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Abstract: For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba)
proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and
netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl
radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography
methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met
(NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-
Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-
Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-
Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF),
Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-
Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively,
using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and
EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150,
and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and
0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079,
0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA
showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and
lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability
under temperatures lower than 80 ◦C, pH values ranged from 6–8, and simulated GI digestion for
180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic
krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents
applied in food and health products.
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1. Introduction

Antarctic krill (Euphausia superba) is a crucial marine biological resource distributed in
the Antarctic Ocean [1,2]. Its total biomass is up to 6.5–10 million tons and has been thought
as the largest underexploited resource of the ocean [3,4]. Presently, Antarctic krill is thought
as an abundant and high-quality resource for various food and health-care products because
some bioactive substances, including oil, peptides and protein, astaxanthin, and chitin,
have been prepared from Antarctic krill (E. superba) and its processing by-products [5–10].

Bioactive peptides are composed of 2 to 20 amino acid residues and released from
their parent proteins using different methods of hydrolysis, including enzymatic hydrol-
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ysis, chemical hydrolysis, and biological fermentation [11–13]. Beyond the recognized
nutritional value, bioactive peptides exhibited various biological functions, including hy-
polipidemic [14], hypotensive [15], anticoagulant [16], anticancer [17,18], and antimicrobial
activities [19]. Among the most studied bioactive peptides, antioxidant peptides derived
from marine living resources and their processing by-products, such as yellowfin tuna
(Thunnus albacares) skin [20], monkfish muscle [21,22], red tilapia (Oreochromis sp.) scale [23],
miiuy croaker swim bladder [24], Skipjack tuna bone and head [25,26], and mackerel mus-
cle [13], exhibit excellent capacity for inhibiting lipid peroxidation and scavenging reactive
oxide species (ROS). EDIVCW and YWDAW from the protein hydrolysate of monkfish
muscle showed strong radical scavenging activity and equivalent capability on controlling
lipid peroxidation with glutathione (GSH). Moreover, EDIVCW and YWDAW showed
positive protective function on H2O2-damaged HepG2 through increasing the activity of
antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing
the contents of ROS and malondialdehyde (MDA) [22]. Similarly, the antioxidant hexapep-
tide of FPYLRH from the swim bladder hydrolysate of miiuy croaker (Miichthys miiuy)
could improve the viability of H2O2-damaged HUVECs through increasing the activity
of intracellular antioxidant enzymes and lowering the levels of ROS, MDA, and nitric ox-
ide [24]. ICRD and LCGEC from the roe protein hydrolysate of skipjack tuna (Katsuwonus
pelamis) could decrease the apoptosis of HaCaT cells induced by ultraviolet-B treatment
and altered Keap1/Nrf2-ARE pathway transcription [27]. EDYGA from soft-shelled turtles
was confirmed as the most potent ARE-luciferase inducer because it could increase the
Nrf2 level through down-regulating Keap1 [28]. Therefore, antioxidant peptides derived
from marine resource have drawn worldwide attention due to its huge potential applied in
drugs, health-care products, as well as for food industries of quality control [11,29].

As the most abundant marine biological resource, the utilization of Antarctic krill
proteins has been continuously studied, and bioactive peptides from Antarctic krill pro-
teins, including angiotensin converting enzyme (ACE) inhibitory peptides, high Fisher
value oligopeptides, anti-osteoporotic peptides, metallic element chelating peptides, and
dipeptidyl peptidase IV (DPP-IV) inhibitory peptides, have gathered considerable attention
because of their significant bioactive activities [2,4,8,30,31]. Wang et al. (2019) prepared
peptides through hydrolyzing Antarctic krill using neutral proteinase and the peptides
could down-regulate the expression of hypoxia-inducible factor-2α and its downstream
genes to ameliorate the cartilage degeneration of the medial meniscus mouse model [8].
Zhao et al. (2019) isolated eight ACE inhibiting peptides from the trypsin hydrolysate of
Antarctic krill protein and the tripeptide of FAS could adjust the contents of nitric oxide
and endothelin-1 of HUVEC and correct the endothelial cell dysfunction [32]. KVEPLP,
PAL, and IPA from the hydrolysate of Antarctic krill protein using animal proteolytic en-
zymes could be used to manage hypertension and diabetes because of their strong DPP-IV
and/or ACE inhibitory activity [6,33]. Xia et al. (2015) and Han et al. (2018) reported that
treatment with phosphorylated peptides from Antarctic krill could significantly prevent the
decrease in bone mass and improve porous bone structures and biochemical characteristics
of ovariectomized Sprague Dawley rats [30,34]. Hou et al. (2018) and Sun et al. (2021)
found that trypsin hydrolysate of Antarctic krill protein and VLGYIQIR could be applied as
a novel calcium and zinc supplement [2,31]. Equally, antioxidant peptides from Antarctic
krill protein are rarely reported. Then, this study was mainly to isolate and characterize
antioxidant peptides from protein hydrolysates of Antarctic krill. Moreover, the antioxidant
activity and stability of isolated antioxidant peptides were systematically investigated.

2. Results and Discussion
2.1. Preparation of Protein Hydrolysates of Antarctic Krill and Their Radical Scavenging Activities

The specificity of protease determines its hydrolysis site, thus significantly affecting
the degree of hydrolysis and biological activity of protein hydrolysate [4,35,36]. Therefore,
defatted Antarctic krill powder was separately hydrolyzed with alcalase, trypsin, neutrase,
pepsin, and papain, and the radical scavenging activity of five protein hydrolysates is
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shown in Figure 1. At the concentration of 5.0 mg/mL, the HO· and DPPH· scavenging
ratios of alcalase hydrolysate were 65.99 ± 1.22% and 55.32 ± 1.08%, respectively, which
were significantly higher than those of trypsin, neutrase, pepsin, and papain hydrolysates
(p < 0.05). Alcalase is an endo-protease of the serine type and can degrade most amido
bonds of protein molecules, and is usually as a tool enzyme to prepare antioxidant peptides
from marine protein resources, such as croceine croaker muscle [37], bluefin tuna heads [38],
and swim bladders of miiuy croaker [39]. Therefore, the alcalase hydrolysate (named EPAH)
of Antarctic krill proteins was selected for further study.
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Figure 1. HO· (A) and DPPH· (B) scavenging activities of enzymatic hydrolysates from Antarctic
krill (E. superba) proteins at the concentration of 5.0 mg/mL. All the results were triplicates of mean
± SD. a–e Columns with the same superscripts indicate no significant difference (p > 0.05).

2.2. Preparation of Antioxidant Peptides from EPAH

Using the MW cut-off membrane of 3.5 kDa, EPAH was divided into two peptide
fractions including EPAH-I (MW < 3.5 kDa) and EPAH-II (MW > 3.5 kDa), and their
antioxidant activity is presented in Figure 2. At the concentration of 5.0 mg/mL, HO· and
DPPH· scavenging activities of EPAH-I were 71.17± 1.52% and 63.09± 2.40%, respectively,
which were significantly higher than those of EPAH (65.99 ± 1.22% and 55.32 ± 1.08%)
and EPAH-II (27.01 ± 0.59% and 33.05 ± 0.76%) (p < 0.05). MW is considered to be one
of the main factors affecting the antioxidant activity [11,37]. Li et al. (2013) and Chi et al.
(2016) reported that the antioxidant capacities, including radical scavenging activity and
reducing power of collagen hydrolysates from cartilages, were negatively correlated with
the logarithm of their average MWs [40,41]. Therefore, EPAH-I with smaller MW showing
high radical scavenging activity was in line with these previous reports.
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To obtain the sub-fractions with higher antioxidant activity, EPAH-I was fractionated
by DEAE-52 cellulose anion-exchange chromatography and separated into four fractions
(EPAH-Ia to EPAH-Id) (Figure 3A). EPAH-Ia, EPAH-Ib, EPAH-Ic, and EPAH-Id were eluted
out by deionized water, with 0.1, 0.25, and 0.5 M NaCl, respectively. At the concentration of
2.0 mg/mL, the scavenging activities of EPAH-Id on HO· and DPPH· were 56.38 ± 2.67%
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and 49.43 ± 0.94%, which were significantly higher than those of EPAH-I, EPAH-Ia, EPAH-
Ib, and EPAH-Ic (Figure 3B). Anion-exchange chromatography is a method that separates
compounds based on their charges using an ion-exchange resin containing positively
charged groups [39,42]. Peptides with hydrophobic amino acid and/or basic residues,
such as Leu, Ala, and Pro, are thought to have strong antioxidant activities and are usually
isolated from protein hydrolysates using anion exchange resins [43,44]. Therefore, the
present data indicated that EPAH-Id might contain high antioxidant amino acid residues
and was chosen for further study.
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Figure 3. DEAE-52 cellulose chromatographic diagram (A) of EPAH-I and radical scavenging activity of EPAH-I and its
four fractions (EPAH-Ia to EPAH-Id) at 2.0 mg/mL (B). All the results were triplicates of mean ± SD. a–e or A–E Columns
with the same superscripts of this type indicate no significant difference (p > 0.05).

Subsequently, EPAH-Id was separated by Sephadex G-25 gel chromatography on
the basis of molecular size and two peptide fractions (EPAH-Id-1 and EPAH-Id-2) were
prepared according to their chromatographic curves at 214 nm (Figure 4A). Figure 4B
indicates that the HO· (77.17 ± 3.8%) and DPPH· (65.77 ± 0.83%) scavenging abilities
of EPAH-Id-1 at the concentration of 2.0 mg/mL were significantly higher than those of
EPAH-Id and EPAH-Id-2 (p < 0.05).
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Using the ultrafiltration and open column chromatography methods, the subfraction
of EPAH-Id-1 with high HO· and DPPH· scavenging activity was finally separated using
RP-HPLC with a linear gradient of acetonitrile and its peptide profifile at 214 nm, presented
in Figure 5. Fifteen antioxidant peptides with retention times of 4.46 min (ESP1), 4.92 min
(ESP2), 6.21 min (ESP3), 13.01 min (ESP4), 17.19 min (ESP5), 17.78 min (ESP6), 19.65 min
(ESP7), 23.84 min (ESP8), 31.41 min (ESP9), 31.93 min (ESP10), 34.46 min (ESP11), 34.97 min
(ESP12), 35.34 min (ESP13), 37.38 min (ESP14), and 42.17 min (ESP15), respectively, were
isolated, collected and lyophilized (Table 1).
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Table 1. Retention time, amino acid sequences, and MWs of fifteen antioxidant peptides (ESP1 to
ESP15) from alcalase hydrolysate of Antarctic krill (E. superba) proteins.

Retention Time
(min)

Amino Acid
Sequence

Theoretical MW/Determined
MW (Da)

ESP1 4.46 NQM 391.44/391.50
ESP2 4.92 WFPM 579.71/580.03
ESP3 6.21 QNPT 458.47/458.50
ESP4 13.01 YMNF 573.66/573.50
ESP5 17.19 SGPA 330.34/330.15
ESP6 17.78 SLPY 478.54/478.80
ESP7 19.65 QYPPMQY 926.05/926.00
ESP8 23.84 EYEA 510.49/510.60
ESP9 31.41 NWDDMRIVAV 1218.38/1218.40

ESP10 31.93 WDDMERLVMI 1307.54/1307.40
ESP11 34.46 NWDDMEPSF 1140.18/1140.30
ESP12 34.97 NGPDPRPSQQ 1094.14/1094.21
ESP13 35.34 AFLWA 649.74/650.10
ESP14 37.38 NVPDM 574.65/574.60
ESP15 42.17 TFPIYDPQ 1143.24/1143.30

2.3. Identification of Antioxidant Peptides (ESP1 to ESP15) from EPAH-Id-1

Fifteen antioxidant peptides from EPAH-Id-1 (ESP1 to ESP15) underwent massive
preparation through repeated RP-HPLC isolation, and their amino acid sequences and
MWs were measured using a protein sequencer and ESI-MS. As shown in Table 1, their
amino acid sequences were identified as Asn-Gln-Met (NQM, ESP1), Trp-Phe-Pro-Met
(WFPM, ESP2), Gln-Asn- Pro-Thr (QNPT, ESP3), Tyr-Met-Asn-Phe (YMNF, ESP4), Ser-
Gly-Pro-Ala (SGPA, ESP5), Ser-Leu-Pro-Tyr (SLPY, ESP6), Gln-Tyr-Pro-Pro-Met-Gln-Tyr
(QYPPMQY, ESP7), Glu-Tyr-Glu-Ala (EYEA, ESP8), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-
Val (NWDDMRIVAV, ESP9), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI,
ESP10), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWDDMEPSF, ESP11), Asn-Gly-Pro-
Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ, ESP12), Ala-Phe-Leu-Trp-Asn (AFLWA,
ESP13), Asn-Val-Pro-Asp-Met (NVPDM, ESP14), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln
(TFPIYDPQ, ESP15), and their determined MWs using ESI-MS were well in line with their
theoretical MWs (Table 1).
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2.4. Antioxidant Activity of Antioxidant Peptides (ESP1 to ESP15)

For evaluating the antioxidant activities of isolated antioxidant peptides (ESP1 to
ESP15), assays of radical scavenging, protective activity against radical-induced DNA
damage, lipid peroxidation inhibition and reducing power were carried out, and GSH was
employed as the positive control. The EC50 values of fifteen antioxidant peptides (ESP1 to
ESP15) on HO·, DPPH·, and O−2 · are shown in Table 2.

Table 2. EC50 values of fifteen antioxidant peptides (ESP1 to ESP15) from alcalase hydrolysate of Antarctic krill (E. superba)
proteins on HO·, DPPH·, and O− 2·, respectively.

Amino Acid Sequence
EC50 (mg/mL)

HO· DPPH· O−2 ·

ESP1 NQM 1.425 ± 0.067 a 1.695 ± 0.033 a,e,i 1.796 ± 0.029 a

ESP2 WFPM 1.751 ± 0.075 b 5.364 ± 0.337 b 2.746 ± 0.302 b

ESP3 QNPT 1.931 ± 0.031 c,h 7.193 ± 0.460 c 2.933 ± 0.075 c

ESP4 YMNF 1.443 ± 0.066 a,j 1.672 ± 0.044 a,e,i 1.136 ± 0.063 d

ESP5 SGPA 2.362 ± 0.021 d 4.135 ± 0.192 d 1.863 ± 0.104 a,e

ESP6 SLPY 0.826 ± 0.027 e 1.181 ± 0.036 e 0.789 ± 0.079 f

ESP7 QYPPMQY 1.022 ± 0.058 f 1.547 ± 0.150 a,e 0.913 ± 0.007 f

ESP8 EYEA 0.946 ± 0.011 e,f 1.372 ± 0.274 a,e 0.793 ± 0.056 f

ESP9 NWDDMRIVAV 2.612 ± 0.013 g 6.192 ± 0.192 f 3.756 ± 0.025 g

ESP10 WDDMERLVMI 1.953 ± 0.042 h 4.719 ± 0.163 g 1.996 ± 0.011 e

ESP11 NWDDMEPSF 2.598 ± 0.036 g 3.029 ± 0.077 h 1.862 ± 0.094 a,e

ESP12 NGPDPRPSQQ 2.742 ± 0.105 i 7.054 ± 0.460 c 2.031 ± 0.011 e

ESP13 AFLWA 1.527 ± 0.080 j,k 2.029 ± 0.092 i 1.162 ± 0.036 d

ESP14 NVPDM 1.839 ± 0.032 b,c 4.876 ± 0.145 g 2.916 ± 0.153 c

ESP15 TFPIYDPQ 1.549 ± 0.072 k 2.135 ± 0.106 i 1.252 ± 0.051 d

Positive control GSH 0.492 ± 0.063 l 0.073 ± 0.021 j 0.250 ± 0.023 h

All the results were triplicates of mean ± SD. a–l Values with same superscripts indicate no significant difference of different peptide on
same radicals (p > 0.05).

2.4.1. Radical Scavenging Activity of Antioxidant Peptides (ESP1 to ESP15)

In the organism, HO· can oxidize and damage most of the macromolecules due to
its high reactivity characteristic. Therefore, looking for natural antioxidant peptides with
high HO· scavenging ability is key for discovering new antioxidants. Table 2 shows that
EC50 values of ESP6, ESP7, and ESP8 on HO· were 0.826 ± 0.027, 1.022 ± 0.058, and
0.946 ± 0.011 mg/mL, respectively, which were significantly lower than those of the other
twelve antioxidant peptides (p < 0.05), but there were significantly higher than that of
GSH (p < 0.05). In addition, EC50 values of ESP6, ESP7, and ESP8 were also lower than
those of antioxidant peptides from miiuy croaker swim bladders (2.31 ± 0.12, 2.35 ± 0.22,
2.45 ± 0.25, and 2.85 ± 0.19 mg/mL for FTGMD, GFYAA, FSGLR, and VPDD, respec-
tively) [39], weatherfish loach (PSYV: 2.64 mg/mL) [45], skate cartilages (IVAGPQ: 5.03
mg/mL) [18], and heads of bluefin leatherjacket (WEGPK: 5.567 mg/mL) [42]. How-
ever, EC50 values of ESP6, ESP7, and ESP8 were also higher than those of antioxidant
peptides from blue mussel (YPPAK: 0.228 mg/mL) [36], miiuy croaker swim bladders
(FPYLRH: 0.68 ± 0.05 mg/mL) [39], Sphyrna lewini muscle (0.15 and 0.24 mg/mL for
WDR and PYFNK, respectively) [46], and giant squid protein (0.123 and 0.078 mg/mL for
NGPLQAGQPGER and FDSGPAGVL, respectively) [47,48]. The present finding indicated
that the antioxidant peptides from Antarctic krill proteins, especially ESP6, ESP7, and ESP8,
could efficiently scavenge HO· to decrease or clear off the damage induced by HO· in
biological systems.

Table 2 indicates that ESP6 with EC50 value of 1.18 ± 0.036 mg/mL exhibited the
strongest DPPH· scavenging ability among fifteen antioxidant peptides (ESP1 to ESP15), but
the EC50 value of ESP6 was not significantly different to those of ESP1 (1.695± 0.033 mg/mL),
ESP4 (1.672± 0.044 mg/mL), ESP7 (1.547± 0.150 mg/mL), and ESP8 (1.372± 0.274 mg/mL),
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but significantly lower than those of other ten isolated antioxidant peptides (p < 0.05).
Moreover, the EC50 values of ESP1, ESP4, ESP6, ESP7, and ESP8 were less than those of
antioxidant peptides from Mytilus edulis (YPPAK: 2.62 mg/mL) [36], weather loach (PSYV:
17.0 mg/mL) [45], Sphyrna lewini muscle (3.63 and 4.11 mg/mL for WDR and PYFNK,
respectively) [46], and red stingray cartilages (4.01, 4.61, and 3.69 mg/mL for IEEEQ, VPR,
LEEEE, respectively) [49]. However, the EC50 values of ESP1, ESP4, ESP6, ESP7, and ESP8
were higher than those of antioxidant peptides from monkfish muscle (0.39, 0.62, and
0.51 mg/mL for EDIVCW, MEPVW, and YWDAW, respectively) [22], scales of croceine
croaker (0.675 and 0.283 mg/mL for GPAGPAG and GFPSG, respectively) [36], and miiuy
croaker swim bladders (0.51 ± 0.03 and 0.78 ± 0.05 mg/mL for FPYLRH and GIEWA,
respectively) [39]. These results indicated that the antioxidant peptides of ESP1, ESP4,
ESP6, ESP7, and ESP8 had strong ability to inhibit DPPH· reaction.

Table 2 showed that the EC50 values of ESP6, ESP7, and ESP8 on O−2 ·were 0.789± 0.079,
0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively, which indicated that their O−2 ·
scavenging ability was significantly stronger than those of other twelve antioxidant pep-
tides (p < 0.05). However, no significant difference was found among the EC50 values
of ESP6, ESP7, and ESP8 (p > 0.05). In addition, the EC50 values of ESP6, ESP7, and
ESP8 were lower than those of antioxidant peptides from Raja porosa cartilage (1.61, 1.66,
and 1.82 mg/mL for FIMGPY, GPAGDY, and IVAGPQ, respectively) [18], monkfish mus-
cle (MEPVW: 0.94 mg/mL) [22], croceine croaker muscle (MILMR: 0.993 mg/mL) [37],
swim bladders of miiuy croaker (3.04 ± 0.27, 3.61 ± 0.25, 3.03 ± 0.19, 3.35 ± 0.20, and
4.11 ± 0.31 mg/mL for FTGMD, YLPYA, GFYAA, FSGLR, and VPDDD, respectively) [39]
and muscle (YFLWP: 3.08 mg/mL) [50]. However, The EC50 values of ESP6, ESP7, and
ESP8 were higher than those of antioxidant peptides from blue mussel (YPPAK: 0.072
mg/mL) [36], Sphyrna lewini muscle (0.09 and 0.11 mg/mL for WDR and PYFNK, respec-
tively) [46], and skipjack tuna heads (0.56, 0.38, and 0.71 mg/mL for WMFDW, WMGPY,
and EMGPA, respectively) [25]. In organisms, O−2 · can be transformed into the highly
reactive HO· and toxic peroxy radicals, which will cause injury to some key biomolecules
and further induce oxidative stress. Finally, oxidative stress causes the dysfunction of the
organisms, and those influences have been strongly associated with the occurrence and
evolution of some chronic diseases [17]. Therefore, ESP6, ESP7, and ESP8 might take on a
major responsibility in clearing off O−2 · damage in biological systems.

2.4.2. Protective Activity of ESP6, ESP7, and ESP8 against H2O2-Damaged Plasmid DNA

DNA damage caused by superfluous ROS in organism is a key point in these ROS-
induced degenerative processes, such as premature aging, neurodegenerative and cardio-
vascular diseases [24,51]. Then, the protective effects of ESP6, ESP7, and ESP8 against
H2O2-damaged plasmid DNA (pBR322DNA) were measured and the results are shown
in Figure 6. Under normal conditions, the supercoiled (SC) form is the main structure
of plasmid DNA (pBR322 DNA) (Figure 6, lane 11). However, a relaxed open circular
(OC) form will be generated when one of the phosphodiester chains of pBR322 DNA is
split. Moreover, the linear (LIN) double-stranded DNA molecule is produced when second
cleavage is near the first breakage. In the assay, HO· was generated from the chemical
reaction of FeSO4 and H2O2, and it further cut off the DNA strands and converted the SC
form into the OC form and LIN form structures [24,51,52]. Lane 12 in Figure 6 showed
that the SC form of plasmid DNA (pBR322 DNA) was mainly converted into LIN form,
which indicated that excessive HO· generated in the reaction broke the double strand of
pBR322 DNA. As shown in Figure 6 (lane 1 to lane 9), the contents of the SC form of pBR322
DNA was obviously higher than that of the model group (Figure 6, lane 11). In addition,
the contents of the SC form of pBR322 DNA in ESP6, ESP7, and ESP8 groups showed a
significant concentration–effect relationship. In the high-dose groups, ESP6, ESP7, and
ESP8 achieved similar protective effects to that of the positive control group (Figure 6, lane
10). These data indicated that ESP6, ESP7, and ESP8 have significant protective ability on
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plasmid DNA (pBR322 DNA). These results were also in line with the finding in Table 2
that ESP6, ESP7, and ESP8 could effectively scavenge HO· to protect biomolecules.
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2.4.3. Lipid Peroxidation Inhibition Assay of ESP6, ESP7, and ESP8

Lipid peroxidation is a key factor of the aging process and pathophysiology of many
chronic diseases [42]. In addition, lipid peroxidation can change food properties, including
nutrition, texture, flavor, color, and luster, to gives rise to food deterioration. In the linoleic
acid system, the lipid peroxidation inhibition abilities of ESP6, ESP7, and ESP8 were
measured and the lower absorbance at 500 nm illustrates higher antioxidant ability [25].
Figure 7 indicates the absorbance value of the blank control group was significantly higher
than those of antioxidant peptides (ESP6, ESP7, and ESP8) and the positive control (GSH)
groups, which indicated that ESP6, ESP7, ESP8, and GSH can effectively control the
peroxidation reaction when they were incubated with linoleic acid for 7 days. Furthermore,
the absorbance values of the ESP6 group were lower than those of ESP7 and ESP8 groups.
Then, ESP6, ESP7, and ESP8 could serve as the natural antioxidant agents to control lipid
oxidation in organisms and fat-rich foods.
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Figure 7. Lipid peroxidation inhibition capability of ESP6, ESP7, and ESP8 from the alcalase hy-
drolysate of Antarctic krill (E. superba) proteins. All the results were triplicates of mean ± SD.

2.4.4. Reducing Power of ESP6, ESP7, and ESP8

As presented in Figure 8, the reducing power of ESP6, ESP7, and ESP8 showed a certain
dose–effect relationship when their concentrations were decreased from 0 to 2.5 mg/mL.
The result illustrated that ESP6 had a higher reducing capacity to convert Fe3+/ferricyanide
complex into the ferrous form than ESP7 and ESP8. However, the reducing power of ESP6,
ESP7, and ESP8 was less than that of GSH. The reducing power is considered to be an
important indicator of the potential activity of antioxidant peptides in reduction reactions,
which can be used to evaluate their abilities to provide hydrogen and/or electrons [41,50].
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The present results suggested that ESP6, ESP7, and ESP8 could serve as electron donors to
reduce the oxidized intermediates in lipid peroxidation reactions of organisms.
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Antioxidant peptides have been prepared from different food protein resources. Molec-
ular size is believed to play an essential role in their activities [11]. Antioxidant peptides
with smaller molecules can be more accessible to free radicals to control the cycle of lipid
peroxidation [11,53]. Moreover, molecular size is an important constraint for antioxidant
peptides striding over the blood–brain barrier to exert their pharmacological activities in
living organisms [54]. Therefore, ESP6, ESP7, and ESP8 could be easily close to the free
radical to play their functions, because they were oligoptides with MWs of 478.80, 926.00,
and 510.90 Da, respectively (Table 1).

Amino acid composition, including species, sequence and spatial structure, is another
key factor thought to be involved in the bioactivities of antioxidant peptides [11]. Hy-
drophobic and aromatic amino acids, such as Leu, Pro, Tyr, Phe, Ala, and Met, have an
important impact on the activity of antioxidant peptides because those amino acids could
raise the antioxidant activities through improving the lipid solubility and combination with
radical species of antioxidant peptides [11,21]. Rajapakse et al. (2005) and Gulçin (2007)
reported that Leu showed the highest antioxidant activity among the amino acids [55,56].
Chen et al. (2020) speculated that Leu and Thr contribute to the highest activity of IL-
GATIDNSK from defatted round scad [57]. Yang et al. (2019) reported that Ala, Ile, and
Val in GADIVA, and Ala and Ile in GAEGFIF could assist them in a conducive manner to
combine with target radicals [26]. Wu et al. (2018) reported that Met residue contributed
greatly to the inhibition of free-radical chain reactions of PMRGGGGYHY because it could
format a sulfoxide structure, which acted as a reactive site to clear oxidants [58]. Therefore,
Leu, Met, and Ala should play a key role in the antioxidant activity of ESP6, ESP7, and
ESP8, respectively.

Wong et al. (2020) reported that Pro could serve as a proton/hydrogen donor to
play its antioxidant role [59]. In addition, Pro could increase the flexibility of bioactive
peptides, and the low ionization potential of its pyrrolidine ring could quench singlet
oxygen [53]. Therefore, Pro presented in ESP6 and ESP7 are important for their bioactivities.
Tyr residues could remove free radicals and provide protons to electron-deficient radicals
to change them into more stable phenoxy radicals, which could inhibit the peroxidizing
serial reaction induced by ROS during the scavenging process [60,61]. Wu et al. (2018) and
Sheih et al. (2009) reported that Tyr could act as hydrogen donors to play an important
role in antioxidant activity, because it could remove free radicals and change them into
more stable phenoxy radicals, which inhibited the propagation of the radical-mediated
peroxidizing chain reaction [58,61]. Guo et al. (2009) reported that antioxidant peptides
with Tyr residues (YDY, RY, YEEN, KY, YEG, YD, YY, and RYN) showed high antioxidant
ability [62]. Then, Tyr is contributed to the bioactivity of ESP6, ESP7, and ESP8.
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In the lipid and aqueous solutions of oxidation, the ratio of hydrophilic/hydrophobic
amino acids in antioxidant peptides can significantly affect their solubility and biological
activity [21,63]. Therefore, the hydrophobic amino acids were critical for their protective
response in lipid peroxidation by eliminating the free radicals derived from lipids in a
heterogeneous lipid phase [64]. Gly residue can maintain the strong flexibility of the
polypeptide skeleton and act as single hydrogen donor to neutralize ROS [25,65]. Hy-
drophilic amino acids including Glu, Gln, and Lys in EVGK and RCLQ have a positive
influence on their Fe2+ chelating ability [65]. Asp, Glu, and Gln were found to show remark-
able influence on the antioxidant abilities of NYDGSTDYGILQINSR and LDEPDPLI [66,67].
Therefore, Ser, Gln, and Glu are also contribute to the radical-scavenging, lipid peroxidation
inhibitory, and reducing power ability of ESP6, SP7, and ESP8, respectively.

2.5. Effects of pH, Thermal, and Simulated GI Digestion Treatments on the Stability of ESP6,
ESP7, and ESP8

Figure 9 indicates that the DPPH· scavenging activity of ESP6, ESP7, and ESP8 treated
with designated pH values has the same varying tendency. Under neutral conditions, ESP6,
ESP7, and ESP8 showed the highest activity. In addition, it could be found that the DPPH·
scavenging activity of ESP6, ESP7, and ESP8 decreased gradually with the time from 0 to
180 min. Except 30 min, DPPH· scavenging activity of ESP6, ESP7, and ESP8 subjected to
pH 7.0 treatment was significantly higher than those of ESP6, ESP7, and ESP8 subjected to
pH 4.0 and 9.0 treatments. The results indicated that high acid and alkali treatments had
significant negative effects on the antioxidant activity of ESP6, ESP7, and ESP8. Table 3
shows that the reduced proportion of ESP6 treated for 180 min at different pH values was
smaller than those of ESP7 and ESP8, which indicated that the pH stability of ESP6 was
higher than those of ESP7 and ESP8.
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Table 3. Reduced proportion of DPPH· scavenging activity of ESP6, ESP6, and ESP8 subjected to
different pH treatments for 180 min.

Reduced Proportion of DPPH· Scavenging Activity (%)

pH 4.0 pH 5.0 pH 6.0 pH 7.0 pH 8.0 pH 9.0

ESP6 5.76 ± 0.06 5.06 ± 0.55 4.42 ± 0.73 3.29 ± 0.77 4.99 ± 0.58 5.41 ± 0.95
ESP7 6.95 ± 0.65 6.44 ± 0.79 5.65 ± 1.33 4.22 ± 1.34 6.49 ± 1.21 7.29 ± 0.99
ESP8 6.99 ± 6.72 6.72 ± 0.87 5.74 ± 1.36 5.05 ± 0.89 6.92 ± 0.99 7.19 ± 0.52

Data are expressed as mean ± SD (n = 3).

As shown in Figure 10, different temperature treatments could greatly affect the
DPPH· scavenging activities of ESP6, ESP7, and ESP8. The DPPH· scavenging activities of
ESP6, ESP7, and ESP8 at 25, 37, and 60 ◦C for 30 and 60 min were significantly different from
those treated at 80 and 100 ◦C for 30 and 60 min, respectively (p < 0.05). In addition, there
was no significant difference of the DPPH· scavenging activities of ESP6, ESP7, and ESP8 at
25, 37, and 60 ◦C for 30 and 60 min (p > 0.05). In addition, the DPPH· scavenging activities
of ESP6, ESP7, and ESP8 decreased by 51.42 ± 2.76%, 60.26 ± 3.51%, and 56.01 ± 1.98%,
respectively, at 100 ◦C when the time was ranged from 0 min to 60 min. Those data
suggested that ESP6 was more tolerant to high temperatures compared with ESP7 and
ESP8.
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In response to simulated GI digestion, the DPPH· scavenging ratios of ESP6, ESP7,
and ESP8 are shown in Figure 11. The data indicated that DPPH· scavenging activities of
ESP6, ESP7, and ESP8 at the concentration of 1.0 mg/mL were decreased gradually with
the treating time ranged from 0 to 180 min. The DPPH· scavenging activities of ESP6, ESP7,
and ESP8 before simulated GI digestion (ESP6: 45.39 ± 0.46%; ESP7: 42.41 ± 1.01%; ESP8:
43.54 ± 1.02%) were significantly (p < 0.05) lower than those obtained after simulated GI di-
gestion (ESP6: 38.97 ± 0.67%; ESP7: 34.05 ± 0.74%; ESP8: 37.06 ± 0.45%). Furthermore, the
DPPH· scavenging ratios of ESP6, ESP7, and ESP8 decreased by 6.41± 0.96%, 8.36± 0.59%,
and 6.48 ± 1.03%, respectively, which suggested that ESP6 has stronger stability than ESP7
and ESP8 when they were treated with simulated GI diges tion.
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The pH and thermal stability of antioxidant peptides are key properties for their
applications in food and health products, and tolerance property on simulated GI digestion
treatments can help to assess the rate of metabolism and timeliness of antioxidant peptides
in vivo [25,52,68,69]. The previous literature indicated that WAFAPA and MYPGLA with
25–100 ◦C or pH 3–11 treatments show high stability [59], but ATSHH treated with 50–90 ◦C
and strong acids and bases will decrease its partial DPPH· scavenging activity [70]. Zhang
et al. (2019) found that the HO· scavenging activity of WMFDW, WMGPY, and EMGPA
could be significantly influenced under high temperature (>60 ◦C) and strong acid and
alkali conditions [25]. The present results indicated that ESP6 (SLPY), ESP7 (QYPPMQY),
and ESP8 (EYEA) had similar thermal and pH stability to ATSHH, WMFDW, WMGPY,
and EMGPA because their activity was significantly decreased under high temperature
(>60 ◦C) and strong acid and alkali conditions. In addition, the stability of ESP6 (SLPY)
was higher than those of ESP7 (QYPPMQY) and ESP8 (EYEA) under thermal, pH, and
simulated GI digestion treatments.

3. Materials and Methods
3.1. Materials

Antarctic krill (E. superba) powder was kindly provided by Zhejiang Hailisheng
Biotechnology Co. Ltd. (Zhoushan, China). Trypsin, papain, trifluoroacetic acid, 2,2-
Diphenyl-1-picrylhydrazyl (DPPH), phosphate buffered saline, Sephadex G-25, and pepsin,
were purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd. (Shanghai, China).
Neutrase was purchased from Imperial Jade Biotechnology, Co. Ltd. (Yinchuan, China).
Alcalase was purchased from Novozymes Biotechnology Co., Ltd. (Tianjin, China). Di-
ethylaminoethyl (DEAE)-52 cellulose anion exchange resin was purchased from Nanjing
Jiancheng Bioengineering Co., Ltd. (Nanjing, China). Acetonitrile was bought from Thermo
Fisher Scientific (Shanghai) Co., Ltd. (Shanghai, China).

3.2. Preparation of Protein Hydrolysate of Antarctic Krill (EPAH)

The Antarctic krill powder was defatted according to our previous method with a
light modification [4]. Subsequently, the defatted shrimp powder was dissolved in 0.05 M
phosphate buffer with a solid/liquid ratio of 1:30, and the mixed solutions were treated
for 6 h separately using pepsin (pH 2.0, 37 ◦C), alcalase (pH 8.5, 50 ◦C), papain (pH 6.0,
50 ◦C), neutrase (pH 7.0, 60 ◦C), and trypsin (pH 8.0, 40 ◦C) with total dosage of enzyme of
2.0% (w/w). After hydrolysis reaction, five hydrolysates were kept in a boiling water bath
for 15 min to inactivate enzymes and centrifuged at 4000× g for 15 min. The supernatants
of five hydrolysates were concentrated, lyophilized and kept in a −20 ◦C refrigerator.
In addition, alcalase hydrolysate was named EPAH.



Mar. Drugs 2021, 19, 347 13 of 18

3.3. Preparation of Antioxidant Peptides from Alcalase Hydrolysate (EPAH) of Antarctic
Krill Proteins

Antioxidant peptides were purified from EPAH by the ultrafiltration and chromato-
graphic process (Figure 12).
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Antarctic krill (E. superba) proteins.

EPAH was ultrafiltrated by 3.5 kDa molecular weight (MW) cut-off membrane, and
two peptide fractions of EPAH-I (MW < 3.5 kDa) and EPAH-II (MW > 3.5 kDa) were
prepared.

EPAH-I solution (6 mL, 50.0 mg/mL) was loaded onto a DEAE-52 cellulose column
(2.6 × 70 cm) pre-equilibrated with deionized water, and eluted with deionized water, and
a 0.10, 0.25, and 0.50 M NaCl solution, respectively. The flow rate of eluent was set as
3.0 mL/min and monitored at 214 nm. Four fractions (EPAH-Ia to EPAH-Id) were collected
according to chromatogram map.

An amount of 5 mL of EPAH-Id solution (50.0 mg/mL) was injected into the Sephadex
G-25 chromatographic column (2.6 cm× 120 cm) and eluted using ultrapure water. The elu-
ent with a flow rate of 0.6 mL/min was collected every 3 min and two components, named
EPAH-Id-1 and EPAH-Id-2, were isolated according to the chromatographic curve of
EPAH-Id at 214 nm.

EPAH-Id-1 was further separated by the Agilent 1200 HPLC system (Agilent Ltd.,
Santa Clara, CA, USA) on a Zorbax, SB C-18 column (4.6 × 250 mm, 5 µm) using a linear
gradient of acetonitrile (0–100% in 0–60 min) in 0.05% trifluoroacetic acid. The elution solu-
tion with a flow rate of 0.8 mL/min was monitored at 214 nm. Finally, fifteen antioxidant
peptides (ESP1 to ESP15) were isolated from EPAH-Id-1 on their chromatographic peaks,
lyophilized, and kept in a −20 ◦C refrigerator.

3.4. Identification of Antioxidant Peptides (ESP1 to ESP15) from EPAH-Id-1

The Applied Biosystems 494 protein sequencer (Perkin Elmer/Applied Biosystems
Inc., Foster City, CA, USA) was employed to analyze the N-terminal amino acid sequences
of fifteen antioxidant peptides (ESP1 to ESP15), and the Q-TOF mass spectrometer (MS)
(Micromass, Waters, Milford, MA, USA) with an electrospray ionization (ESI) source were
applied to measure the MWs of fifteen antioxidant peptides (ESP1 to ESP15).
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3.5. Antioxidant Activities of Antioxidant Peptides (ESP1 to ESP15)

The scavenging assays of DPPH radical (DPPH·), superoxide anion radical (O−2 ·), and
hydroxyl radical (HO·) were determined on the previous method [35,36], and the EC50
values of antioxidant peptides (ESP1 to ESP15) on DPPH·, HO·, and O−2 · were defined
as the sample concentration induced half of the decrease in the initial radical contents.
The assays of reducing power and lipid peroxidation inhibition were performed according
to the methods described by Zhang et al. (2019) [25], and GSH was used as the positive
control in all antioxidant assays.

3.6. Stability Characteristics of ESP6, ESP7, and ESP8 against the Treatments of Heat, pH, and
Simulated Gastrointestinal (GI) Digestion

The pH stability and thermostability of ESP6, ESP7, and ESP8 were analyzed in
accordance with the previous method with a light modification [25]. In short, effects of
acid and alkali treatments at pH values of 5, 6, 7, 8, or 9 were employed to estimate the
acid and alkali stability characteristics of ESP6, ESP7, and ESP8 at 25 ◦C, and the analyzed
time was set to 30, 60, 120, and 180 min.

The thermostability of ESP6, ESP7, and ESP8 at 25, 37, 60, 80, or 100 ◦C was analyzed
in water bath, and the analyzed time was set to 30 and 60 min.

The influence of simulate GI digestion on the stability of ESP6, ESP7, and ESP8 was
evaluated by the two-stage digestion model [26]. In short, ESP6, ESP7, and ESP8 were
separately treated with pepsin for 120 min and pancreatin for 60 min.

The DPPH· scavenging ratio (%) of ESP6, ESP7, and ESP8 at 1.0 mg/mL were mea-
sured at the set time to analyze their stability.

3.7. Statistical Analysis

The experiment data were represented as the mean ± standard deviation (SD, n = 3).
An ANOVA test using SPSS 19.0 (SPSS Corporation, Chicago, IL, USA) was employed to
analyze the means of each treatment, and Duncan’s multiple range test was applied to
analyze the significant differences among the different groups (p < 0.05).

4. Conclusions

In summary, the purification, identification, activity evaluation and stability of an-
tioxidant peptides from alcalase hydrolysate of Antarctic krill (E. superba) proteins were
systematically studied, and fifteen antioxidant peptides were purified from alcalase hy-
drolysate and identified as NQM, WFPM, QNPT, YMNF, SGPA, SLPY, QYPPMQY, EYEA,
NWDDMRIVAV, WDDMERLVMI, NWDDMEPSF, NGPDPRPSQQ, AFLWA, NVPDM, and
TFPIYDPQ, respectively. Among them, SLPY, QYPPMQY and EYEA showed high radical
scavenging activities, H2O2-damaged plasmid DNA protective effects, reducing power,
and lipid peroxidation inhibition ability. In addition, SLPY, QYPPMQY, and EYEA had high
stability under temperatures lower than 80 ◦C, pH values ranged from 6–8, and simulated
GI digestion for 180 min. The present results provided support for SLPY, QYPPMQY and
EYEA to serve as effective antioxidant agents used in health-promoting food products.
The antioxidant mechanism in vivo models and the clinical efficacy of SLPY, QYPPMQY
and EYEA have been researched in our lab.
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Abbreviations

ROS, reactive oxide species; EDIVCW, Glu-Asp-Ile-Val-Cys-Trp; YWDAW, Tyr-Trp-Asp-Ala-Trp;
GSH, glutathione; FPYLRH, Phe-Pro-Tyr-Leu-Arg-His; HUVECs, human umbilical vein endothe-
lial cells; MDA, malondialdehyde; ICRD, Ile-Cys-Arg-Asp; LCGEC, Leu-Cys-Gly-Glu-Cys; Keap1,
Kelch-like ECH-associating protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, an-
tioxidant response element; EDYGA, Glu-Asp-Tyr-Gly-Ala; DPP-IV, dipeptidyl peptidase IV; ACE,
angiotensin converting enzyme; FAS, Phe-Ala-Ser; KVEPLP, Lys-Val-Glu-Pro-Lys-Pro; PAL, Pro-Ala-
Lys; IPA, Ile-Pro-Ala; VLGYIQIR, Val-Lys-Gly-Tyr-Ile-Gln-Ile-Arg; DEAE, diethylaminoethyl; DPPH,
2,2-Diphenyl-1-picrylhydrazyl; EPAH, the alcalase hydrolysate of Euphausia superba proteins; MW,
molecular weight; ESI, electrospray ionization; MS, mass spectrometer; DPPH·, DPPH radical; HO·,
hydroxyl radical; O−2 , superoxide anion radical; GI, Gastrointestinal; FTGMD, Phe-Thr-Gly-Met-Asp;
GFYAA, Gly-Phe-Tyr-Ala-Ala; FSGLR, Phe-Ser-Gly-Leu-Arg; VPDD, Val-Pro-Asp-Asp; PSYV, Pro-Ser-
Tyr-Val; IVAGPQ, Ile-Val-Ala-Gly-Pro-Gln; WEGPK, Trp-Glu-Gly-Pro-Lys; YPPAK, Tyr-Pro-Pro-Ala-
Lys; WDR, Trp-Asp-Arg; NGPLQAGQPGER, Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg;
PYFNK, Pro-Tyr-Phe-Asn-Lys; FDSGPAGVL, Phe-Asp-Ser-Gly-Pro-Ala-Gly-Val-Leu; IEEEQ, Ile-
Glu-Glu-Glu-Gln; VPR, Val-Pro-Arg; LEEEE, Leu-Glu-Glu-Glu-Glu; MEPVW, Met-Glu-Pro-Val-Trp;
GPAGPAG, Gly-Pro-Ala-Gly-Pro-Ala-Gly; GFPSG, Gly-Phe-Pro-Ser-Gly; FPYLRH, Phe-Pro-Tyr-Leu-
Arg-His; GIEWA, Gly-Ile-Glu-Trp-Ala; FIMGPY, Phe-Ile-Met-Gly-Pro-Tyr; GPAGDY, Gly-Pro-Ala-
Gly-Asp-Tyr; MILMR, Met-Ile-Leu-Met-Arg; YLPYA, Tyr-Leu-Pro-Tyr-Ala; YFLWP, Tyr-Phe-Leu-Trp-
Pro; WMFDW, Trp-Met-Phe-Asp-Trp; WMGPY, Trp-Met-Gly-Pro-Tyr; EMGPA, Glu-Met-Gly-Pro-Ala;
ILGATIDNSK, Ile-Leu-Gly-Ala-Thr-Ile-Asp-Asn-Ser-Lys; GADIVA, Gly-Ala-Asp-Ile-Val-Ala; GAEG-
FIF, Gly-Sla-Glu-Gly-Phe-Ile-Phe; PMRGGGGYHY, Pro-Met-Arg-Gly-Gly-Gly-Gly-Tyr-His-Tyr; YDY,
Tyr-Asp-Tyr; RY, Arg-Tyr; YEEN, Tyr-Glu-Glu-Asn; KY, Lys-Tyr; YEG, Tyr-Glu-Gly; YD, Tyr-Asp.
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