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INTRODUCTION

The recent outbreak of the novel coronavirus infection (COVID-19) has produced a world-wide
health problem (1). COVID-19 is extremely infectious and has high mortality rate in vulnerable
individuals (2). On the other hand, there could exist a large percentage of infected patients, which
exhibit mild symptoms or even no apparent symptoms. This situation could make surveillance
control difficult to prevent the spread of infection efficiently. In the case of severely ill patients, the
rapid and progressive development of the acute respiratory response syndrome (ARDS) is critical
and often fatal, and associated with organ failure including cardiovascular disorders, lung embolism,
acute kidney injury and DIC (1).
COVID-19 AND THROMBOSIS/EMBOLISM

Clinical features in patients with severe COVID-19 include increases in D-dimers and fibrin
product degradation as well as elevations in vonWillebrand factor and soluble P-selectin, suggesting
the existence of endotheliopathy along with platelet activation in COVID-19-associated
coagulopathy (2–4). These findings were consistent with the fact that obesity, diabetes, and
hypertension are the risk factors and major comorbidities for severe COVID-19 (4). Angiotensin
converting enzyme-2, a receptor for the spike protein of severe acute respiratory syndrome
coronavirus-2 (SARS-Cov-2), is expressed on the surface of vascular endothelial cells as well as
respiratory epithelial cells. Thus, vascular endothelial cells appear to be a target cell for SARS-Cov-2
infection and a primary site for invasion and replication that may induce abnormalities in
endothelial cells, resulting in prothrombotic conditions in the vasculature. Findings from patient
autopsies strongly suggest the presence of thrombus formation in lung vasculature as well as
thromboembolism in the peripheral vessels (3–5). Thromboses of the coronary or carotid arteries
have also been reported to result in sudden onset of fatal cardiovascular events (6, 7). Thus, in
Abbreviations: COVID-19, coronavirus disease 2019; HRG, histidine-rich glycoprotein; IAIPs, inter a-inhibitor proteins;
MOF, multiple organ failure; NETs, neutrophil extracellular traps; SARS-CoV-2, severe acute respiratory syndrome
coronavirus-2.
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addition to ARDS, the wide range of thromboses and embolism
could be a fundamental pathophysiological component of severe
COVID-19 (5).
COVID -19 AND NEUTROPHIL
EXTRACELLULAR TRAPS

Recent histopathological analyses of patients with COVID-19
have suggested that neutrophil extracellular traps (NETs) with
web-like DNAs released from the cells bearing myeloperoxidase,
neutrophil elastase and citrullinated histone 3 on DNA (8, 9), are
involved in thrombus formation in the lung vasculature,
suggesting a form of immunothrombosis (10, 11). NETs are
thought to be induced by excessive activation of neutrophils
resulting in an increase in cytosolic calcium and activation of
protein kinase C, followed by activation of NADPH oxidase. The
resulting production of reactive oxygen species is required for the
translocation of neutrophil elastase and myeloperoxidase as well
as citrullination of histone 3 and de-condensation of chromatin
DNA. The immunothrombus starts from the adhesion of NETs
on vascular endothelial cells, followed by platelet aggregation on
the NETs along with fibrin deposition (12), suggesting a very
crucial and important role for NETs in the development
of immunothrombi.

The activation state of vascular endothelial cells is another
factor that can predispose to the development of thrombosis
(12). Endothelial cells expressing ACE-2, a receptor for the spike
protein of SARS-Cov-2, can be activated after infection with
SARS-Cov-2. Once the endothelial cells are activated, the
interactions between endothelial cells and neutrophils,
particularly the NETs, will be increased. The extracellular
release of ROS and proteinases from neutrophils further
facilitate the activation of endothelial cells, resulting in an
increase in the expression of adhesion molecules on the surface
of endothelial cells. Thus, dysregulated NETs on endothelial cells
form a vicious cycle between them, followed by platelet
aggregation on NETs. The coagulation cascade may initiate on
the surface of aggregated platelets as well as on tissue factor-
expressing endothelial cells. Finally, a series of events beginning
with the NETs and the damaged vascular endothelial cells losing
their anti-coagulant properties will result in immunothrombus
formation (3, 4). Some groups have also reported the existence of
NETs in interstitial and alveolar spaces beyond the vasculature in
the lung parenchyma (13, 14), contributing to the development
of ARDS. Therefore, the regulation of NETs has been suggested
to be one of the directions for the treatment of COVID-19
(15, 16).
INHIBITION OF NETS BY HISTIDINE-RICH
GLYCOPROTEIN

Histidine-rich glycoprotein (HRG), a 75 kDa plasma protein
primarily produced by the liver, has multiple functions. HRG
regulates angiogenesis, coagulation/fibrinolysis, host defenses,
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dead cell clearance and tumor growth (17). Recently, our
group reported that a rapid decrease in plasma HRG in
patients with septic disorders could trigger multiple organ
failure (MOF) because HRG maintains circulating neutrophils
in a resting state and protects vascular endothelial cells from
excessive activation by several types of stimulants, thereby
preventing NETosis and immunothrombosis (18). The loss of
such homeostasis because of reductions in HRG may predispose
to a cascade of events in septic patients resulting in respiratory
failure, circulatory shock, renal failure and DIC (18, 19). We have
already demonstrated that HRG inhibits NETs in vitro (20) and
in vivo (18) and reduces ROS production (21). In addition, HRG
protects vascular endothelial cells from excessive activation,
inhibits the expression of adhesion molecules, inhibits HMGB1
release and suppresses cytokine production (22, 23). All these
effects of HRG on vascular endothelial cells inhibit the
interactions between vascular endothelial cells and neutrophils/
platelets, maintaining the anti-thrombotic condition at the
interfaces of the circulating blood and vascular wall (23).
Moreover, HRG suppresses the intrinsic pathway of the
coagulation cascade directly by inhibiting XIIa (24). A clinical
study demonstrated that the plasma levels of HRG were lower in
non-survivors than in survivors on the admission day in ICU
patients (19). Therefore, plasma HRG could be a superior
biomarker of sepsis compared with the current standard of
care, which uses procalcitonin and presepsin as indicators of
sepsis (19, 25).
INTER a-INHIBITOR PROTEINS AS ANTI-
SEPTIC PLASMA PROTEINS

Inter a-inhibitor proteins (IAIPs) are a family of structurally
related serine proteinase inhibitors found in plasma in relatively
high concentrations (around 500 mg/ml). The major forms of
these proteins in human plasma consist of two heavy chains and
a single light chain called bikunin, covalently linked through
esterification of chondroitin sulfate chain on bikunin. The minor
forms contain different kinds of a single heavy chain coupled to
bikunin in the same manner (26). IAIPs play a role in the
regulation of a variety of responses including inflammation,
wound healing, ovulation and cancer invasion/metastasis (26).
In a neonatal animal model of sepsis, IAIPs decreased
significantly after the induction of sepsis and supplementary
therapy improved the lethality (27, 28). In addition, IAIPs have
been suggested as both diagnostic and therapeutic agents in
neonatal and adult septic patients (29, 30). IAIPs inhibit platelet
aggregation induced by histone H3 (31) and suppress the
spontaneous ROS production in neutrophils (32). Moreover,
phenotypic analysis of IAIP knockout mice and the
relationship between plasma levels of IAIPs and endothelial
cell activation in septic patients imply that IAIPs ameliorate
endothelial inflammation (33). These in vitro and in vivo findings
could in part explain the some of the beneficial properties, by
which IAIPs attenuate the effects of sepsis in vivo. Furthermore,
it was reported that the decrease in plasma IAIPs corresponded
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to the severity of Dengue virus infection and that the recovery
from Dengue fever symptoms paralleled with the restoration of
plasma IAIPs (34). Consequently, HRG and IAIPs could
potentially represent two endogenous proteins that play key
complementary overlapping roles to preserve intravascular
blood cell and vascular endothelial cellular homeostasis in
sepsis related disorders (Figure 1) (26, 32).
HIGH MOBILITY GROUP BOX-1 AS AN
IMPORTANT DAMP

High mobility group box-1 (HMGB1), a highly conserved
nonhistone nuclear protein, plays a particularly important
role as proinflammatory factor in the extracellular space
through the stimulation of plural receptors: receptor for
advanced glycation end products, toll-like receptor-4/2 (35).
HMGB1 is released from not only necrotic cells but also many
kinds of living cells under different conditions of stress
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including hypoxia, ischemia, and stimulation by cytokines
(36, 37). The neutralization of extracellular HMGB1 by
specific monoclonal antibody (mAb) was reported to inhibit
influenza virus (H1N1)-induced pneumonia and improve the
survival of infected mice (38, 39). This antibody effect was
additive to that obtained by the antiviral drug, peramivir (38).
Therefore, the above-mentioned HRG regulation of HMGB1
translocation and HMGB1-induced cytokine production in
vascular endothelial cells suggest that HRG (23) as well as
anti-HMGB1 mAb (38, 39) could contribute to the
maintenance of vascular endothelial cellular homeostasis
through the control of HMGB1 resulting in inhibition of
inflammation induced by influenza infection. Moreover, it
was suggested that HMGB1 may facilitate NETs and NETosis
(40). Based on these findings, it is speculated that HMGB1 may
play a crucial role in the development of lung inflammation in
COVID-19 (16, 41). In fact, Chen et al. (42) determined the
plasma levels of HMGB1 in severe COVID-19 patients and
found a significant elevation compared with those of
healthy volunteers.
FIGURE 1 | In the animal models of sepsis as well as septic patients, the remarkable decrease in plasma levels of HRG and IAIPs are evident. HRG controls the
shape and function of neutrophils and inhibits NETosis in neutrophils. In addition, HRG protects vascular endothelial cells from excessive activation by inhibiting
HMGB1 release from the cells, which was mediated by the stimulation of CLEC1A. IAIPs also inhibit histone-induced platelet aggregation and exert protective effects
on vascular endothelial cells. Rapid decreases in plasma HRG and IAIPs will diminish these homeostatic effects, leading to immunothrombosis. Therefore, it is
particularly important to ascertain changes in plasma levels of HRG and IAIPs in patients with COVID-19. ROS, reactive oxygen species; NE, neutrophil elastase; MP,
myeloperoxidase.
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CONCLUSION

These results from models of animal sepsis and the clinical
findings suggest that decreases in HRG and IAIPs concentrations
could represent excellent biomarkers to evaluate the severity of
sepsis mainly caused by bacterial infections (25, 30). At present,
we have no data on plasma levels of HRG or IAIPs in patients
with COVID-19. However, it remains plausible that there might
be a common process present in the cascade of ARDS/MOF
irrespective of the etiology of sepsis, bacterial or viral. In addition
to ARDS, venous thromboembolism or endovasculitis may occur
in COVID-19 because recent analysis warned of the high
incidence of these comorbidities in COVID-19 infections
(3, 4). The findings of the protection of vascular endothelial
cells by HRG (23) as well as IAIPs (33), and the prevention of
platelet aggregation by IAIPs (31) and erythrocyte aggregation by
HRG (43) support the functional role of these plasma proteins
against venous thromboembolism. Therefore, considerable
attention should be paid to the dynamic changes in the plasma
levels of HRG and IAIPs, especially with regard to severe cases of
Frontiers in Immunology | www.frontiersin.org 4
COVID-19, in order to delineate further the pathogenesis of
this disorder.
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