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Introduction
Adverse drug reactions (ADRs) are unintended and unde-
sired medical outcomes associated with administration of 
drugs. Adverse drug reactions are a major challenge to drug 
development and can lead to withdrawal of marketed drugs 
or failure of drugs during development.1,2 Therefore, identi-
fication and prediction of ADRs is a major focus of the 
pharmaceutical industry and regulatory agencies, such as the 
Food and Drug Administration (FDA).

During drug development, large amounts of data are 
acquired during the discovery, preclinical, and clinical 
phases. A small fraction of these data are published when a 
drug is approved for marketing. However, substantial 
amounts of data remain unpublished within the relevant 
pharmaceutical company. In addition to this, data from 
genome-wide studies and high-throughput studies acquired 
by academic institutions remain in isolated silos in different 
biomedical and chemical databases, such as Gene Expression 
Omnibus (GEO), NCBI Database of Genotypes and 
Phenotypes (dbGaP), The Pharmacogenomics Knowledge 
Base (PharmGKB), Connectivity Map, and European 
Bioinformatics Institute (EBI) Array Express Archive.3–5 
Effectively integrating and analyzing these data using cur-
rent systems pharmacology approaches may allow under-
standing of ADR mechanisms and improve ADR evaluation 
and prediction.6,7

Current Framework for Capturing Medical 
Diagnosis and ADRs
One of the challenges in building a systems pharmacology 
model for ADRs is in capturing medical information related to 
drug administration and adverse events. Most of the medical 
information exists as natural language text, which means that it 
is not easily accessible to computational analyses.8 In addition, 
different databases annotate clinical phenotypes using different 
vocabularies. For example, FDA and the European Medical 
Agency use Medical Dictionary for Regulatory Activities 
(MedDRA)9 to capture adverse events. The MedDRA is a 
standardized medical terminology established by the 
International Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals for Human 
Use (ICH) and is used by regulatory agencies, pharmaceutical 
companies, and health care systems. Another standardized 
medical vocabulary is Systematized Nomenclature of 
Medicine—Clinical Terminology (SNOMED-CT)10 that is 
used in direct patient care and is implemented in electronic 
medical records (EMRs). The SNOMED-CT is maintained 
by the International Health Terminology Standards 
Development Organization (IHTSDO) and is structured into 
19 hierarchies that are further subdivided to describe a patient’s 
health. Another classification system that is used for billing 
purposes in the United States is International Statistical 
Classification of Diseases and Related Health Problems (ICD). 
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The ICD is a medical classification system for diseases, labora-
tory findings, and causes of injury and diseases. It is owned and 
published by World Health Organization. All of these diction-
aries and classification systems are capturing clinical pheno-
types. However, to be able to use the information in these 
medical records for mechanistic modeling, these data need to 
be expanded from a simple vocabulary and be translated to a 
knowledge framework that will provide information about 
mechanism and causes of adverse events.4 Therefore, the ter-
minologies used in these vocabularies have to be standardized 
to a common vocabulary for the cross-communication between 
content coded in different formats and standards.

Ontologies to Integrate Biomedical Data
Ontologies are being effectively used to systematically classify 
biomedical terms from model organisms.11 The earliest of 
these ontologies is the Gene Ontology (GO) which was initi-
ated in 1998 to annotate genes and gene products from 
Drosophila melanogaster (fruit fly), Mus musculus (mouse), and 
Saccharomyces cerevisiae (baker’s yeast).11 An ontology is defined 
by Kohler et al12 as “a computational representation of a domain 
of knowledge based upon a controlled, standardized vocabulary 
for describing entities and the semantic relationship between 
them.” Ontology allows one to define terms and define the 
relationship between terms after rigorous discussions among 
the biomedical researchers and bioinformaticians on how to 
capture this relationship such that a computer program using 
this ontology produces reliable results based on the agreed-
upon term definitions and semantic relations among the terms. 
Therefore, an ontology is built around a specific subject matter 
and is characterized by classes that are well defined. Hierarchical 

organization of classes in an ontology is based on both direct 
asserted parent-child relationships and indirect inferred logical 
relationships that go from a general concept (broader/upper 
level class) to a specific concept (narrower/lower level class). 
For example, in GO, certain terms are asserted as a parent-
child relationship via an “is a” relation. At the same time, cer-
tain terms are classified via the inferred relations (ie, negatively 
regulates, positively regulates) in the ontology. An example of 
this is shown in Figure 1. The term negative regulation of cell 
cycle G2/M phase transition is a direct asserted child of 2 par-
ents: “regulation of cell cycle G2/M phase transition” and “neg-
ative regulation of cell cycle phase transition.” At the same 
time, the logical relation “negatively regulates” property puts 
this class as an inferred subclass of “cell cycle G2/M phase 
transition.” The multiple classifications without having to 
explicitly reinstate the same class at various places of the hier-
archy is one of the useful features of ontology that allows clear 
definition and properties of one unique class to be expressed 
multidimensionally. Complex information linked to a biologi-
cal concept can be annotated with this multidimensional ontol-
ogy definition and semantic logics for further computation.

The biomedical community has built ontologies to capture 
different spheres of biomedical knowledge. This process has 
produced several ontologies to describe subjects such as genes 
and gene products (GO),11 cell types (Cell Ontology, CL),13,14 
protein modifications (Protein Ontology),15 anatomical 
description (Uber anatomy ontology [UBERON]),16 human 
phenotypes (Human Phenotype Ontology [HPO]),17 and dis-
eases (Disease Ontology [DO]).18 Each of these ontologies is 
updated and refined continuously. With the development of 
these domain-specific ontologies, it is essential to be able to 

Figure 1. Asserted versus inferred relations. In Gene Ontology (GO), the term negative regulation of cell cycle G2/M phase transition (GO:1902750) is 

asserted as a child of 2 parents: “regulation of cell cycle G2/M phase transition” (GO:1902749) and “negative regulation of cell cycle phase transition” 

(GO:1901988). At the same time, “negative regulation of cell cycle G2/M phase transition” (GO:1902750) is inferred as a subclass of “cell cycle G2/M 

phase transition” via the logical relation “negatively regulates.”
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reuse terms that have already been defined by the experts of 
each domain. Therefore, one of the challenges in ontology 
development is maintaining the interoperability between them 
such that terms defined in one ontology can be reused by 
another ontology without breaking the relational rules estab-
lished for the term in the original ontology and in the new 
ontology. This process allows terms to be linked to other terms 
and allows coverage of a wider area of biology than would have 
been possible with any one of these ontologies alone. This pro-
duces ontologies that are interoperable such that terms defined 
in an ontology are logically consistent and compatible with 
other ontologies.4 For example, interoperability between the 
Cell Ontology (CL) and UBERON allows a computer pro-
gram to infer that the term cardiac muscle cell (described in CL) 
is part of “heart” (described in UBERON) (Figure 2).

Implementation of Interoperability Between 
Ontologies
To achieve interoperability between ontologies, ontology 
developers historically created the Open Biomedical 
Ontologies (OBO) file format to ensure that ontologies that 
they are developing are open, orthogonal, and follow a struc-
tured, controlled vocabulary. To allow for a more complex 
annotation that requires higher computational expressivity, 
the OBO developers later adopted the Web Ontology 
Language (OWL) format, whereas the name OBO remains 
the reference to the community.19 The OBO developers initi-
ated the OBO Foundry that has developed a set of principles 
for ontology developers to follow.20 One of the key principles 

is to use a common upper-level ontology. This ontology, called 
Basic Formal Ontology, facilitates the organization of bio-
medical terms using a standardized categorization process that 
helps integrate data from different biomedical domains.21 The 
OBO Relation Ontology (RO) allows ontology developers to 
use a consistent format to describe relational logic between 
terms.22 These ontologies share a common semantic linking 
mechanism with each other using the relational properties 
from RO, by either the direct reuse of RO’s relations or the 
creation of a new relation with common attributes inherited 
from RO’s relations.

Modeling Data That Represent “Sometimes 
Associated” Relationship
One challenge in using ontologies to discover the mechanism 
of drug-induced toxicity lies in defining the relationship 
between adverse event and drug. When a patient experiences 
adverse events related to a specific drug administration, not all 
patients will experience an adverse event. In addition, patients 
might experience the adverse events at different levels of sever-
ity. This “sometimes associated” phenotype is a challenge for 
ontologies to handle, as all classes and relations stored and rea-
soned in an ontology have an implication, by ontology rules, 
that every class-relation statement must hold true at all times. 
Ontologists have handled this problem using OBAN (Open 
Biomedical AssociatioN),23 dealing with the association at the 
individual instance level of a class, rather than at the class level 
itself. For example, in rare diseases, disease-phenotype relation-
ships have to be captured in a way such that not every instance 
of the disease is associated with all the observed phenotypes of 
the disease.23 The relationship between disease and its pheno-
types has been separated by introducing an intermediate rela-
tionship called an OBAN association that associates the source 
of evidence for the phenotype. An OBAN association is “true 
for a given disease and a phenotype” where one has a subject 
role (disease) and one has an object role (phenotype) because 
the OBAN model qualifies the association between disease and 
phenotype with evidence for that association.23

Therefore, in this drug safety scenario, the association of 
drug-adverse event is handled based on a case-by-case basis of 
evidence. The OBAN is a data representation model that 
describes the relationship between a subject and an object by 
stating that the subject is associated with an object. This indi-
vidual association is supported by specific evidence. For exam-
ple, OBAN model allows the statement that “[sunitinib] is 
associated with [higher incidence of hypertension] via the sup-
porting evidence of [PubMed_ID 24930624]” to be computa-
tionally represented.

Modeling Data to Capture Temporal Relationships
In the case of adverse events, capturing the temporal relation-
ship between the medical intervention, such as drug adminis-
tration or vaccination, and the adverse event has to be accounted 

Figure 2. Interoperability between ontologies allows relations to be 

inferred across ontologies. Interoperability between the Cell Ontology 

and UBERON allows a computer reasoner to infer that “cardiac muscle 

cell” (CL:0000746) is located in the “heart” (UBERON:0000948).
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for in a comprehensive analysis of the drug-drug response 
(improved condition, or adverse event). This information is 
important because adverse events can occur due to the drug. 
However, the same clinical phenotype can also occur due to 
factors other than the drug being administered to the patient. 
There are many confounding factors that can contribute to the 
adverse event, such as the patient’s previous medical history or 
concomitant medications taken by the patient. These data exist 
in unstructured narratives in a patient’s case report form or 
medical record. Therefore, establishing a causal association 
between the drug and adverse event is not an easy task. Being 
able to capture data on when a drug was administered, when an 
adverse event started and ended, the patient’s medical history 
including time of diagnosis of other diseases, concomitant 
medications that the patient was on, and other temporal infor-
mation at the patient level may reveal patterns in the data that 
can help build the causal link between the drug administration 
and the adverse event.

The phenotype of an adverse event also evolves over time. 
To be able to capture this change, we have to be able to define 
the time period between the drug administration and when the 
adverse event was first reported. If we can compare this infor-
mation between different patients, we should be able to detect 
a pattern in the adverse events experienced by patients on a 
specific drug. This would give strength to building a hypothesis 
of causal association between the drug and adverse event. For 
example, in the case of heart disease associated with adminis-
tration of a drug, a patient might manifest symptoms that 
evolve over time beginning with shortness of breath which 
changes over time to pedal edema, ascites (fluid in the abdo-
men), and eventually ventricular arrhythmia. All of the patients 
might not show the same adverse event at any one point in 
time. However, seeing this pattern of adverse events in different 
patients who are on the drug can provide a signal of a causal 
link between the drug and adverse event. In exploring the 
mechanism of this sequence of adverse events, it is expected 
that the evolution of the cellular signaling networks involved in 
the process will progress in parallel with the clinical pheno-
types. An ontology that is being used to model adverse event 
needs to capture all of the data described above. Therefore, 
ontology relations have to be developed to effectively capture 
these temporal relationships.

Ontologists have been working on mechanisms to model 
temporal information. The Ontology of Adverse Events 
(OAE) was developed to represent adverse event data in an 
ontological format. In OAE, an “adverse event” is defined as “a 
pathological bodily process that occurs after a medical inter-
vention.”24 According to this definition, the adverse event 
occurs temporally at time T1 after a medical intervention at 
time T0. This definition does not assume a causal association 
between the administered drug and adverse event, but rather a 
temporal drug-adverse event observation. To make the causal 
association, OAE defines the term causal adverse event 

to represent a subtype of adverse event for which clear causal 
relationship has been established between the adverse event 
and the drug exposure as confirmed by the clinical record. In 
this way, OAE has made it possible to capture a hypothesis of 
the adverse event process.

The unstructured clinical narratives in case report forms 
contain temporal information on the patient’s disease, age, 
medication dose, and other features. To be able to capture this 
information in an ontological format, the Clinical Narrative 
Temporal Relation Ontology (CNTRO) was developed which 
eventually evolved into the Time Event Ontology (TEO) to 
model temporal information for all domains and not just the 
biomedical domain.25,26 This ontology can model timing 
events, time instants, intervals, durations, and temporal rela-
tions. The TEO is currently being used in combination with 
OAE and the Vaccine Ontology (VO) to represent unstruc-
tured clinical narratives from adverse event reports to make the 
data accessible to computer programs for further querying and 
analysis.25 These ontologies can be applied to discover time 
trends in adverse event reports, be integrated with statistical 
tools, and eventually be used to build a causal link between 
drug administration and adverse events.25

Development of OAE to Capture Adverse Event in 
an Ontological Format
Ontologies are useful in data integration. They facilitate the 
integration of data annotated using different vocabularies.27 
In addition, the ontological relations between terms in one 
ontology and the links between ontologies allow more infor-
mation to be extracted about a term than would have been 
otherwise possible. For identifying the mechanism of adverse 
events, the adverse event reports in FDA Adverse Event 
Reporting System (FAERS) and EMRs are linked to chemi-
cal and biomedical databases on drugs. This integration is 
being aided by the development of the OAE. The OAE 
defines adverse events with cross-references to MedDRA, 
SNOMED-CT, and ICD terms. The OAE was built using 
OBO foundry principles and is therefore interoperable with 
other ontologies that follow OBO foundry principles. If these 
ontologies have sufficient coverage of the biomedical and 
chemical space, it is expected that we can use computers to 
infer the relationship between terms in one ontology to terms 
in another ontology. This method of integration will be useful 
in discovering the mechanism of ADRs.

The OAE has been extended to include cardiovascular 
adverse events that are associated with a class of drugs that 
target tyrosine kinases (TKs) called tyrosine kinase inhibitors 
(TKIs) or monoclonal antibodies that target TKs (mAbs).28 
The cardiovascular adverse events associated with 5 TKIs/
mAbs, namely, dasatinib, imatinib, lapatinib, cetuximab, and 
trastuzumab, were extracted from reports in FAERS. This 
analysis produced 1053 cardiovascular MedDRA terms, of 
which 884 were unique terms that were not in OAE. These 
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terms were curated with the help of clinicians to classify them 
accurately within OAE and they were all cross-referenced to 
MedDRA terms. In addition, they were linked to the HPO, 
UBERON, and GO to facilitate discovery of biological pro-
cesses involved in the adverse event. The development of OAE 
to include cardiovascular adverse events in an ontological for-
mat will help in learning the molecular mechanism of adverse 
events associated with TKIs/mAbs and will help the PredicTox 
project which is described in the next section.

Examples of Studies Working on Integrating 
Biological Knowledge
The preceding discussion on OAE demonstrates that the 
direction of ontology development depends on the projects 
that will use them. Therefore, ontologies are in a continuous 
development process. To highlight this process, we have 
described several ongoing initiatives using ontologies to inte-
grate biomedical data to discover the genetic causes of diseases 
and mechanism of adverse event, and predict drug-induced 
toxicity. Examples of these initiatives—eTOX, MONARCH 
Initiative, Open Targets, and PredicTox—are described in the 
following sections.

eTOX

The eTOX project (http://www.etoxproject.eu/) was developed 
to build a data warehouse for drug safety data to predict non-
clinical toxicity associated with small-molecule drugs. This pro-
ject is part of the European Union–funded innovative medicines 
initiative. eTOX is a public-private partnership involving 11 
academic institutions, 6 small- and medium-sized enterprises, 
and 13 pharmaceutical companies. These groups contributed 
data that are believed to have important safety information that 
could be used to predict drug-induced toxicity. These data were 
converted into a machine-readable format to be reused and 
extracted for information for developing predictive algorithms. 
This activity involved a major curation effort that required using 
a standardized terminology. Biomedical ontologies with their 
term reusability were used for this task as many existing ontolo-
gies are in place, and where needed, development of new ontol-
ogies that were interoperable with the current ones were 
implemented. The curation itself involved confirming that the 
verbatim terms were converted to a standard terminology such 
as SEND (Standard for Exchange of Nonclinical Data) and a 
CDISC Standard Data Tabulation Model (SDTM) standard 
for presenting nonclinical data.29 The eTOX consortium devel-
oped a curation tool called OntoBrowser that maps terms from 
their database to ontologies.29 In addition to OntoBrowser, the 
consortium developed a number of tools that they have made 
publicly available. These include LIBRARY that provides arti-
cles, journal, and links on drug toxicity; eTOXLab that can be 
used to predict biological properties of small molecules; 
LiMTox, which is a text mining software, that focuses on asso-
ciation between drugs and drug toxicity; and others.29 The 

eTOX consortium has been able to bring together different 
groups and develop secure data-sharing agreements to build a 
data warehouse and analytical framework to address questions 
around drug toxicity. The eTOX project is at its completion 
date (2016).

The Monarch Initiative

The Monarch Initiative (https://monarchinitiative.org/) was 
developed to integrate data acquired from different species to 
discover new genotype-phenotype relationships for both model 
organisms and human disease.27,30 The goal was to integrate 
phenotypic data that are captured in textual descriptions from 
different model organisms. A computer algorithm could then 
be used to identify the genetic associations of human diseases 
based on similarity in the phenotypic descriptions. The 
Monarch Initiative integrates information, including data on 
genes, genotypes, gene variants, model systems, pathways, 
orthologs, phenotypes, and publications. The data from differ-
ent model systems are linked using ontologies that semanti-
cally map the data across different levels of biological 
organization and across different species. For example, genes 
are mapped to NCBI gene identifiers, diseases to DO,18 and 
phenotypes to unified phenotype ontology (Uberpheno).16 
These integrated data are then available to run queries to 
answer a specific biological question. When investigators query 
a specific phenotype, it will retrieve all the data related to that 
query from the system.

The Monarch Initiative therefore relies heavily on ontolo-
gies to semantically link the data. It has also developed tools 
called OWLSim to run semantic similarity searches that use 
ontologies and computational reasoners to analyze similari-
ties between phenotypes. One of the advantages of the meth-
odology developed by the Monarch Initiative is that because 
it uses information from different model organisms, the 
opportunities to more robustly characterize specific diseases 
are available than would have been available through analysis 
of human data alone.

Open Targets

Open Targets (http://www.opentargets.org/) is a public-pri-
vate partnership involving GlaxoSmithKline, Biogen, European 
Bioinformatics Institute (EMBL-EBI), and The Wellcome 
Trust Sanger Institute to create a platform that investigators 
can use to prioritize potential therapeutic targets for pharma-
cological intervention. Evidence for the role of the molecular 
target in disease is obtained by integrating data from genome-
wide studies such as RNAi screens, genome-wide association 
studies, microarray studies, and genetic data on rare diseases 
and cancer. These data are used to generate an evidence score 
that is used to prioritize the target.

Biomedical ontologies were used to normalize the data 
annotation at Open Targets. The target-disease associations 

http://www.etoxproject.eu/
https://monarchinitiative.org/
http://www.opentargets.org/
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were generated in the ontology-assisted pipeline. The target 
such as a gene was linked to the disease associated with the 
gene with terms obtained from Experimental Factor Ontology 
(EFO). The target-disease association was made using associa-
tion terms from the OBAN ontology model (Open Biomedical 
AssociatioN).23 The type of evidence for the association (eg, 
computationally predicted) was made using terms from the 
Evidence Code Ontology (ECO).31 Each disease-target asso-
ciation was linked to its corresponding supporting evidence, 
the datasource for the evidence, and an ECO evidence code. 
Each piece of evidence was provided a score based on the sta-
tistical significance of the evidence. An overall association score 
was calculated based on the evidence, datasource, and data type. 
This overall score can be used by investigators to decide 
whether their favorite target can be developed for therapeutic 
intervention for the disease that they are studying.

PredicTox

PredicTox is a public-private partnership that was spearheaded 
by FDA and the Reagan-Udall Foundation for the FDA to 
build a systems pharmacology model to predict the occurrence 
of drug-induced toxicity. For its pilot project, PredicTox is 
focusing on understanding the mechanism of heart failure car-
diac adverse events that are associated with TKIs. The project 
team is working closely with specific pharmaceutical compa-
nies to acquire data generated during the development of 
small-molecule inhibitors and monoclonal antibodies that tar-
get TKs. These data acquired during the discovery, preclinical 
pharm/tox, and clinical phases of development that contribu-
tors agree to share publicly will be integrated with genomic, 
proteomic, and metabolomic data in a knowledge environment 
(KE). The KE will be placed at a site external to FDA such that 
contributors and investigators will have access to the data. The 
data will be shared using a data-sharing model that is agreed 
upon by the data partners and PredicTox team members.32 The 
KE will also include data analysis tools for investigators inter-
ested in addressing specific scientific questions related to the 
toxicity of TKIs.

To aid with the data integration, the PredicTox team is also 
developing an application ontology that reuses terms from 
domain-specific ontologies so that the clinical and nonclinical 
data can be linked to information in different pharmacological, 
biological, and chemical databases. A major challenge for the 
PredicTox project was in integrating adverse event terms from the 
FAERS that is annotated using MedDRA. This was addressed in 
the development of OAE in which the adverse event terms are 
captured using MedDRA or are cross-referenced to MedDRA.28 
Therefore, with the development of OAE, adverse event terms 
can be semantically linked to other ontologies.

Conclusions
As can be seen with the above examples, many projects are 
using ontologies to integrate data that are annotated 

using different vocabularies. This integration effort requires 
continuous development of the domain-specific ontologies to 
complete coverage of the biomedical and relevant chemical 
space. There is also further research required to advance ontol-
ogy development. For example, as described above, in the past, 
ontology was not able to capture the “sometimes associated” 
relationship. With the development of the OBAN model in 
which an intermediate relationship was introduced that pro-
vided sources of evidence for the assertion of relationship 
between 2 terms, the problem in capturing “sometimes associ-
ated” relationships has been addressed. However, further devel-
opment is required to be able to capture temporal relationships. 
Ontologies may therefore provide one solution to better inte-
grate data for analysis and problem solving related to ADRs.
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