
7744  |  	﻿�  Ecology and Evolution. 2018;8:7744–7751.www.ecolevol.org

 

Received: 14 February 2018  |  Revised: 31 May 2018  |  Accepted: 14 June 2018

DOI: 10.1002/ece3.4363

A C A D E M I C  P R A C T I C E  I N  E C O L O G Y  A N D  E V O L U T I O N

Power, pitfalls, and potential for integrating computational 
literacy into undergraduate ecology courses

Kaitlin J. Farrell  | Cayelan C. Carey

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Department of Biological Sciences, Virginia 
Tech, Blacksburg, Virginia

Correspondence
Kaitlin J. Farrell, Department of Biological 
Sciences, Virginia Tech, Blacksburg, Virginia.
Email: farrellk@vt.edu

Funding information
National Science Foundation (NSF), Grant/
Award Number: EF 1702506, DEB 1245707, 
CNS 1737424 and ACI 1234983

Abstract
Environmental research requires understanding nonlinear ecological dynamics that 
interact across multiple spatial and temporal scales. The analysis of long-term and 
high-frequency sensor data combined with simulation modeling enables interpreta-
tion of complex ecological phenomena, and the computational skills needed to con-
duct these analyses are increasingly being integrated into graduate student training 
programs in ecology. Despite its importance, however, computational literacy—that 
is, the ability to harness the power of computer technologies to accomplish tasks—is 
rarely taught in undergraduate ecology classrooms, representing a major gap in train-
ing students to tackle complex environmental challenges. Through our experience 
developing undergraduate curricula in long-term and high-frequency data analysis 
and simulation modeling for two environmental science pedagogical initiatives, 
Project EDDIE (Environmental Data-Driven Inquiry and Exploration) and 
Macrosystems EDDIE, we have found that students often feel intimidated by compu-
tational tasks, which is compounded by the lack of familiarity with software (e.g., R) 
and the steep learning curves associated with script-based analytical tools. The use 
of prepackaged, flexible modules that introduce programming as a mechanism to ex-
plore environmental datasets and teach inquiry-based ecology, such as those devel-
oped for Project EDDIE and Macrosystems EDDIE, can significantly increase 
students’ experience and comfort levels with advanced computational tools. These 
types of modules in turn provide great potential for empowering students with the 
computational literacy needed to ask ecological questions and test hypotheses on 
their own. As continental-scale sensor observatory networks rapidly expand the 
availability of long-term and high-frequency data, students with the skills to manipu-
late, visualize, and interpret such data will be well-prepared for diverse careers in 
data science, and will help advance the future of open, reproducible science in 
ecology.
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1  | INTRODUC TION

Computational literacy, or the ability to harness the power of com-
puter technologies to accomplish tasks and solve problems (sensu 
Sherin, 2011), is increasingly required to conduct ecological research. 
Within the discipline of ecology, computational literacy encompasses 
confidence and familiarity in using technological tools to answer 
ecological questions. These tools, which include both point-and-click 
spreadsheet and statistical programs (e.g., Microsoft Excel) and script-
ing language-based programs (e.g., R software), enable researchers 
to manipulate and analyze large multivariate datasets as well as per-
form computationally-intensive analyses and visualizations. The ex-
plosion of the use of these tools – especially open-source R software 
– among ecologists during the past decade is transforming the way 
ecology is conducted (Michener & Jones, 2012).

While opportunities to gain computational literacy are increasing 
at the graduate student level (e.g., Read et al., 2016), there remains a 
major gap in providing training in these concepts to undergraduate 
ecology students. As it is challenging to teach computational liter-
acy to students that likely have limited programming experience, it is 
not surprising that R-based laboratory activities are not common in 
undergraduate ecology curricula. However, teaching computational 
literacy to intermediate and upper-level undergraduates may be the 
ideal time to expose students to these skills to help them prepare 
for diverse future careers. Moreover, embedding prepackaged, flex-
ible modules into undergraduate classrooms to teach inquiry-based 
ecology, as is done through Project EDDIE (Environmental Data-
Driven Inquiry and Exploration, www.ProjectEDDIE.org; Carey & 
Gougis, 2017; Klug, Carey, Richardson, & Gougis, 2017; O’Reilly et al., 

2017), Macrosystems EDDIE (www.MacrosystemsEDDIE.org), Data 
Carpentry (von Hardenberg et al., 2018), and other projects that inte-
grate data science and ecology (Table 1) may provide a viable solution 
for overcoming the pitfalls of programming instruction while stim-
ulating undergraduates to think about ecology in a predictive way.

Here, we share our experiences developing and teaching un-
dergraduate curricula as part of Project EDDIE and Macrosystems 
EDDIE, two U.S. National Science Foundation (NSF)-supported ini-
tiatives to integrate computational literacy into undergraduate ecol-
ogy classrooms. Within Project EDDIE, modules focus on teaching 
students to manipulate and interpret long-term and high-frequency 
data through problem-solving lessons in the environmental sciences 
(see O’Reilly et al., 2017 for full module descriptions). Each EDDIE 
module has a scaffolding structure with three or more data analysis 
or modeling activities that build from simple to more complex and 
are grounded in the pedagogy of the 5E learning cycle (engagement, 
exploration, explanation, elaboration, and evaluation; Bybee et al., 
2006). This flexible format enables instructors to choose the activ-
ities that are most appropriate for their classroom, as some module 
activities can be completed in a 1-hr lecture period, whereas the en-
tire module could be taught during a 3-hr laboratory session. This 
flexibility allows the EDDIE modules to be taught in classes across a 
range of student experience levels.

The Macrosystems EDDIE project builds on the pedagogical 
framework of Project EDDIE to develop an R-based curriculum to 
teach students fundamental macrosystems topics, with a focus on 
understanding drivers and ecological responses that operate at mul-
tiple, interconnected spatial and temporal scales (sensu Heffernan 
et al., 2014). In contrast to the Project EDDIE modules, which are 

TABLE  1 Examples of modular teaching resources developed to bring modeling and/or data science principles into undergraduate 
ecology classes

Tool Name Website Platform Description

Project EDDIE (Environmental 
Data-Driven Inquiry and Exploration)

http://www.ProjectEDDIE.org Excel (9 
modules), R  
(1 module)

Modules use long-term and high-frequency 
meteorological, water quality, terrestrial, 
and geological datasets to model 
environmental phenomena

Macrosystems EDDIE http://www.MacrosystemsEDDIE.org R Modules use long-term and high-frequency 
meteorological and water quality datasets 
to model macrosystems ecology concepts

QUBES (Quantitative Undergraduate 
Biology Education and Synthesis)

https://qubeshub.org/ Excel, Python, 
R

A clearinghouse of resources developed by 
math and biology educators designed to 
teach students how to tackle complex 
biological problems

Data Carpentry Ecology Curriculum http://www.datacarpentry.org/
lessons/

Python, R Modules use a long-term dataset of small 
mammal surveys to teach data manipula-
tion, analysis, and visualization

SERC (Science Education Resource 
Center at Carleton College) InTeGrate 
Curriculum

https://serc.carleton.edu/integrate/
index.html

Excel, Python, 
Stella

A clearinghouse of resources developed to 
foster interdisciplinary systems thinking in 
undergraduate environmental science 
courses

NEON (National Ecological 
Observatory Network) Teaching 
Modules

http://www.neonscience.org/
resources/teaching-modules

Excel, R A clearinghouse for modules that use 
NEON long-term and high-frequency data.

http://www.ProjectEDDIE.org
http://www.MacrosystemsEDDIE.org
http://www.ProjectEDDIE.org
http://www.MacrosystemsEDDIE.org
https://qubeshub.org/
http://www.datacarpentry.org/lessons/
http://www.datacarpentry.org/lessons/
https://serc.carleton.edu/integrate/index.html
https://serc.carleton.edu/integrate/index.html
http://www.neonscience.org/resources/teaching-modules
http://www.neonscience.org/resources/teaching-modules


7746  |     FARRELL and CAREY

Microsoft Excel-based except for the Lake Modeling module, all of the 
Macrosystems EDDIE modules developed to date use the R statistical 
environment to introduce students to basic programming skills while 
conducting whole-ecosystem simulation modeling and data visual-
ization. All teaching materials for the Macrosystems EDDIE modules 
are available at www.MacrosystemsEDDIE.org. In the Macrosystems 
EDDIE modules, a primary goal is to teach computational literacy and 
computer programming skills as a means to ask and answer complex 
questions in ecology.

Here, we assessed the efficacy of these three R-based EDDIE 
modules (“Lake Modeling”, “Climate Change Effects on Lake 
Temperatures”, and “Cross-Scale Emergence”) on student skills and 
comfort with different components of computational literacy in 
ecology classrooms from a range of institution types through the use 
of pre- and post-module student questionnaires. Below, we share 
the insights we developed from working on the EDDIE initiatives to 
justify why computational literacy needs to be better integrated into 
undergraduate ecology courses (Power); examine challenges related 
to teaching computational skills to undergraduates, with associated 
solutions (Pitfalls); and present data supporting the use of EDDIE 
modules for building the computational literacy of undergraduate 
ecology students (Potential).

2  | POWER

Ecologists are increasingly collecting and analyzing large datasets of 
long-term and high-frequency sensor observations (Hampton et al., 
2013; Weathers et al., 2013). As working with “big data” becomes 
more common in ecological research, introductory students need 
to become adept at using a range of computational tools to ma-
nipulate, analyze, and interpret such data (Durden, Luo, Alexander, 
Flanagan, & Grossmann, 2017). An important first step is master-
ing spreadsheet programs, but ultimately students need more ad-
vanced skills in data manipulation, analysis, and visualization that are 
simply not possible in “point and click” programs, and which require 
training in programming languages such as R, Python, C, and others. 
Environmental sensor networks including GLEON (the Global Lake 
Ecological Observatory Network), NEON (the National Ecological 
Observatory Network), and others now regularly collect datasets 
containing millions and even billions of observations, which spread-
sheet software programs cannot easily handle. Moreover, dragging, 
selecting, or clicking on rows or columns in such large datasets for 
data manipulation is both time-prohibitive and error-prone.

There are many benefits for undergraduate ecology students 
learning basic programming skills. First, programming enables re-
producible, “open science” (Hampton et al., 2015). Sharing anno-
tated code through open repositories such as GitHub enables and 
accelerates collaboration and the communication of ideas in ways 
that are not possible with spreadsheet software (e.g., a large dis-
tributed team can simultaneously edit the same code with version 
control in GitHub). Ecology researchers are increasingly using and 
sharing programming scripts to ensure the reproducibility of their 

analyses as well as to check for errors; these same benefits apply to 
using code to teach undergraduate students ecology concepts and 
analyses in the classroom. Second, programming languages provide 
functionality that is not available in spreadsheet programs. This in-
cludes a common format for collaboration and teaching across dif-
ferent computer versions or operating systems that can be difficult 
with spreadsheet software (e.g., Microsoft Excel files have embed-
ded functions, macros, and analysis toolkits that cannot easily be 
shared among users with different computer operating systems or 
software versions). Third, as noted above, programming languages 
can be used to easily manipulate large datasets that spreadsheet 
software with row and column limits cannot handle. Fourth, several 
programming languages are open-source, including R and Python, 
which enable undergraduates at all schools to use them without the 
need for expensive software site licenses. As a result, open-source 
software broadens participation and facilitates a diverse community 
of users. Users can both access and contribute to open, community-
based technical support through blogs, open lab notebooks, and 
question and answer sites for programming such as Stack Overflow 
(Hampton et al., 2015). In addition, open-source software enables 
community-based development of code, resulting in the creation of 
many tools that have been developed specifically for ecological ap-
plications (e.g., R packages that calculate species diversity metrics).

Undergraduate students represent the next generation of scien-
tists and need the best training possible to prepare them to tackle 
complex ecological research questions. Graduate students increasingly 
need to be able to analyze high-frequency datasets early on in their 
dissertation research (Read et al., 2016), and thus the lack of training 
in computational literacy skills at the undergraduate level could hinder 
progress in ecology graduate education. Given that a recent survey of 
undergraduate ecology students found that the majority of respon-
dents expect that they will need quantitative, data management, and/
or database skills for their future careers (Carey, Gougis, Klug, O’Reilly, 
& Richardson, 2015), it is clear that many students are interested in re-
ceiving greater computational literacy training. Importantly, program-
ming is increasingly being incorporated in undergraduate curricula 
across many STEM (science, technology, engineering, and mathemat-
ics) fields (e.g., Lawson, Szajda, & Barnett, 2013, National Research 
Council 2009; Wright, Provost, Roecklein-Canfield, & Bell, 2013), in-
dicating that ecological instruction needs to evolve to keep pace with 
related disciplines.

3  | PITFALL S

Despite the power associated with increasing computational literacy 
in ecology undergraduate education, a number of pitfalls can ham-
per efforts to integrate computer science approaches and tools into 
existing curricula. These pitfalls can be overcome using strategies we 
have found to be successful for teaching the EDDIE modules.

First, in our experience developing and teaching EDDIE mod-
ules, we have found that intimidation by computational tools and 
the steep learning curve for programming is a key barrier to entry for 

http://www.MacrosystemsEDDIE.org
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many undergraduate ecology students. Self-assessments by ecology 
students prior to using our modules have indicated that a majority of 
students recognize the importance of R statistical software and com-
puter programming for future careers, but consider themselves to be 
minimally proficient and unconfident in using these tools, compared to 
intermediately proficient and confident with Microsoft Excel (Table 2, 
Appendix). This lack of proficiency and confidence renders students 
unlikely to attempt to learn R or other programming languages on 
their own (Baker, 2017). However, this discomfort can be overcome in 
part by having students modify and run existing, ready-to-use scripts 
and computer models, rather than developing scripts de novo. In ad-
dition, by breaking down complex activities into short, do-able chunks 
of code, student skills are reinforced frequently as they work through 
module tasks. By designing ecology activities that assume no prior 
knowledge of programming (Baker, 2017) and use relevant, real-world 
tasks (Valle & Berdanier, 2012), students are more likely to remain en-
gaged in completing course activities, including EDDIE modules. Our 
experiences support this, as post-module self-assessments of EDDIE 
users indicated significantly higher perceptions of proficiency and con-
fidence in using a suite of computational tools than in pre-module self-
assessments (Table 2, Figure 1).

Second, while many consider current undergraduates to be “digital 
natives” (sensu Prensky, 2001), in that they have likely been exposed 
to computers from a relatively young age, individual experiences with 
computing can vary dramatically (Bennett & Maton, 2010; Wang, 
Myers, & Sundaram, 2013). Despite growing access to computers 
both in the classroom and at home, students have exhibited an in-
creasing divide in their digital skills (Wang et al., 2013). In addition, 
day-to-day interactions with technological tools such as smartphones 
do not necessarily prepare students for advanced applications of 
computational tools, such as programming, and many students lack 
experience using computers as tools for scientific inquiry (Bennett & 

Maton, 2010; Wilensky, Brady, & Horn, 2014). Therefore, instructors 
may overestimate the technological skills of their students (Bennett & 
Maton, 2010 and references therein), creating a mismatch between 
the design of classroom activities and the capabilities of students. In 
response, instructors must recognize that “digital natives” are not a 
homogeneous group, and that some students may require additional 
technology instruction, especially when it comes to programming and 
other advanced activities (Wang et al., 2013). We have found that 
having students complete EDDIE activities with a partner can help 
equalize varying experience levels, as each partner brings unique com-
puting experiences that can help the other complete module tasks. In 
addition, asking more advanced teams that finish the module early to 
assist their peers also equalizes disparities in classroom computational 
abilities. Finally, having instructors check in with students throughout 
the module to ask discussion questions ensures that students who 
may not be as technologically-capable do not lag behind their peers 
in completing module activities. Repeated check-ins by instructors 
and the use of module worksheets where students have to hand-write 
answers to discussion questions also help keep the focus of the mod-
ule on ecology concepts, not the computing tasks, by forcing students 
to interpret model outputs and connect those outputs to their prior 
ecological knowledge (sensu Sins, Savelsbergh, & van Joolingen, 2005) 
rather than simply run code without thinking critically about its utility 
and application.

Third, a lack of first-hand experience troubleshooting software 
issues can exacerbate intimidation for students, hindering their mo-
tivation to increase their computational literacy. Many computer in-
terfaces, including both personal computers and mobile devices, use 
“apps” that often hide source code and error messages from the end 
user. Thus, students have limited exposure to the code underlying soft-
ware programs and often do not know how to respond when error mes-
sages occur during their first programming experiences, which may in 

TABLE  2 Comparison of undergraduate student pre- and post-module assessments of computational literacy based on paired, two-sided 
Wilcoxon signed-rank tests of students’ self-reported proficiency, confidence, and likely future use of a computational tool (see Appendix 
for methodological details). Significant differences between pre- and post-module responses are highlighted in bold (α = 0.05). Effect size 
was calculated as Z/√n

Metric Test statistic Two-tailed p value n
Pre-module mean 
(±1 SE)

Post-module mean 
(±1 SE) Effect size

Microsoft Excel

Proficiency 153.0 0.001 88 3.31 ± 0.09 3.61 ± 0.09 −0.37

Confidence 108.0 0.010 79 3.50 ± 0.09 3.76 ± 0.10 −0.29

Likely use 136.0 0.452 80 4.54 ± 0.07 4.56 ± 0.07 −0.08

R software

Proficiency 43.0 <0.001 88 1.67 ± 0.09 2.44 ± 0.10 −0.68

Confidence 17.0 <0.001 80 1.77 ± 0.10 2.44 ± 0.12 −0.66

Likely use 390.0 0.408 88 3.27 ± 0.12 3.47 ± 0.13 −0.09

Programming

Proficiency 95.0 <0.001 88 1.57 ± 0.08 1.93 ± 0.10 −0.51

Confidence 180.0 <0.001 80 1.56 ± 0.09 1.89 ± 0.11 −0.41

Likely use 502.5 0.864 88 2.74 ± 0.11 2.80 ± 0.12 −0.02
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turn undermine computational literacy (Blum, 2012). To overcome this 
discomfort, EDDIE modules include detailed instructions that walk stu-
dents through each step of an activity. The inclusion of pictorial trou-
bleshooting guides allows novice users to work through computer error 
messages or other hardware and software challenges on their own (e.g., 
how to identify the directory structure of files on their computer), with-
out holding back more advanced users. In addition, we have found that 
having students complete modules using their own laptop computers 
makes troubleshooting software issues easier, as a student is likely 
more comfortable working with their own machine than a computer 
they have never used before. However, in instances when individual 
access to laptop computers may be limited, the use of a campus com-
puter lab can help streamline access to tools, as well as ensure that all 
students are using the same up-to-date versions of necessary software.

The pitfalls described above can be exacerbated by a lack of in-
structor experience and comfort with advanced computational tools 
and the use of models (Louca & Zacharia, 2012). If faculty instruc-
tors do not actively use computer programming and computer-based 
models, they are unlikely to teach their students these skills. Thus, a 
goal of Project EDDIE and Macrosystems EDDIE has been to develop 
training tools that are accessible to instructors from a range of insti-
tutions and with differing backgrounds and familiarity with the tools 
being taught. By incorporating basic training for instructors, we hope 
to empower instructors and build their confidence in using advanced 
computational tools, so that they in turn can share their knowledge 
with students. In addition, having undergraduate students observe 

their instructors using tools with which they may be initially uncom-
fortable can be a powerful catalyst for demonstrating that it is okay to 
struggle through unfamiliar territory, and that ultimately, everyone’s 
knowledge increases by learning together.

4  | POTENTIAL

Our work to date with Project EDDIE and Macrosystems EDDIE sug-
gests that undergraduate students can substantially improve their 
computational literacy after short-term (i.e., one laboratory period) 
engagement with activities designed to build such skills (Carey & 
Gougis, 2017; Klug et al., 2017). If ecology curricula begin to incor-
porate modules such as those developed by the EDDIE initiatives 
and other activities (e.g., Table 1) to increase computational literacy 
among undergraduates, we foresee tremendous potential in build-
ing student confidence and proficiency in the use of computational 
tools, and in turn, in their ability to do ecology in this era of big data.

Increasing computational literacy requires that students feel em-
powered, rather than intimidated, by advanced computational tools. 
When instructors foster a growth mindset (sensu Elliot, Dweck, & 
Yeager, 2017), students are able to view the challenges they encounter 
while working with computational tools as opportunities to build their 
skills rather than as criticism of their abilities. Indeed, qualitative stu-
dent feedback in post-module self-assessments suggests that building 
student confidence in their ability to use such tools and troubleshoot 

F IGURE  1 Changes in student post-
module self-assessments of proficiency, 
confidence, and likely future use of 
quantitative tools relative to pre-module 
responses. Students with the lowest 
self-reported proficiency, confidence, 
and likely future use of a tool prior to 
completing a module exhibited the largest 
gains. Responses were on a Likert scale 
from 1 (low) to 5 (high; Appendix for 
methodological details). Points represent 
individual students and are jittered to 
show relative frequency of responses. 
Horizontal dashed lines represent no 
change in self-assessment; positive values 
indicate increased proficiency, confidence, 
or likelihood of future use. Correlation 
coefficients (Spearman’s rho), p-values, 
and sample size (n) are shown for each 
panel. Solid lines show Loess smoothed 
fits, with 95% confidence intervals shaded 
in gray
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errors lays the groundwork for ongoing growth in proficiency. For ex-
ample, while one of our students initially expressed “frustration with 
my computer not working with the latest version of R,” they recognized 
that working through the challenges was “probably a good experience 
overall to show how powerful tools are sometimes frustrating to use 
but worth it for the output you can get once it works.”

Through guided activities that introduce computational tools, in-
structors can also empower undergraduate students with techniques 
to ask their own novel ecological questions and test hypotheses. 
Indeed, after completing an EDDIE module that used ecosystem mod-
eling to explore the effects of climate change on lakes, some students 
felt empowered to continue working with the ecosystem model in R 
to conduct their own additional independent analyses, reflecting that 
they “enjoyed making our own simulations because of the freedom to 
be creative in how far we could push the model.” As with the analogy 
that teaching a person to fish provides longer-lasting benefits than 
giving them a fish, learning computational approaches to test hypoth-
eses provides longer-term and lasting benefits by building students’ 
science self-efficacy (sensu Ballen, Wieman, Salehi, Searle, & Zamudio, 
2017) and helping them discover their own enduring, science-related 
interests (Feinstein, Allen, & Jenkins, 2013).

Embedding hands-on programming activities into undergraduate 
ecology curricula may also help advance the discipline as a whole to-
ward being a more predictive science. Modeling-based learning allows 
students to use simulations to test predictions about interconnected 
systems, leading to improvements in their understanding of scientific 
concepts (Louca & Zacharia, 2012). Learning about the process and 
purpose of modeling can also promote a more nuanced understand-
ing of the scientific process (Schwarz & White, 2015). As a result of 
participation in the EDDIE modules, we have found that undergrad-
uate students ask ecological questions in new and more powerful 
ways. For example, when asked in pre-module assessments how they 
would estimate lake water temperatures in the year 2099, students 
often stated that they would fit a regression model between water 
temperature and year, and estimate future water temperatures based 
on simple linear extrapolation. After completing the “Climate Change 
Effects on Lake Temperatures” Macrosystems EDDIE module, stu-
dents’ post-module assessments instead emphasized how simulation 
models could provide a range of future lake temperatures, depending 
on how different drivers of lake temperature changed. This shift in 
approach lends itself to a more nuanced and realistic understanding 
of complex and nonlinear relationships in ecology. Moreover, ecology 
curricula tend to highlight the context-dependency of ecological phe-
nomena, which can lead students to assume that ecology lacks gen-
eralizable patterns. By analyzing high-frequency and long-term data 
from diverse ecosystems, undergraduate students can use their pro-
gramming skills to test for the generality of patterns across spatial and 
temporal scales. In addition, learning how to use and write program-
ming scripts empowers students to ask specific ecological questions 
of their own design, allowing them to move from conducting a suite 
of predeveloped analyses and visualizations to having complete flexi-
bility and independence to explore data on their own (Baker, 2017), as 
we observed in several classrooms.

Importantly, the use of EDDIE modules and similar active-learning 
tools may aid retention of underrepresented students in STEM fields. 
Hands-on, inquiry-based teaching activities connected to real-world 
tasks, such as programming, have been shown to reduce the per-
formance gap between underrepresented minority (URM) students 
and their non-URM peers in STEM classes, which has implications 
for long-term retention in STEM fields (Alper, 1993; Ballen et al., 
2017). Confidence in one’s skills and abilities is an important aspect 
of student retention in computer science and other STEM fields, with 
a disproportionate effect on women and other underrepresented 
groups (Anderson, McKenzie, Wellman, Brown, & Vrbsky, 2011). In 
computer science classrooms, the use of modules to introduce pro-
gramming topics helps reduce intimidation and increase interest in 
course content, particularly for students that previously rated them-
selves as having “average” level skills (Anderson et al., 2011).

For ecology students using EDDIE modules, we similarly found 
support to Klug et al. (2017) that “those with the most to gain, gain the 
most,” where post-module growth in perceived proficiency and confi-
dence in the use of computational tools was highest in students who 
had the lowest initial scores (Figure 1). This result suggests that using 
the modules can help equalize student abilities and computational 
literacy while simultaneously building confidence for all students. 
Moreover, we expect that these gains contribute to an increased like-
lihood to continue to pursue computational tools, as has been seen 
previously in computer science classes (Anderson et al., 2011). For 
example, a student who self-reported having “very limited computer 
modeling experience prior to this activity” reflected that they were 
more likely to use computer programming after completing a module, 
as their “first time truly modeling an ecosystem” increased their con-
fidence and proficiency. Thus while the magnitude of growth in self-
assessed proficiency, confidence, and likely future use for any given 
student after the completion of one module may be small, qualitative 
student feedback suggests that a single 3-hour activity can set the 
stage for ongoing learning and further gains.

Finally, increased computational literacy training will prepare un-
dergraduate students for many fields beyond ecology. Regardless of 
their future careers, ecology undergraduates will likely need to ma-
nipulate and visualize large, heterogeneous datasets, which are now 
ubiquitous in government, industry, and academia (Mellody, 2014). 
Increased data science, systems thinking, and quantitative skills are 
seen as increasingly essential in the workforce (Valle & Berdanier, 
2012), and increased computational literacy and programming 
skills will prepare current students for diverse 21st century careers. 
Consequently, teaching ecology undergraduates computational lit-
eracy will not only advance ecology as a discipline, but will also help 
build an informed workforce and electorate that is prepared to work 
with and interpret a wide range of big data.
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APPENDIX 
Methods
We compared undergraduate student responses to questions about 
their proficiency, confidence, and likely future use of different com-
putational tools (Microsoft Excel software, R software, computer 
programming) before and after their completion of the Project 
EDDIE “Lake Modeling” or Macrosystems EDDIE “Climate Change 
Effects on Lake Temperatures” or “Cross-Scale Emergence” modules 
(for detailed module information, see Carey & Gougis, 2017). The 
modules were taught in one introductory (freshman-level) environ-
mental science course and eight upper-level (junior and senior-level) 
freshwater ecology courses. The introductory course was taught at 
an associate’s college and the eight other courses were taught at 
four doctorate-granting universities (R1 and R2) and two master’s 
universities (M1).

For each assessment question, students responded using a Likert 
scale from 1 (low) to 5 (high; Table A1 for questions). Pre-module 
assessments were completed within 10 days prior to the module 
being taught as part of classroom lecture or lab activities, while post-
module assessments were completed between 1 and 14 days after 

the module was taught. All assessments were completed online. 
Only student participants who voluntarily consented to the use of 
their data were included in our comparison in accordance with 
Institutional Review Board permissions (Virginia Tech IRB #13-804; 
Carleton College IRB #0002470).

We pooled data across all classes due to low sample sizes within 
each class (n = 7, 10, 12, 13, 14, 21, 22, 24, 24). We tested for changes 
in student perceptions of their proficiency, confidence, and likely fu-
ture use of each computational tool (Microsoft Excel, R, computer 
programming) using Wilcoxon signed-rank tests of paired student 
responses from pre- and post-module self-assessments. p-values 
were estimated using a normal approximation, with statistical signifi-
cance being interpreted at α = 0.05. We calculated per-student 
changes in each metric (proficiency, confidence, likely future use) for 
each computational tool as the difference between post- and pre-
assessment responses. We then tested whether changes (Post – Pre) 
were correlated with pre-assessment responses using Spearman’s 
rho correlation coefficients. p-values were estimated using the 
asymptotic t approximation. Effect sizes were calculated as Z/√n. All 
analyses were conducted using R 3.5.0 (R Core Team 2018).
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TABLE  A1 Likert scale for student pre- and post-module self-assessments. Assessment questions for each computational tool were 
phrased as, “Using the scale below, how would you rank your [metric] with each of the following computational tools?”

Metric 1 2 3 4 5

Proficiency No proficiency, not 
able to apply this 
tool to an 
assignment

Basic proficiency, 
able to handle 
simple applications 
of this tool to an 
assignment

Intermediate 
proficiency, able to 
apply this tool 
independently to 
many types of 
assignments

Advanced proficiency, 
able to apply this 
tool independently 
to nearly all types of 
assignments

Expert proficiency, able 
to apply this tool 
independently to all 
types of assignments 
and serve as a role 
model or coach others

Confidence Not at all confident Somewhat confident Moderately confident Very confident Completely confident

Likelihood of 
future use

Extremely unlikely Unlikely Neutral Likely Extremely likely

http://www.sesp.northwestern.edu/news-center/inquiry/2011-spring/computational-literacy.html
http://www.sesp.northwestern.edu/news-center/inquiry/2011-spring/computational-literacy.html
https://doi.org/10.1080/09500690500206408
https://doi.org/10.1890/0012-9623-93.4.373
https://doi.org/10.1007/s12599-013-0296-y
https://doi.org/10.1007/s12599-013-0296-y
https://doi.org/10.1002/lob.201322371
https://doi.org/10.1002/lob.201322371
https://doi.org/10.1145/2633031
https://doi.org/10.1002/ece3.4363

