/10.7554/eLife.32569.020
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this buffer for 10 min to remove the residual Tris. In order to make sure that this treatment does not

interfere with the v-ATPase activity, the same experiments were performed with SVs.

For electron microscopy, uncoated sample (irrespectively of how unocating is achieved) was cen-

trifuged at 120,000 g for 15 min to separate the vesicles from the uncoated proteins. The resulting

pellet was resuspended in sucrose buffer and used at appropriate dilution for EM.

For Western blot experiments, ~50 mg of isolated CCVs were diluted in 300 ml of pre-warmed

uncoating buffer (Tris/Cl 300 mM, pH 9.0), and incubated at 37˚C for 15 min. The sample was then

centrifuged at 120,000 g for 15 min to separate the vesicles from the uncoated proteins. The super-

natant was then removed and concentrated roughly 3x using centrifugal vacuum concentrator (Con-

centrator 5301, Eppendorf), while the resulting pellet was resuspended in 80 ml SDS-PAGE buffer.

Isolated CCVs (diluted 1:10), uncoated vesicles and supernatant after uncoating were then analyzed

by Western blot.

ATPase activity assay
The ATPase activity of 1.3 mg of isolated SVs and CCVs was measured in 96-well plate using the

‘ATPase/GTPase Activity Assay Kit’ (Sigma) according to the manufacturer’s instruction. The acidifi-

cation was performed by incubating the samples with 2 mM Mg2+-ATP in the assay buffer (300 mM

glycine, 10 mM MOPS pH 7.4) for 15 min at room temperature. In this assay, the phosphate released

by vATPase upon ATP hydrolysis is measured. To test for the free phosphate content in the SV and

CCV samples, control samples with the same amount of isolated vesicles in the absence of ATP were

measured. The absorbance of controls was then subtracted from the samples before calculating the

amount of released phosphate.

For measuring the effect of N-ethylmaleimide (NEM) on the measured ATPase activity, the sam-

ples were incubated with 1 mM NEM for 10 min at room temperature before addition of Mg2+-ATP.

Cryo-electron microscopy and image processing
For sample preparation, 200 mesh Quantifoil R2/2 copper grids were glow-discharged and 0.65 mg/

mL of the CCV preparation in 100 mM MES, 1 mM EGTA, 0.5 mM MgCl2 was added to the grid.

The sample was plunge frozen with an FEI Vitrobot Mark V in liquid ethane.

The data were collected on a Talos Arctica (FEI) at 200 kV with a field emission gun and a nominal

magnification of 45,000 at the Cryo-EM Swedish National Facility. The images were collected with a

Falcon II and a dose rate of 9.53 e- per Å2 per second. The recording time was 2.5 s, resulting in 30

frames and a total dose of 23.8 e- per Å2. The frames were motion corrected and dose weighted

with MotionCorr (Li et al., 2013) and the CTF was estimated with Gctf (Zhang, 2016). The pixel size

for the images was 3.25 Å/pixel. For the processing, images with a box size of 130Åx130Å were

manually extracted with RELION (Scheres, 2012). A total of 43,711 manually-picked individual par-

ticles from 2836 images were used for the 2D classification through RELION 2.0. After the classifica-

tion, a new stack was formed for one vesicle based on the vesicle size. The image stack-classified

into 16 classes with no (C1) symmetry imposed. The particles from the most populated well-defined

3D class were combined into a final stack. This stack was re-classified in three classes with D6 sym-

metry enforced. The particles of the most populated class were refined within RELION in D6. The

gold standard FSC was calculated in RELION. Molecular graphics and analyses were performed with

the UCSF Chimera package, a visualization system for exploratory research and analysis, developed

by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San

Francisco (supported by NIGMS P41-GM103311) (Pettersen et al., 2004). The structure has been

deposited with the EMDB-ID #4335.

Fitting vATPase structure into CCV structure and construction of the
animated 3D model
To see how the vATPase fits within the clathrin coat, we used the information provided by our struc-

tural analysis (Figure 1D, Figure 1—figure supplement 2, Figure 4—figure supplement 2), as well

as previously solved structure of the vATPase (Zhao et al., 2015; Mazhab-Jafari et al., 2016) and

the clathrin coat (Fotin et al., 2004). Considering the size of vATPase and its V1 domain (~25 nm

and ~16 nm, respectively; Oot et al. (2016); Zhao et al. (2015), Mazhab-Jafari et al., 2016), we

docked the solved structures of vATPase (Zhao et al., 2015) into a hexagonal ring of clathrin coat
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(vATPase does not fit into a pentagonal ring)(Figure 4E–F; Figure 4—figure supplement 2; Vid-

eos 2–4, for more information see Suppl. Data). Previously published studies, as well as our cryo-EM

analysis of the clathrin coat, have revealed that upon complete hexagonal ring formation, the termi-

nals of clathrin HCs are placed in a very close proximity (<5 nm) of the vesicle membrane

(Cheng et al., 2007). These terminal domains are suggested to form barrels with diameters ~ 10 nm

at the inside surface of the cage (our data and Fotin et al., 2004). To fit in, the neck region of the

vATPase (~13 nm) where the regulatory V1H-subunit of the catalytic V1 domain is located and pro-

truded ~4 nm from the stalk would need to be constricted (based on Zhao et al., 2015;

Suzuki et al., 2016; Mazhab-Jafari et al., 2016). It is known that the V1H-subunit can inhibit the

ATPase activity of eukaryotic vATPase when V1 is dissociated from Vo (Parra et al., 2000;

Diab et al., 2009; Jefferies and Forgac, 2008). However, in holo (VoV1) vATPase the same subunit

is required for the ATP hydrolysis (Jefferies and Forgac, 2008). Interestingly, recent biochemical

and structural studies have revealed that the dual function of V1H-subunit is dependent on its posi-

tion relative to the other V1 subunits (Jefferies and Forgac, 2008; Oot et al., 2016), and might

involve interactions with these subunits (Jefferies and Forgac, 2008). Further, the inhibitory effect

of the V1H-subunit is thought to be a result of its rotation towards V1D (Oot et al., 2016) and V1F

(Jefferies and Forgac, 2008), which compose the central rotor of the complex (Marshansky et al.,

2014; Zhao et al., 2015; Mazhab-Jafari et al., 2016). Thus, we propose a model where the steric

hindrance provided by the formation of the clathrin coat around the vesicles results in dislocation of

the regulatory V1H-subunit towards the stalk (Figure 4G; Figure 4—figure supplement 2, Videos 2–

4). The displacement of the regulatory V1H-subunit respectively closer to the other V1 subunits, most

probably V1D and Vod, and in turn would block the activity of the proton pump as suggested by sev-

eral publications (Diab et al., 2009; Jefferies and Forgac, 2008; Oot and Wilkens, 2012;

Zhao et al., 2015; Suzuki et al., 2016; Mazhab-

Jafari et al., 2016). Such a model is hypothetical

but consistent with numerous publications

(Ho et al., 1993; Parra et al., 2000;

Jefferies and Forgac, 2008; Diab et al., 2009;

Oot and Wilkens, 2012; Oot et al., 2016;

Zhao et al., 2015; Suzuki et al., 2016; Mazhab-

Jafari et al., 2016) and all our data, including the

significantly reduced vATPase activity that we

observed in isolated CCVs compared to SVs. It

also allows for multiple layers of clathrin-coat for-

mation regulation and provides a simple, yet ele-

gant way by which the presence of a clathrin coat

on the vesicle surface blocks the acidification pro-

cess during its formation.

The animated 3D model of the vATPase block

by clathrin coat was constructed using the origi-

nal structures (as detailed below) and the cus-

tom-written plug-ins (https://github.com/

IraMilosevic/eLife-Farsi-Milosevic; copy archived

at https://github.com/elifesciences-publications/

eLife-Farsi-Milosevic) (Milosevic, 2018b) for the

3D software Autodesk Maya (Autodesk Inc., San

Rafael, CA). Information on protein structures

was obtained from PDB based coordinates and

the Uniprot database (PDB codes: 1XI4, 5TJ5:

complete 3J9T, 3J9U, 3J9V, autoinhibited

5BW9). References used to model clathrin coat,

AP2 and vATPase are listed in the Reference sec-

tion. All proteins have their ‘true’ dimensions.

The a- and b-linkers of AP2 are constructed to

enable them to reach their maximal length. vAT-

Pase states are defined according to the ~120

Video 4. Animated 3D model of vATPase block by

clathin coat (front view). Note that all animations show

the same process seen from different camera positions.

Here, detailed view of vATPase at the level of plasma

membrane is shown (overview of the endocytic vesicle

formation is shown in the Videos 2 and 3). Note that

the time duration of the breaks between the vATPase

rotation cycles has been shortened to better illustrate

the vATPase activity. Upon binding cargo protein, the

nearby AP2 complex alters its structure and recruits

clathrin triskelia. Clathrin ring starts to be built around

the vATPase complex (only terminal domain, linker,

ankle and a part of distal segment can be seen in this

view): the insertion of the last clathrin triskelion in the

ring displaces the V1H-subunit of the vATPase. For

more details, see Construction of the animated 3D

model in the Supplementary Methods. After the vesicle

is formed and endocytosed, the clathrin coat

disassembles, and the vATPase subunits instantly

resume ‘original positions’, bringing the vATPase in the

active state again.

DOI: https://doi.org/10.7554/eLife.32569.019
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˚rotations: since autoinhibited V1 is crystalized in state 2, and autoinhibited Vo is crystalized in state

3, we chose state two to be the state where the stalk rotation is stopped when the clathrin N-termi-

nus pushes it. We depict interplay of clathrin coat and vATPase in the context of a bare vesicle (40

nm in diameter): there are obviously many proteins on the vesicle, yet the proteins are likely mobile.

Further, we detected all vATPase subunits on the CCVs, meaning that none of the subunit gets

removed from the vATPase complex.

We referred to clathrin HC as ‘HC’; Vo subunits were referred to using lowercase letters i.e. ‘d’,

and V1 subunits were referred to using uppercase letters that is, ‘D’; ’Vo’/’V1’ lock refers to inactive

vATPases; (structure) means that the protein/complex structure in this conformation is available. We

considered five possible models:

(1)’HC’ acts on ’d’/’D’/’F’ -> ’Vo’/’V1’ lock;

(2a) ’HC’ acts on ’H’ -> ’H’ acts on ’D’ (structure), possibly deforming/pushing it (structure) ->

’Vo’/’V1’ lock;

(2b) ’HC’ acts on ’H’ -> ’H’ acts on ’D’ (structure), possibly deforming/pushing it (structure) -> ’V1’

lock, ’d’/’D’ interface disturbed -> ’Vo’ lock;

(3)’HC’ acts on ’C’ -> ’C’ acts on ’d’/’D’ -> ’Vo’/’V1’ lock;

(4)’HC’ acts only on ’a’ -> ’a’ acts on ’d’ -> ’Vo’/’V1’ lock;

(5)’HC’ acts on unknown protein on the vesicle -> ’Vo’/’V1’ lock.

While all of these models may be possible, based on our data and the published literature we

consider that the model (2) is the most likely way how clathrin coat inhibits vATPases. Specifically,

clathrin HCs that have their N-termini located directly around vATPase will have at least one N-termi-

nus at which the structures collide at the level of the regulatory V1H-subunit. Thus, V1H-subunit

should be displaced in order for the clathrin hexagonal ring to reach its final position. Notably, the

cytosolic part of the vATPase (structure 5BW9) adopts an autoinhibited structure that shows the V1H

subunit affecting the V1D subunit. We hypothesize that the formation of clathrin lattice leads to a

similar structure in which the proton pump rotation is blocked. Such a model is animated in 3D, and

presented in Videos 2–4. Note that all movies show the same process seen from different camera

positions (top view Video 2, side view Video 3, front view Video 4).
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