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SUMMARY

Ovarian aging precedes that of any other mammalian organ and is the primary
cause of female age-related infertility. The biological mechanisms responsible
for ovarian aging remain unclear. Previous studies have been limited by their
use of bulk RNA-sequencing,whichmasks the dynamic and heterogeneous nature
of the ovary. In this study, we spatially resolved the transcriptomic landscape of
ovaries from young and aged outbred mice. In total, we defined eight main
ovarian cell populations, all of which were characterized by significant transcrip-
tomic changes between young and aged samples. Further sub-cluster analysis re-
vealed separate transcriptomes for distinct granulosa cell populations found in
young versus aged mice, in addition to an oocyte sub-cluster population
completely absent from aged mouse ovaries. This study provides a new perspec-
tive on mammalian ovarian aging using spatial transcriptomics to achieve deeper
understanding of the localization and cell-population-specific mechanisms under-
lying age-related fertility decline.

INTRODUCTION

The ovary serves as the primary female reproductive organ and is responsible for the production of oocytes

and secretion of sex steroid hormones, which play crucial roles in the regulation of overall female fertility

and endocrine activity [Richards, 2018]. The ovary is affected by natural aging more severely and earlier on

than any other mammalian tissue, exhibiting significant loss of function by the time a woman enters her

mid-thirties [Broekmans et al., 2009]. Ovarian aging is characterized by both quantitative and qualitative

losses to the ovarian reserve, and although widely accepted as the chief cause of reproductive decline

in women of advanced age (advanced maternal age; AMA R35 years), a deeper mechanistic understand-

ing remains to be elucidated [Vollenhoven and Hunt, 2018]. This is increasingly exigent, as more women will

suffer from age-related infertility resultant of the ongoing social trend to delay childbearing in the devel-

oped world [Shirasuna and Iwata, 2017].

A uniquely structured and highly heterogeneous organ, the ovary comprises many distinctive cell popula-

tions and a strictly maintained hierarchy of developing follicles. Each follicle contains an oocyte surrounded

by layers of theca, granulosa, and cumulus cells responsible for metabolically supporting the oocyte

through growth and maturation [Rimon-Dahari et al., 2016]. The ovarian stroma consists of dynamic extra-

cellular matrices and vasculature, which continuously remodel themselves to allow for follicle growth,

ovulation, corpus luteum progression, and regression [Kinnear et al., 2020]. In tissues as diverse and dy-

namic as the ovary, conventional bulk RNA-sequencing approaches fail to distinguish cell-type-specific

changes in gene expression and the signal of rare cell types is often lost. Furthermore, follicular cells

and oocytes depleted by ovarian aging create discrepancies in objectively comparing data between age

groups.

In this study, we utilized young and naturally aged, outbred female mice to resolve the spatial transcrip-

tomic landscape of mammalian ovarian aging. We identified eight main ovarian cell types based on

gene expression and morphological profiling. We further defined these main cell types by characterizing

their composition of unique sub-populations. Most sub-populations were significantly different in their

relative proportion between young and aged mice, indicating that ovarian aging affects gene expression

or cell development within each of the various ovarian compartments, causing divergence in cell popula-

tion phenotypes. We observed that there are distinct granulosa cell (GC) sub-populations found within

young and naturally aged antral follicles, and morphologically identified them as the inner and outer
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Figure 1. Spatial transcriptome analysis of mouse aging ovary

(A) Spatial transcriptome profiling workflow depicting collection, tissue handling, library preparation of two sections per capture area (4 capture areas and

eight sections total), sequencing, and analysis.

(B and C) Unbiased identification of cell-type heterogeneity and biological variance in young versus aged mouse ovaries. (B) UMAP clustering is colored by

identified cell clusters, (C) and sample group (young or aged).

(D) Cluster abundances by individual mouse ovary samples.

(E) Differences of cluster abundance plotted as log10 odds ratio against adjusted p value –log10 FDR. The solid horizontal line represents the significance

threshold of 0.05 and the vertical dotted lines represent a 1.5-fold change in either direction.
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GCs based on their proximity to the oocyte. Interestingly, the identification of differentially expressed

genes and pathway analysis revealed dysregulated inhibin and activin expression and aberrant gap junc-

tion activity in aged GCs.

To date, spatial transcriptomic technology has not been utilized to study mammalian ovarian biology, or

the effect of aging on ovarian function and processes. Our study confirms that ovarian aging has wide-

spread repercussions on gene expression and reveals age-related changes unique to various ovarian com-

partments in vivo. Additionally, our data provide insight into the relationship between ovarian aging, gran-

ulosa cells, and follicle development that may aid in the advancement of therapeutic intervention for AMA

women.

RESULTS

Aging phenotype

To confirm an age-related phenotype in our aged mice, ovaries from young (n = 4, 3–4 months) and aged

(n = 4, 15–16 months) mice were stained by H&E to visualize developing follicles. Ten tissue sections from

each animal were evaluated, and significantly more average follicles were observed in the young sections

compared to the aged (young = 269.0 G 33.35, aged = 77.6 G 14.93; p < 0.01) (Figure S1). The number

of primordial (young = 214.1 G 26.55, aged = 47.02 G 9.05; p < 0.001), primary (young = 37.39 G 4.64,

aged = 19.73 G 3.80; p < 0.01), and secondary follicles (young = 14.55 G 1.80, aged = 8.614 G 1.66;

p < 0.05) significantly declined in aged ovaries. Follicle attrition in the aged mice indicates that the animals

aged in a manner comparable to human ovaries and are a viable model for the analysis of ovarian aging.

Spatial RNA sequencing of the aging ovary

To investigate the molecular repercussions of aging on the mammalian ovary, we performed spatially

resolved transcriptomic analysis of young (n = 4, 3–4months) and aged (n = 4, 15–16months) mouse ovaries

(Figure 1A). The manufacturer-recommended sequencing depth is a minimum of 50,000 reads per tissue-

covered spot. We achieved a mean of 125,480 reads per spot, allowing for the detection of lowly expressed

transcripts. The subsequent dataset consisted of 4,191 spots (n = 2,566 young, n = 1,625 aged) with >75%

tissue coverage and an average of 5,348 genes detected per spot. Each circular spot covered a 55mm2 area

of tissue with 100mm center-to-center between spots. Thus, each spot is expected to encompass approx-

imately 5-10 total cells, depending on composition, resulting in approximately 20-40k total cells analyzed

(nz 13–26k young cells, nz 8–16k aged cells). In total, 20,434 genes were identified in young ovaries and

20,685 genes were identified in aged ovaries.

Clustering and cluster identification in aging ovary

Global gene expression profiles of tissue-covered spots from young and aged ovaries across all four slides

were merged and visualized using principal component analysis (PCA) (Figure S2). PCs 1, 2, 3, and 4

demonstrated marked differences in gene expression between young and aged ovaries that were

confounded by capture area differences. Therefore, expression profiles for each capture area were inte-

grated for further analysis to minimize technical batch effects. To establish a baseline profile of cell pop-

ulations, we performed initial UMAP clustering on tissue-covered spots from all eight young and aged

tissue sections, ultimately yielding 24 unique clusters (Figures 1B and 1C). Cluster abundances were signif-

icantly imbalanced between young and aged ovaries in 13 of 24 clusters (Figures 1D, 1E, and Table S1).

Subsequently, we analyzed the top 10 genes expressed per cluster (Figure 2) in order to categorize the clus-

ters into seven major, biologically relevant cell types: corpus luteum-regressing (CL-R), stroma, follicle,

corpus luteum-progressing (CL-P), epithelium 1, epithelium 2, and epithelium 3 (Figure 3). The follicle clus-

ter was significantly more abundant in young ovaries; this is indicative of follicle attrition in aged samples

and an ovarian aging phenotype consistent with humans (Figures 3D and Table S1). Interestingly, the CL-P
iScience 25, 104819, August 19, 2022 3



Figure 2. Cluster-specific gene expression

(A) Heatmap shows the top 10 genes per unbiased cluster.

(B) Heatmap shows the top 10 genes per newly combined cluster. Yellow represents upregulated genes within a cluster,

relative to all other clusters and purple represents downregulated genes.
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and epithelium 3 clusters were significantly more abundant in aged ovaries. Spatial profiling of the newly

defined clusters on the original tissue sections aligned strongly with morphology (Figure 4).
Identification of differentially expressed genes in aging ovary

To examine global aging transcriptomic changes within individual cell types, we compared young versus

aged gene expression profiles in each defined cluster. Differentially expressed genes (DEGs) were defined

as thosewith an adjusted p value% 0.05, a log2 fold-change> 1 or <�1 and expressed in at least 75%of one

of the groups being tested. We identified DEGs between age groups in all clusters: 2,506 in CL-R, 1,252 in
4 iScience 25, 104819, August 19, 2022



Figure 3. Major cell types found in the mouse ovary

(A) UMAP plot of new clusters defined by gene expression similarity and subsequently labeled according to their

congruence with tissue morphology.

(B) Abundance of major clusters as a proportion of total tissue-covered spots.

(C) Cluster abundances by individual mouse ovary samples.

(D) Differences of cluster abundance plotted as log10 odds ratio against adjusted p value –log10 FDR. The solid horizontal

line represents the significance threshold of 0.05 and the vertical dotted lines represent a 1.5-fold change in either

direction.
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stroma, 1,434 in follicle, 796 in CL-P, 984 in epithelium 1, 12 in epithelium 2, and 188 in epithelium 3 (Table 1).

The vast majority of DEGs were downregulated in aged spots relative to young spots. To determine what

makes each cluster unique, we also compared each cluster to all other clusters to identify cluster-specific

marker genes, using the same DEG cutoffs. Interestingly, the majority of marker genes for corpus

luteum-R, stroma, follicle, and corpus luteum -P overlap with DEGs. This demonstrates that many of the

genes differentially expressed with ovarian aging are the same genes that distinguish that cluster from

others; thus, transcriptomic changes related to ovarian aging are largely cell-type specific (Figure 5). The
iScience 25, 104819, August 19, 2022 5



Figure 4. Spatial mapping of defined clusters

Sections and spatial mapping of defined clusters. Sections stained by hematoxylin and eosin (left side) and spatial

distribution of the newly defined, main clusters on the four young and aged ovarian tissue sections (right side). Mapping

of clusters on tissue demonstrates appropriate alignment with morphology. Scale bar is 500mm.
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Table 1. Differentially expressed genes (DEGs) by cluster

Cluster Total genes expressed Total DEGs (upregulated in aged)

CL-R 11,103 2,506 (100)

Stroma 10,648 1,252 (163)

Follicle 11,434 820 (53)

CL-P 11,844 796 (104)

Epithelium 1 12,010 984 (3)

Epithelium 2 13,005 12 (2)

Epithelium 3 12,787 188 (25)

CL-R, Corpus Luteum-Regressing; CL-P, Corpus Luteum-Progressing.
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top stromamarker genes coded for genes upregulated in the stroma relative to other clusters and involved

in inflammation (Rela, Tnfrsf1a, Ccl21a) and immune response (Igkc, Ighg2c, Ighg2b, Ighm). The top follicle

marker genes coded largely for ribosomal proteins (Rps4x, Rps24, Rps3a1, and Rlp37), and inhibin and ac-

tivin subunits (Inha, Inhbb, and Inhba), all upregulated in the follicle (Table S2). Interestingly, top marker

genes upregulated in epithelium 2 and 3, clusters abundant in aged ovaries relative to young, included ac-

tins (Acta2 andActg2), cytoskeleton organizational proteins (Tagln, Pdlim3, and Fam183b), and a number of

transcripts implicated in muscle contraction and motor protein function (Cnn1, Des, Dynlrb2, Myl9, and

Tppp3) (Table S2).
Gene ontology and pathway analysis of differentially expressed genes in aging ovary

Pathway analysis was performed on DEG lists generated for all clusters using ingenuity pathway analysis

(IPA) and demonstrated a shared functional aging signature among the cell types. Pathways for EIF2

signaling, regulation of eIF4 and p70S6K signaling, mTOR signaling, and sirtuin dignaling, major orches-

trators of protein translation and cellular metabolism, were significantly enriched (FDR %0.05) in the

DEGs in all clusters (Figure 6). Additionally, CL-R, stroma, and epithelium 1 shared several other significant

pathways including estrogen receptor signaling, oxidative phosphorylation, and mitochondrial dysfunc-

tion, remodeling of epithelial adherens junctions, NRF2-mediated oxidative stress response, and BAG2
Figure 5. Cell-type specific differential gene expression in aging ovaries

Differentially expressed genes (DEGs) were identified in all clusters when comparing aged relative to young, defined by

an adjusted p value % 0.05, a log2 fold-change > 1 or < �1, and expression in at least 75% of one of the groups being

tested. Marker genes for each cluster were identified using the same cutoffs. The majority of marker genes for corpus

luteum-regressing (CL-R), stroma, follicle, and corpus luteum-progressing (CL-P) overlap with identified DEGs, demon-

strating that many genes differentially expressed with aging are the same genes that distinguish between cell type

clusters.

iScience 25, 104819, August 19, 2022 7
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Figure 6. Cell-type specific gene expression changes reveal dysregulated pathways in aging ovaries

Ingenuity Pathway Analysis performed on all cluster DEG lists demonstrated a shared functional aging signature among

cell clusters. (corpus luteum-regressing, CL-R; corpus luteum progressing, CL-P). EIF2 signaling, regulation of eIF4 and

p70S6K signaling, mTOR signaling, and sirtuin signaling were all significant (FDR%0.05) in all clusters. Corpus luteum-R,

stroma, and epithelium 1 share several other significant pathways including estrogen receptor signaling, oxidative

phosphorylation and mitochondrial dysfunction, remodeling of epithelial adherens junctions, NRF2-mediated oxidative

stress response, and BAG2 signaling.
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signaling. Furthermore, gene ontology (GO) analysis for overrepresentation was performed with upregu-

lated and downregulated DEGs in each cell type (Table 2). Regulation of gap junction activity, antagonism

of activin by follistatin, and signaling by TGF-beta family members were identified as significantly overrep-

resented terms in DEGs upregulated in the aged relative to the young follicle (FDR %0.05).
Heterogeneity in aging ovary sub-populations

In order to elucidate sub-cell populations and further define the effect of age on major cell types, we per-

formed sub-cluster analysis on each of the four largest cell types originally defined by more than one clus-

ter: CL-R, CL-P, stroma, and follicle. Sub-cluster analysis of CL-R identified nine transcriptionally unique

sub-populations (Figure 7A). Relative proportions of all nine populations were significantly different be-

tween young and aged (Table S1). Sub-clusters 1, 2, and 3 contained the most DEGs (Table 3); with sub-

clusters one and two consisting of primarily aged spots and sub-cluster 3 of primarily young spots. Analysis

of CL-P identified four transcriptionally unique sub-populations (Figure 7B), with the relative abundance of

sub-cluster 3 being significantly enriched in aged (Table S1). The stroma was found to consist of eight tran-

scriptionally unique sub-populations (Figure 7C); relative proportions of all populations were significantly

different between young and aged, except for sub-clusters 2 and 5 (Table S1). Lastly, the analysis of follicles

identified seven transcriptionally unique sub-populations (Figure 7D). Relative proportions of the majority

of cluster populations, clusters 0, 2, 5, and 6, were significantly different between young and aged

(Table S1). These results indicate the widespread impact of aging on gene expression and relative abun-

dance of unique sub-populations within the seven previously established major cell types.
Table 2. Gene ontology (GO) analysis of differentially expressed genes (DEGs) for overrepresentation

Cluster GO terms - upregulated DEGS in aged FDR GO terms - downregulated DEGS in aged FDR

CL-R Immune system 8.51E-07 Ubiquitin proteasome pathway 3.01E-07

Regulation of IGF transport and uptake by IGFBPs 4.77E-04 Integrin signaling pathway 1.96E-05

Extracellular matrix organization 1.63E-03 Cell cycle 5.47E-03

Stroma Respiratory electron transport 2.24E-14 Eukaryotic translation initiation 1.59E-44

Innate Immune System 6.13E-03 Mitochondrial biogenesis 1.79E-09

ER to Golgi Anterograde Transport 1.23E-02 Formation of annular gap junctions 5.74E-05

Follicle Regulation of gap junction activity 9.40E-03 Translation 5.48E-60

Antagonism of activin by follistatin 1.17E-02 ER quality control compartment 1.17E-02

Signaling by TGF-beta family members 2.04E-02 Organelle biogenesis and maintenance 1.48E-02

CL-P Pink/Parkin Mediated Mitophagy 1.29E-03 Translation 6.43E-58

Mitophagy 3.55E-04 Eukaryotic translation initiation 1.05E-50

Detoxification of Reactive Oxygen Species 3.83E-03 Mitochondrion translation 3.43E-05

Epithelium1 N/Aa N/Aa Mitotic cell cycle 3.10E-06

Calnexin/calreticulin cycle 6.34E-06

Collagen formation 4.07E-02

Epithelium2 Keratan sulfate degradation 1.01E-02 N/Sb N/Sb

Epithelium3 N/Aa N/Aa Mitochondrial biogenesis 2.36E-07

Collagen biosynthesis and modifying enzymes 8.33E-03

Collagen formation 2.95E-02

CL-R, Corpus Luteum-Regressing; CL-P, Corpus Luteum-Progressing.
aNot enough upregulated DEGs for analysis.
bNo significant results.

iScience 25, 104819, August 19, 2022 9



ll
OPEN ACCESS

10 iScience 25, 104819, August 19, 2022

iScience
Article



Figure 7. Analysis of sub-cluster heterogeneity in aged ovaries

UMAP clustering of sub-populations, colored by sub-cluster (left) and age group (middle). Differences in cluster abundance are plotted as log10 odds ratio

against adjusted p value –log10 FDR (right).

(A) All corpus luteum-regressing (CL-R) sub-populations are significantly different in terms of relative proportion between young and aged ovary.

(B) There are four sub-populations within the corpus luteum-progressing (CL-P) cluster, of which sub-cluster 3 is significantly more abundant in aged ovaries.

(C) Stroma consists of eight sub-populations, six of which are significantly different in their relative abundance in aged compared to young.

(D) Follicles were found to have seven transcriptionally unique sub-populations; relative proportions of sub-clusters 0, 2, 5, and 6 were significantly different

between young and aged ovaries.
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Differential impacts of ovarian aging in follicle sub-clusters

Gene expression analysis revealed seven follicle sub-clusters. Of these, sub-clusters 5 and 6 were significantly

more abundant in aged ovaries (Figures 7D and Table S1). Analysis of gene expression for known follicular

markers, (Esr2,Fshr,Cyp11a1) suggests these sub-clusters representgranulosacells (GCs) in antral follicles (Fig-

ure S3). This was confirmedbymorphological analysis of spatial mapping of both sub-clusters (Figure S4). Also,

by morphological analysis, sub-cluster 5 appears to represent inner antral GCs with closer proximity to the

oocyte, while sub-cluster 6 represents outer antral GCs that make up the perimeter of the follicle. By the

same standards, sub-clusters 0 and 2 represent antral follicleGCs in youngovarieswith sub-cluster 0 represent-

ing the innerGCs and sub-cluster 2 comprising the outer layer ofGCs. These sub-clusters are largely only found

within their agegroup (Figure 7D), indicating thatGCswithin large follicles are significantly impactedbyovarian

agingand that youngandagedGCshavehighlydistinctgeneexpressionprofiles as a result. InnerGCs inpartic-

ular were defined by significantly upregulated expression of Inha, Inhba, Inhbb, Fst, andGja1 compared to all

other follicular sub-clusters. Interestingly, Inha was the top marker gene by absolute fold change in both sub-

cluster 5 (agedGCs) and sub-cluster 2 (youngGCs), but was significantly upregulated in aged relative to young

GCs. Sub-clusters 1 and 3 may be representative of early follicles and express many oocyte-specific transcripts

known to be essential to early follicle activation and progression, such as Sohlh1, Zar1, andNobox (Figure S3).

Gene expression and age group abundances of these sub-clusters were less severely impacted by aging, sug-

gesting that ovarian aging disturbs follicular growth and oocyte maturation at later stages of development

rather than recruitment or quality of resting and early follicles.

Identification of differentially expressed genes in aging oocytes

The eighth main cell type, oocyte, was determined by selection for spots expressing oocyte-specific genes,

Gdf9 and Zp3. This resulted in the identification of 321 spots (young, n = 265; aged, n = 56) (Figure 8A). The

disparity in the number of oocyte-representing spots between age groups confirms a diminished ovarian

reserve phenotype in our aged mice (Figure 8B). We further parsed these by selecting clusters with similar

gene expression. Specifically, clusters 4 and 6 were removed from the analysis because the majority of their

top 10 genes were not expressed in any other cluster, suggesting that they represent a distinct cell type or

mixture of cell types (Figure 8C). Spots excluded as non-oocytes may have been contaminated with follic-

ular cell transcripts owing to overlapping morphology within the enclosed spot area (Figure 8D). To

examine transcriptomic changes within aged oocytes, we used an adjusted p value % 0.05 and a log2

fold-change > 1 or < �1 to reveal 73 DEGs, all of which were downregulated in aged oocytes relative to

young. Pathway analysis of DEGs identified a single enriched pathway, hepatic fibrosis, containing six en-

riched genes. Five of these genes are targets of transforming growth factor beta-1 (TGF-b1), found to be

the top upstream molecular regulator by a regulator effects analytic. TGF-b1 is predicted to be inhibited

(Z score = �3.7, FDR = 2.9x10�11) in aged oocytes, and 33/73 DEGs were found to be TGF-b1 targets.

Heterogeneity in aging oocyte sub-populations

Further analysis of oocyte gene expression revealed four sub-cluster populations (Figure 8E). Three of

these sub-populations (Clusters 0–2) were composed of both young and aged spots; however, the fourth

sub-cluster (Cluster 3) contained only young spots (Figures 8F and 8G). Because of this, the identification of

DEGs and pathway analysis were performed between sub-clusters, versus between age groups within each

sub-cluster, to reveal how gene expression defines each oocyte sub-cluster relative to all other sub-clus-

ters. We used an adjusted p value% 0.05 and a log2 fold-change > 1 or <�1 to define DEGs; of which there

were 309 in sub-cluster 0, 555 in sub-cluster 1, 90 in sub-cluster 2, and 99 in sub-cluster 3 relative to all the

other sub-clusters. Using a regulator effects analytic, we identified upstream regulators, cytokines, and

growth factors predicted to be significantly activated or inhibited between the oocyte sub-clusters

(Figure 9). Each sub-cluster was highly distinct with many cluster-specific regulators. TGF-b1 was again

identified as a significant upstream regulator and predicted to be activated in sub-cluster 3 (Figure 9C).
iScience 25, 104819, August 19, 2022 11



Table 3. Differentially expressed genes (DEGs) within sub-clusters

Sub-cluster Total genes expressed Total DEGs Upregulated DEGs in aged Downregulated DEGs in aged

Corpus luteum-regressing

0 11,617 2 1 1

1 10,819 76 45 31

2 11,098 2,531 18 2,513

3 11,834 52 4 48

4 11,172 0 0 0

5 8,458 0 0 0

6 11,432 11 0 11

7 10,497 0 0 0

8a – – – –

Corpus luteum-progressing

0 11,965 0 0 0

1 11,253 134 4 130

2 12,180 17 13 4

3 11,834 52 4 48

Stroma

0 9,750 6 0 6

1 11,561 0 0 0

2 11,013 1,052 57 995

3 10,228 1 0 1

4 10,786 41 0 41

5 11,211 71 1 70

6 11,048 26 2 24

7 10,497 0 0 0

Follicle

0 11,946 177 0 177

1 11,063 602 0 602

2 11,826 2 0 2

3 11,962 4 0 4

4 11,665 1 1 0

5 11,610 16 5 11

6 11,432 11 0 11

aToo few spots to analyze.
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Interestingly, TGF-b1 was previously predicted to be inhibited overall in aged oocytes relative to young,

and sub-cluster 3 is composed of only young spots. Sub-cluster 3 also exhibited significant activation of

cytokine and growth factors (Figures 9B and 9C). Sub-cluster 0, represented primarily by aged spots,

showed activation of CSF2 cytokine, indicating oocyte response to a pro-inflammatory microenvironment.
DISCUSSION

The ovary is prone to rapid and early-onset aging, which is characterized by follicle attrition and diminished

oocyte quality and results in loss of reproductive potential. The mechanisms behind the marked reduction

in follicle pool and oocyte quality owing to aging are far from being fully understood [Broekmans et al.,

2009]. The ovary is also arguably the most dynamic mammalian organ. Tightly regulated molecular mech-

anisms orchestrate cyclic follicular growth and attrition, oocyte maturation, ovulation, and corpus luteum

endocrine function, all simultaneously occurring within the ovarian stroma. The rapidly changing ovarian

landscape and vast cell-type heterogeneity have previously limited our ability to effectively study and
12 iScience 25, 104819, August 19, 2022
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Figure 8. Transcriptomic profiling reveals heterogeneity in aged oocytes

UMAP clustering of spots selected for expression of Gdf9 and Zp3, colored by identified cell clusters (A) and age group (B).

(C) Heatmap shows the top 10 genes per cluster; yellow represents upregulated genes within a cluster, relative to all other clusters, purple represents

downregulated.

(D) Clusters determined to be representative of oocytes versus non-oocyte clusters were eliminated from analysis based on irregular gene expression.

(E-G) Identification of oocyte sub-cluster populations. (E) UMAP clustering of oocyte spots based on gene expression. (F) UMAP clustering of oocyte spots

based on age group. (G) Differences of cluster abundance plotted as log10 odds ratio against adjusted p value –log10 FDR. Cluster 0 is significantly more

abundant in aged ovaries, while Clusters 1, 2, and 3 are significantly more abundant in young.
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understand the ovary on a molecular scale. These gaps in knowledge have also restricted the development

and success of therapeutics; even artificial reproductive technologies (ART) are often unable to overcome

the detriments of maternal age [Ubaldi et al., 2019].

Our spatial transcriptome profiling of ovarian aging inmice advances current knowledge of the relationship

between unique ovarian cell types in young fertile ovaries, as well as how gene expression and cellular in-

teractions change between ovarian cell types with age. We originally identified 24 clusters, the majority of

which were significantly different in their relative abundance between young and naturally aged ovaries.

This may be owing to certain cell populations appearing more predominant overall as other populations

die off with age; alternatively, particular cell populations may take on aging phenotypes in the older

mice leading to gene expression disparities and separation of young and aged clusters despite represent-

ing the same cell type. Ultimately, eight main cell types were defined based on gene expression and spatial

mapping; these were further parsed out and defined by their composition of sub-cluster populations to

gain a deeper understanding of the distinctive effects of aging within different ovarian compartments.

Specifically, the analysis identified several molecular pathways dysregulated by aging across all ovarian cell

populations: EIF2 signaling, Regulation of eIF4 and p70S6K signaling, mTOR signaling, and sirtuins

signaling. These pathways are interrelated and have been widely studied in the context of cellular senes-

cence and aging [Lee et al., 2019; Papadopoli et al., 2019; Steffen and Dillin, 2016; Longo and Kennedy,

2006]. Mammalian sirtuins extend organismal lifespan by mediating age-related telomere attrition,

genome integrity, DNA damage repair, and metabolism [Lee et al., 2019]. More recently, they have

been established as key modulators of antioxidant and redox signaling by providing cellular protection

from reactive oxygen species (ROS) [Singh et al., 2018]. Similarly, the mTOR signaling pathway has been

widely implicated in processes associated with aging; including cellular senescence, immune response,

autophagy, mitochondrial function, and protein homeostasis (proteostasis) [Papadopoli et al., 2019].

The same pathways have been acknowledged in the literature in the context of ovarian aging and serve as

validation for the use of spatial transcriptomics in the mammalian ovary. To date, several studies have

shown that sirtuins mitigate ROS accumulation otherwise associated with oocyte deterioration, granulosa

cell (GC) apoptosis, and accelerated degeneration of the corpus luteum [Yang et al., 2021; Sohel et al.,

2019; Wang et al., 2017; Yang et al., 2017; Prasad et al., 2016; Tiwari et al., 2015; Chaube et al., 2014].

Signaling through mTOR is associated with follicle activation, development, and oocyte maturation in

response to hormone stimulation [Guo and Yu, 2019]. Overall, spatial transcriptomic profiling indicates

that the early onset of the many pathways implicated in general aging and age-related diseases, including

neurodegenerative disorders, metabolic diseases, and cancer, are the same ones that characterize ovarian

aging and contribute to female reproductive decline [Carafa et al., 2012].

Transcriptome profiling also revealed that ovarian aging is characterized by significant changes in the

epithelium and stroma. We observed that the aged stroma takes on an inflammatory state characterized

by increased expression of marker genes involved in inflammation (Rela, Tnfrsf1a, Ccl21a) and immune

response (Igkc, Ighg2c, Ighg2b, Ighm). These findings are consistent with the occurrence of a recently

defined phenotype of mammalian aging known as ‘‘inflammaging,’’ which is characterized by chronic,

low-grade inflammation [Huang et al., 2019; Franceschi and Campisi, 2014]. We will not deeply discuss

the repercussions of inflammaging here, as recent studies have explored inflammaging in the context of

ovarian aging [Zhang et al., 2020]; however, this data provides important validation for the efficacy of

spatial transcriptomic technologies in ovarian research. Additionally, organelle localization was enriched

in the gene ontology and identified significantly differentially expressed genes involved in mitochondria

transport and organization (Mgarp, upregulated in aged; Dnm2, Dynll2, and Vapa, downregulated in

aged). Intriguingly, MGARP contributes to steroidogenesis through a feedback loop regulated by
14 iScience 25, 104819, August 19, 2022
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Figure 9. Upstream regulator analysis in oocyte sub-clusters

Each significant regulator is assigned a Z score; a positive score (R2) indicates the regulator is predicted to be activated

and a negative score (%-2) indicates it’s predicted to be inhibited.

(A) Each cluster is highly distinct with cluster-specific regulators and regulators with opposite z-scores from one cluster to

another.

(B) Cytokines are activated in Cluster 3.

(C) Growth factors are activated in Cluster 3 but inhibited in Cluster 1.
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hormones derived from the hypothalamic-pituitary-gonadal (HPG) axis [Zhou et al., 2011]. Its aberrant

expression leads to severe mitochondrial fragmentation, aggregation, and decrease in cellular content

of mtDNA, with demonstrated repercussions for proper steroidogenesis [Matsumoto et al., 2009].

Furthermore, we found ovarian aging to be associated with increased heterogeneity in the epithelium. The

ovarian surface epithelium (OSE) is a layer of squamous and cuboidal cells that envelopes the ovary [Ed-

mondson et al., 2002]. Directly beneath the OSE, the extracellular matrix (ECM) is situated to provide

the necessary structural and biochemical support. Three unique epithelial cell populations were defined

by spatial transcriptome clustering of young and naturally aged ovaries. Two of the three epithelial clusters

were more significantly abundant in naturally aged ovaries and morphologically consistent with the thick-

ening of the epithelium [Briley et al., 2016; Mara et al., 2020]. Further analysis of DEGs upregulated in aged

revealed Keratan sulfate degradation as the only significantly overrepresented term. Keratan sulfate (KS) is

one of the many glycosaminoglycans (GAG) found in ECM [Ahmad and Rosenfeld, 1999]. Degradation of

GAGs in the ECM can disrupt the structural integrity of the tissue and result in further degradation. Addi-

tionally, nitric oxide (NO), which is generally elevated in response to inflammation, has been shown to

mediate GAG degradation [Ahmad and Rosenfeld, 1999]. Thus, in the naturally aged ovary, ubiquitous

inflammation leading to elevated NOmay contribute to reduced structural integrity and insufficient recon-

struction of the ECM and OSE during folliculogenesis and post-ovulation.

Lastly, our investigation of alterations within the spatial transcriptome of follicles and oocytes, the func-

tional units of female reproduction, revealed seven and four sub-populations of follicular cells and oocytes,

respectively. Curiously, there were four significant follicle sub-clusters, two more abundant in aged relative

to young, and two more abundant in young relative to aged. These sub-populations were highly distinct

between age groups and most significantly affected by aging compared to other follicular sub-popula-

tions. Gene expression and morphological analysis suggested these sub-clusters represent the inner

and outer layers of granulosa cells (GCs), based on proximity to the oocyte, within antral follicles. Previous

studies have been limited by their lack of localization data, which prohibited them from distinguishing sub-

cell types within a known population.

Interestingly, gene ontology analysis revealed antagonism of activin by follistatin, TGF-beta signaling

pathway, Apoptosis signaling pathway, and regulation of gap junction activity to be enriched in aged

female GCs. In the ovary, these pathways are responsible for mediating crucial intercellular communica-

tions between GCs and the developing oocyte. Specifically, inner GCs of aged antral follicles were en-

riched for Inha, Inhba, Inhbb, Fst, and Gja1 relative to all other follicular sub-clusters. Oocytes build inti-

mate contacts with their surrounding somatic cells in the follicle; these points of granulosa cell-oocyte

contact are crucial for oocyte development and are largely dependent on two specific gap junction pro-

teins, Gja1 and Gja4 [Kidder and Mhawi, 2002]. Connexin-37 (CX37), encoded by Gja1, constitutes gap

junctions between the oocyte and immediately surrounding cumulus cells, whereas Gja4 codes for Con-

nexin-43 (CX43) and facilitates communication between layers of GCs. This coupling permits GCs to pro-

vide the growing oocyte with nucleotides, amino acids, and energy substrates, as well as allowing the

oocyte to dictate its somatic microenvironment via a myriad of oocyte-secreted factors [El-Hayek and

Clarke, 2015].

Furthermore, inhibins and activins, encoded by Inha, Inhba, and Inhbb, are evolutionarily conserved mem-

bers of the TGF-b family also observed to be significantly differentially expressed in aged antral follicles.

Inhibin subunits a and bAwere significantly overexpressed in agedGCs versus any other follicular sub-pop-

ulations. Follistatin (Fst), an activin antagonist, was also significantly upregulated in the GCs of aged antral

follicles. As major secretory products of GCs, inhibins, and activins exhibit nearly directly opposite biolog-

ical effects, acting in mammalian females to inhibit and enhance pituitary secretion of follicle-stimulating

hormone (FSH), respectively [Knight et al., 2012]. In the ovary, FSH is responsible for stimulating the growth
16 iScience 25, 104819, August 19, 2022
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and recruitment of immature follicles, as well as promoting the survival of growing antral follicles through

interaction with its GC-expressed receptor [Orlowski and Sarao, 2022]. It has also recently been shown that

FSH increases steady-state levels of mRNAs encoding the principal follicular connexins, CX37 and CX43,

thus augmenting gap junctional communication between GCs and oocytes during late folliculogenesis

[El-Hayek and Clarke, 2015]. Altogether, these data may suggest a new mechanism for the loss of oocyte

quality associated with female aging. Age-related dysregulation of the activin-inhibin ratio in the later

stages of folliculogenesis may disrupt proper FSH secretion and GC-oocyte gap junctional communica-

tions central to oocyte development and competence.

Deeper analysis of oocyte sub-populations revealed cytokine activation in both age groups. Themajority of

this activation is predicted in young -only Cluster 3 (Figure 9B). Cytokines are crucial regulators of normal

ovarian development and function. They are responsible for orchestrating a permissive, supportive envi-

ronment for follicle growth and selection during folliculogenesis and ovulation [Field et al., 2014]. Given

the intricate network of intercellular and paracrine signaling among the oocyte and the surrounding follicle,

the spatiotemporal regulation of cytokine processes is likely tightly regulated. Additionally, we found that

TGF-b1 signaling was predicted to be significantly inhibited across all identified naturally aged oocytes and

upregulated in the oocyte sub-cluster population containing only young oocyte expression spots. It is

known that TGF-b1 is not expressed by the oocyte itself, but rather in the surrounding granulosa cells where

it mediates signaling cascades via natriuretic peptide type C (NPPC) responsible for maintaining meiotic

arrest within the oocyte until activation by luteinizing hormone (LH) surge [Yang et al., 2019]. Aberrant

resumption of meiosis prior to cytoplasmic maturation or chromosome alignment may be a contributing

factor to the loss of oocyte quality and subsequent reduced reproductive potential as a result of ovarian

aging.

In summary, our spatial transcriptomic analysis offers insight into the molecular mechanisms contributing

to ovarian aging. Through the comparison of sub-cluster populations within and between age groups, we

piece together a more complete picture of the ovary and the consequences of aging for different cell pop-

ulations in vivo. Our data will aid in the further elucidation of the precise relationship between ovarian aging

and female reproductive decline, as well as identifying new targets for the therapeutic restoration of

fertility.
Limitations of the study

This study is primarily limited by the sample size (n = 4) of young and aged animals used for spatial tran-

scriptomic analysis. As aged mice have fewer follicles and oocytes within their ovaries, our ability to thor-

oughly define this population of cells in such a small sample size was limited. We also observed a few

limitations with the spatial transcriptomics platform. First, our study is limited by the fact that the ovary

is a heterogeneous, three-dimensional organ of which we are only analyzing a single slice from each animal.

The use of two sections per capture area revealed the heterogeneity of each capture area, which was high-

lighted in the initial PCA analysis of the data (Figure S2). Because different mice were used for each capture

area, the impact of the capture area relative to the heterogeneity between mice and the ovary cannot be

fully evaluated. Additionally, the platform was also considerably limited in its ability to target small and

sparsely occurring morphological features, such as follicles and oocytes. Spatial mapping of the oocyte

sub-clusters to the tissue sections did not directly align with manually identified germ cells (Figure S5).

We used known cell-type specific markers to validate populations identified by the spatial transcriptomics

platform; however, further validation of sequencing could be performed by in situ hybridization or similar

techniques. Many spots assigned to the oocyte cluster by gene expression appeared morphologically to

be follicular cells while some spots visibly containing oocytes were excluded from the oocyte cluster

completely. Furthermore, some follicle sub-clusters highly expressed oocyte-specific transcripts, indi-

cating contamination owing to overlapping morphology within the enclosed spot area. These discrep-

ancies are likely owing to the size and spacing of the spots compared to follicles and oocytes; each circular

gene expression spot covers 55mmarea of tissue, with about 45mmof uncovered space between spots. This

presents limitations when assessing follicles, which range from 50mm (primary) to 700mm (pre-ovulatory) in

diameter, and even smaller oocytes, falling anywhere between 15 and 80mmdiameter depending on devel-

opment [Xiao et al., 2015]. Without being able to control the size or alignment of gene expression spots on

the tissue, it is unavoidable that follicular cells and oocytes were contained within the same spots but as-

signed to single clusters.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Visium Spatial Tissue Optimization

Slide & Reagents Kit

10x Genomics 1,000,193

Visium Spatial Gene Expression

Slide & Reagents Kit

10x Genomics 1,000,187

Deposited data

Raw and processed data This paper GSE188257

Experimental models: Organisms/strains

CD-1 Mice Charles River CD-1� IGS Mouse

Software and algorithms

Space Ranger 1.2 10x Genomics https://support.10xgenomics.com/spatial-gene-expression/software/

downloads/latest

Other

Analysis code This paper https://github.com/haywoodm/spatial_transcriptome_ovary.git
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, Mandy

Katz-Jaffe (mandyk@colocrm.com).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Raw sequencing data, images, and processed data have been deposited in the Gene Expression

Omnibus (GEO) repository under accession GEO: GSE188257.

d All original code has been deposited at GitHub: https://github.com/haywoodm/spatial_

transcriptome_ovary.git.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All animal experiments were approved by the Fertility Laboratories of Colorado Ethics in Research Com-

mittee. Outbred CD-1 female mice were obtained from Charles River Laboratories (Wilmington, MA,

USA) at 3–4 weeks of age. Mice were housed at a controlled photoperiod (14h light, 10h dark), temperature

(20�C-26�C), and humidity (30%–40%), with food and water available ad libitum. Females were naturally

aged to represent young (Young; 3–4 months old) and AMA (Aged; 15–16 months old) populations. Repro-

ductive function in female mice is lost at around 15 months, while in women menopause occurs at an

average age of 50. Therefore, we aimed at 13-14 months to reflect human reproductive aging of women

in their forties. All animals were sacrificed via cervical dislocation.
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METHOD DETAILS

Tissue processing

Ovaries were retrieved from Young and Aged females for spatial transcriptomic analysis for a total of 8

ovary sections from 8 mice (n = 4 per age group). Ovaries were rinsed in cold PBS, cryo-preserved in

TissueTek Optimal Cutting Temperature (OCT) compound (VWR International), and stored at �80�C in

an airtight container, as recommended by the manufacturer protocol (10x Genomics, Visium Spatial,

CG000240 Rev C). Sections were selected for sequencing based on previous optimization of the sectioning

depth required to reach the approximate midpoint of each ovary, based on the widest diameter region of

the tissue.
Hematoxylin & eosin staining for follicle counting

One ovary per female was fixed in 4% paraformaldehyde (PFA) (Young, n = 4; Aged, n = 5) for 48–72 h and

embedded in Formula R paraffin using tissue cassettes (Leica Biosystems). Embedded tissue was cut pole-

to-pole in serial 8mm sections and mounted onto positively charged glass slides. Sections were melted for

1 h at 62�C before staining with hematoxylin and counter-staining with eosin. To generate representative

follicle counts for Young versus Aged females, ten evenly spaced tissue sections per ovary were selected. A

researcher blinded to the treatment groups manually counted and classified all follicles with an oocyte ap-

pearing in plane. Follicles were classified as either primordial, primary, secondary, or antral. Total follicle

counts and counts per follicular classification were summed and averaged for each ovary. Average counts

and classifications for Young versus Aged ovaries were compared by Student’s t test with p < 0.05 consid-

ered to be significant.
Spatial transcriptomics

Before proceeding with the full spatial transcriptomics protocol, a tissue optimization experiment was per-

formed to identify the optimal length of permeabilization time for maximum RNA capture (10x Genomics,

Visium Spatial, CG000238 Rev A). Briefly, ovaries were sectioned in a pre-cooled cryostat at 10uM thickness

onto seven 8 3 8mm capture areas on a Visium Tissue Optimization Slide (10x Genomics) containing oli-

gonucleotides for mRNA capture. Tissue was permeabilized for various amounts of time before captured

RNA underwent a reverse transcription (RT) reaction in the presence of fluorescently labeled nucleotides.

Fluorescent cDNA footprints were generated and analyzed using the Nikon Ti-E Fluorescent Microscope

with an Andor Zyla 4.2 camera to reveal 18 min as the optimum permeabilization time for mouse ovaries

(Figure S6).

Young and Aged ovary sections were then processed for complete spatial transcriptomic analysis as per

the manufacturer’s instruction (10x Genomics, Visium Spatial, CG000239 Rev D). Tissue sections were cut

onto a Visium Gene Expression slide with four 6.5 3 6.5mm capture areas each consisting of 5,000

oligo-barcoded spots. One Young and one Aged ovary section were mounted adjacent to each other

within each capture area, effectively increasing the number of technical replicates on eachGene Expression

slide (n = 4 per age group). The slide underwent methanol fixation and hematoxylin and eosin (H&E) stain-

ing with immediate imaging at 40x magnification on the Aperio AT2 (Leica Biosystems) (Figure S7). Tissue

was then subjected to permeabilization with proprietary enzyme (18 min), reverse transcription and second

strand synthesis, all performed on the slide. Amplification of cDNA was executed by qPCR using the KAPA

SYBR FAST-qPCR kit (KAPA Biosystems) and analyzed on the Veriti Thermal Cycler (Applied Biosystems).

Amplified cDNA was quantified using a Bioanalyzer High Sensitivity Chip (Agilent).

Following library construction, as per manufacturer’s instructions, libraries were quantified using the KAPA-

Illumina PCR quantification kit (KAPA Biosystems) and pooled at 4nM concentration with a sample ratio

corresponding to the slide surface area of tissue coverage obtained from the H&E imaging. Pooled,

paired-end libraries were sequenced on a NextSeq 550 (Illumina) at theMassachusetts Institute of Technol-

ogy using a 75nt NextSeq kit (Illumina) loaded at a concentration of 1.8p.m. A total of four capture areas

and eight tissue sections were sequenced on one Visium Gene Expression Slide.
Data processing, clustering, and identification of cell types

Sequencing data was processed using the BMC/BCC 1.8 pipeline (OpenWetware, 2020), which includes

Space Ranger 1.2 (10x Genomics). Space Ranger is a set of analysis pipelines for processing Spatial Tran-

scriptomic data. Feature barcode matrices and tissue images were uploaded into R and processed using
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Seurat version 4.0.2 in general accordance with their integrative guided analysis. Each tissue image slide

was divided according to Aged and Young slices. Spots corresponding to less than approximately 25% tis-

sue or to unidentifiable tissue residue were discarded. The mitochondrial content was calculated for each

spot and was used as a regression variable in SCTransform normalization. Individual slides were then inte-

grated using 3,000 features. Integration anchors were identified using the ‘‘SCT’’ normalization method.

Linear dimension reduction was performed using the following parameters: RunPCA (npcs = 50), Find-

Neighbors (dims = 1:50, k.param = 10), FindClusters (resolution = 0.9), RunUMAP (dims = 1:50), where

the elbow method was used to help determine the number of dimensions to consider. Uniform manifold

approximation and projection (UMAP) clustering yielded 24 unique clusters. Significant differences be-

tween Young and Aged cluster proportions were calculated using Fisher Exact Test followed by Benja-

mini-Hochberg p value adjustment. All results are listed in Table S1. Significance was defined as clusters

with and FDR %0.05 and an odds ratio R1.5 or % �1.5. Odds ratios of Ginfinity were plotted as G2.

The top 10 positive markers per cluster were identified using FindAllMarkers and logistic regression.

The slide was set as a latent variable and genes detected in at least 10% of one population were considered

expressed. Seven cell type identities were assigned based on shared gene expression trends.
Differential expression and pathway analysis within and between cell types

Spots within each cell type cluster were stratified by Aged and Young. Differentially expressed genes

(DEGs) between the two age groups were calculated using FindMarkers similar to before, with the

following parameters: ident.1 – ‘‘Aged,’’ group.by = ‘‘group,’’ subset.ident = ‘‘subset,’’ and logfc.thres-

hold = 0 to output all expressed genes. Statistical significance for differential expression was defined by

an adjusted p value % 0.05, a log2 fold change R1 or % -1, and R75% of spots in one group (pct.1

or pct.2) expressing the gene. Marker genes for each cell cluster were identified similarly, with

ident.2 = NULL. Ingenuity Pathway Analysis (IPA, Qiagen) was used to test for biological enrichment,

and statistical significance was defined by adjusted p values % 0.05.
Sub-cluster analysis of cell types

Individual cell types were subset from the original dataset and re-clustered usingmethods similar to before

with the following parameters: RunPCA (npcs = 30), FindNeighbors (dims = 1:30, k.param = 20), FindClus-

ters (resolution = 0.7), RunUMAP (dims = 1:30). Cluster proportions, differential gene expression and

pathway analysis was completed as described above for initial cell type identification. Oocytes were iden-

tified by sub-setting all spots expressing bothGdf9 and Zp3 and FindClusters (resolution = 0.3), RunUMAP

(dims = 1:10). Oocyte identity was assigned based on shared gene expression trends. Ingenuity Pathway

Analysis (IPA, Qiagen) was used to test for biological enrichment between oocyte sub-cluster populations,

and statistical significance was defined by adjusted p values% 0.01 and an upstream regulator Z scoreR2

or % -2.
Gene ontology analysis of DEGs

Gene ontology (GO) overrepresentation analysis was performed using the PANTHER Classification System

version 16.0 statistical enrichment test (http://pantherdb.org/). DEG lists generated for all clusters in Young

versus Aged ovaries were analyzed by means of their Ensembl gene identifier and fold change, and then

annotated using the ‘‘Reactome pathways’’ dataset with Bonferroni correction (FDR%05).
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