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Abstract

Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have
established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system,
which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method
combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the
endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated
(TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the
genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by
recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-
effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which
allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription,
plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a
versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications.
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Introduction

In the post-genome era, a major challenge is deciphering the

function of thousands of newly identified genes. One of the main

approaches for studying gene function involves inactivation of

genes in cells or animals using random (chemical or insertional)

mutagenesis or gene targeting. A common problem with these

methods stems from the fact that the gene of interest is usually

mutated throughout the animal’s life. As a result, 1) in many cases

the mutation leads to embryonic or neonatal lethality, precluding

the assessment of the gene’s function in later life; 2) in viable

mutants interpretation of observed phenotypes is often complicat-

ed by the inability to distinguish the direct effects of the gene loss at

the time of observation from the results of developmental

abnormalities caused by the gene loss earlier in life; 3) in still

other cases, life-long absence of a gene product causes compen-

satory adjustments of activities of other genes precluding the

elucidation of the function of the gene of interest. Conditional

knockout and gene expression technologies, such as the Cre/lox-

mediated tissue-specific knockout [1] and the tetracycline (Tet)

regulated transcriptional activation system [2], can regulate gene

expression in a more spatially and temporally controlled fashion.

However, these technologies are often laborious to establish and

the results are frequently variable.

Here we report the development of a system that provides for

the inducible and reversible gene inactivation in the mouse and

can also be readily scaled up for high-throughput applications.

The iKO system is a binary approach based on the Tet-dependent

regulatory technology. It involves the combination of two mouse

lines – a KO line that expresses the Tet-transactivator (tTA or

rtTA) in place of the gene of interest, and a TIGRE (for tightly

regulated) line that contains the gene of interest under the control

of the Tet-responsive element (TRE) at a predetermined genomic

locus. It has the advantage of, 1) ability to turn genes on or off at

will by adding or removing doxycycline (Dox) at any time during

the animal’s life, thus minimizing embryonic lethality, develop-

mental effects, and compensatory effects; 2) high degree of

regulation to any gene inserted at the TIGRE locus, which has
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been selected to confer minimal basal expression and high

inducibility, and to insert any gene of interest in a single step by

Cre/loxP recombination; 3) efficiency; the design allowing

streamlined production of both KO and TIGRE mice makes it

possible to generate iKOs for a large number of genes in a cost-

effective manner; 4) flexibility; KO and TIGRE lines can be

engineered independently and combined in numerous ways,

making a wide range of applications possible.

As a proof of concept, we report the characterization of an iKO

of the apolipoprotein E gene (ApoE iKO). ApoE plays a key role in

regulating cholesterol metabolism and atherosclerosis progression.

ApoE KO mice develop hypercholesterolemia and atherosclerosis

that closely resemble the human conditions and are rapidly

reversed when APOE protein is supplied [3,4,5,6,7,8]. Thus,

inducible and reversible regulation of ApoE expression could result

in rapid physiological changes, which in turn can help assess the

iKO technology. Furthermore, the phenotype of ApoE deficiency

is quantifiable and very sensitive to leaky expression, allowing for

the evaluation of the stringency of gene regulation by iKO

technology [9]. Here we demonstrate that in the ApoE iKO mice,

ApoE gene expression, as well as blood cholesterol levels, is tightly

controlled by Dox. In the presence of Dox, ApoE is expressed and

the cholesterol levels are low; in its absence, the reverse is observed.

Furthermore, on examination of aortic atherosclerosis in the ApoE

iKO mice we found that Dox treatment before the onset of

atherosclerotic lesions completely prevented lesion formation and

Dox treatment after extensive lesions had already formed resulted

in regression of the lesions. These results demonstrate the

reversibility of the iKO, leading to phenotype switching within

the same animal. ApoE iKO is also useful in its own right as a novel

model system for the study of molecular mechanisms underlying

atherosclerosis progression and regression.

Results

Principle of the iKO System
As illustrated in Figure 1A, two genetically modified mouse

strains are created. The first is a KO line in which a Tet-

dependent transactivator (rtTA in this example) is inserted into the

target gene (Gene X). The insertion inactivates Gene X, and

places rtTA under the control of the endogenous promoter of

Gene X. The KO line can be generated via either homologous

recombination or insertional mutagenesis. The second line

(TIGRE) contains an additional copy of Gene X cDNA (or

genomic fragments) driven by TRE-promoter inserted in a specific

locus in the genome (the TIGRE locus), which has been pre-

selected for low basal transcriptional activity and high inducibility.

When these two lines are crossed, rtTA protein produced from the

KO allele can activate the TRE-Gene X in the TIGRE locus only

in the presence of Dox. (Alternatively, tTA can be used, which

works in the opposite way – Tet-off instead of Tet-on.)

Figure 1B illustrates the breeding of KO and TIGRE lines to

produce the iKO mouse, which is homozygous for the KO locus

and carries one copy of the TIGRE allele. The status of the iKO

mouse is regulated by Dox. In the absence of Dox, rtTA protein is

produced, but is inactive. As a result, TRE-Gene X is silent, Gene

X protein is not produced and the KO phenotype is manifested. In

the presence of Dox, rtTA stimulates the synthesis of Gene X

protein from the TIGRE locus in the same cells in which the

endogenous gene would normally be expressed. Expression

complements the missing endogenous Gene X activity and leads

to phenotypically normal animals. Thus, one can switch between

wild type and KO state of animals by simply adding or removing

Dox (e.g. with food).

Selection of TIGRE Loci
To screen for TIGRE loci, we constructed a Moloney murine

leukemia virus (MoMLV)-based retroviral vector, pRTonZ

(Figure 2A), in which the TRE-controlled lacZ gene was used as

a reporter for gene regulation. Retroviral transduction at low

multiplicity of infection ensures integration of a single copy of the

TRE-lacZ unit into the genome. pRTonZ contains a modified

neomycin phosphotransferase gene, loxneo, in which initiating

AUG has been placed upstream of a loxP site in frame with the

neo coding region. Once optimal locus is selected, it is utilized as a

target site for transgene-integration by the scheme shown in

Figures 2B and 2C. The TRE-lacZ unit is removed by Cre-

mediated recombination of flanking loxP sites, leaving one loxP

site and the neo gene in the genome (Figure 2B). Since the

promoter of the loxneo gene as well as the initiating AUG are also

removed, ES cells become G418-sensitive. In this configuration,

any gene of interest can be introduced into the same locus by Cre/

loxP recombination (Figure 2C). Recombinant ES clones can be

selected by G418-resistance because the neo expression unit is

reconstituted. PCR screening showed that .90% of these G418-

resistant clones had correct insertion of the new gene.

Optimal loci were initially screened in ES cells. The ES cell line

used was derived from CJ7 [10], of 129/Sv background. Following

infection with the pRTonZ retroviral vector, G418-resistant

(G418r) clones were stained with X-gal (Figure 3A). Most clones

showed mosaic staining pattern. By the percentage of the X-gal-

stained cell population, ES clones were classified into 4 categories

(Figure 3A): class I (,1% of X-gal-stained cells) to class IV (.50%

of X-gal-stained cells). From 242 ES clones analyzed, 55 clones

were classified into class I. Inducibility was examined by b-

galactosidase (b-gal) activity after transfecting 43 class I clones with

a tTA expression vector (Figure 3B). We set the cut-off value for

high induction level at 1500 munits/mg of protein and nine clones

belonged to this category.

Those loci were further examined in mice. Three independent

TRE-lacZ mouse lines were generated from class I ES clones T1,

T2 and T3 (Figure 3C). Heterozygous TRE-lacZ mice were

Author Summary

We describe a technology for the creation of inducible and
reversible gene inactivation in mice. It combines two
genetically modified mouse lines: a knock-out line with a
tetracycline transactivator replacing the endogenous
target gene, and a line in which a tetracycline-inducible
cDNA of the target gene has been inserted into a specific
genomic locus. A critical component of this system is the
unique chromosomal loci we have identified and engi-
neered that offer a platform for easy insertion of any gene
of interest for tightly controlled expression. Because of its
simple binary nature, allowing independent modification
of each of the two components and possibility of use in a
high-throughput mode, we believe that our system will be
useful for multiple applications, such as introducing
mutant or humanized form of the target gene as well as
functional manipulating tools. We have applied this
technology to the Apolipoprotein E (ApoE) gene and have
demonstrated that: a) the expression of ApoE is strictly
dependent on the presence of doxycycline, a tetracycline
group antibiotic, in the mouse diet, b) in the absence of
doxycycline (ApoE repressed) atherosclerotic plaques are
formed, confirming the importance of ApoE in the process,
and c) upon re-induction of ApoE in the animals with
doxicyclin, atherosclerosis regressed.

Inducible and Reversible Genetic Rescue
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crossed to MMTV-tTA mice, which has been reported to be

transcriptionally active in a wide variety of cell types [11], allowing

for the examination of lacZ induction in various tissues. Three

genotypes of mice (lacZ(2)tTA(2), lacZ(+)tTA(2), and

lacZ(+)tTA(+)) were analyzed for b-gal activity (Figure 3C).

Activity of lacZ(2)tTA(2) represents endogenous eukaryotic b-

gal activity. Difference between lacZ(2)tTA(2) and lacZ(+)tTA(2)

indicates basal activity of lacZ gene in the absence of tTA, and

comparison of lacZ(+)tTA(2) and lacZ(+)tTA(+) reveals induction

levels in the presence of tTA. Overall, the three mouse lines

showed similar pattern of b-gal activity, although some differences

were also seen. Basal activities were low but detectable in many

tissues, and they were comparable to the values measured in the

parental ES clones. b-gal activity was inducible in almost every

tissue, and overall induction levels correlated with the expression

levels of tTA (Figure 3C, bottom panel).

Improvement of Gene Regulation Control at the TIGRE
Loci

Although the three loci T1, T2 and T3 showed tight regulation

of gene expression, basal activity was still detectable in many

tissues. This could result from enhancers in the vicinity of the

integration sites. To solve this problem, we flanked the TRE-lacZ

reporter by the insulator sequence derived from the chicken b-

globin locus [12,13]. The insulator sequences were introduced into

all three loci (T1, T2, T3) by Cre-mediated recombination

according to the scheme shown in Figures 2B and 2C (see Figure

S1 for details) and regulation of the lacZ gene was examined by

transient expression of tTA in ES cells (Figure 4A). The insulators

reduced basal b-gal activity to levels indistinguishable from wild

type ES cells. In contrast, inducibility was not impaired by the

insulator sequence, indicating its effectiveness for increasing

stringency of gene regulation. The insulators were also introduced

into class II, III and IV ES clones, which showed high basal

activity (Figure 3A). Although the insulator sequences were

effective, basal activity was still clearly detectable in every clone

(Figure 4B). To test whether tight regulation is achieved by using

other genes, we replaced the lacZ gene with a luciferase gene

(Figure S2). With this reporter, insulators reduced basal activity by

14, 20 and 11 fold in T1, T2 and T3 loci, respectively, bringing it

close to the instrument detection limit (Figure 4C). Calculation of

the number of luciferase molecule per ES cell (Supporting

Methods) revealed that on average only 1, 0.7 and 0.3 luciferase

molecule were expressed per cell in T1, T2 and T3 loci,

respectively (Figure 4D). Importantly, induced levels were not

impaired by the insulator (Figure 4C), leading to high induction

ratio of luciferase activity. Similar basal activity levels could also be

achieved by expressing transrepressor (Figure S3). However, our

system is simpler because no additional protein expression is

required.

To evaluate the insulator effect in vivo, we also generated mice

containing TRE-lacZ gene and insulators, or TRE-luciferase (Luc)

gene and insulators at the TIGRE locus (T1), and bred them with

mice containing tTA under the control of various promoters. Basal

expression was examined in multiple tissues of TRE-Luc mice by

RT-PCR (Figure 4E). Luc mRNA was undetectable in all tissues

examined except testis, indicating very low basal levels of

expression throughout the body. To examine if the Luc transcript

detected in testis can produce functional Luc proteins, we

conducted luciferase activity assays from protein extracts of all

these tissues. The luciferase activity in testis was at the similar low

basal level as all other tissues examined (data not shown) as well as

the original TIGRE ES clone containing TRE-Luc with insulators

that had been shown to express approximately one Luc molecule

per cell (Figure 4D), suggesting that the RT-PCR band detected in

testis resulted from aberrant transcription that did not generate

functional protein. To examine induced expression, we used lines

of mice with tTA under the control of two brain-specific

promoters: a-CaMKII (calcium/calmodulin-dependent protein

kinase II) [14] or NSE (neuron-specific enolase) [15]. Sagital

Figure 1. Schematic diagram of the principle of the iKO system. (A) Two components of the iKO system, a KO line and a TIGRE line. (B)
Generation of iKO mouse by crossing the KO and TIGRE lines. The iKO is a composite mouse in which: 1) both copies of the endogenous Gene X are
disrupted by the insertion; 2) rtTA is driven by the promoter of Gene X; and 3) the cDNA of Gene X is in the TIGRE locus under the control of TRE.
Functional Gene X is only expressed from the TIGRE locus when rtTA is bound to Dox, and therefore is inducibly and reversibly regulated by Dox.
doi:10.1371/journal.pgen.1000069.g001

Inducible and Reversible Genetic Rescue
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sections of 50 mm thickness across the entire brain from TRE-

lacZ, PCAMKII-tTA/TRE-lacZ or PNSE-tTA/TRE-lacZ mice were

stained for b-galactosidase (gal) activity and representative sections

are shown in Figure 4F. In TRE-lacZ mice, no b-gal staining was

seen in any parts of the brain. In PCAMKII-tTA/TRE-lacZ or

PNSE-tTA/TRE-lacZ mice, intense b-gal staining was observed in

specific regions of the brain defined by the two promoters

respectively. These results demonstrate tight control of the TIGRE

locus in animals.

Characterization of the TIGRE Locus
Using the splinkerette PCR method [16], we obtained genomic

fragments covering either 59 or 39 junctions of the TIGRE vector

insertion site in the T1 ES cell line. After sequencing the

fragments, we determined the precise integration site of the viral

TIGRE vector in the T1 TIGRE locus, which is located on

chromosome 9. Genomic sequences surrounding the T1 TIGRE

locus are shown in Figure 5A. Characteristic of retrovirus

insertions, four nucleotides immediately adjacent to the insertion

were duplicated and the viral TIGRE vector was inserted exactly

in between the duplication. BLAT search of the UCSC Mouse

Genome Browser with genomic sequences surrounding T1

revealed the localization of T1 locus to chr9 qA3 (Figure 5B).

The insertion site is flanked by two genes: AB124611 and Carm1.

The insertion site is located 39 to the hypothetical gene AB124611

with unknown function and undetermined polyA site. The

insertion site is also ,1.5 kb upstream of the transcriptional start

of Carm1. Carm1 is ubiquitously expressed and Carm12/2 mice

are embryonic lethal [17]. However, we have not observed overt

developmental or other abnormalities in heterozygous or homo-

zygous T1 TIGRE reporter lines TRE-lacZ or TRE-Luc (both

with insulators), indicating that the viral insertion did not disrupt

the nearby Carm1 gene.

KO Lines Produced from an ES Cell Library Mutagenized
by a Retroviral Vector

KO lines with target genes replaced by rtTA or tTA can be

produced by any gene targeting or insertional mutagenic methods.

To implement high-throughput production of iKO mice, we have

utilized a large-scale insertional mutagenesis ES cell library

developed in house for the KO production [18]. Figure 6A upper

panel illustrates the structure of the retroviral vector used. In the

Figure 2. Retroviral vector used to search for tightly regulated loci and strategy to introduce a new gene into these predetermined
loci. (A) Structure of the pRTonZ retroviral vector. To prevent effects of viral enhancer on the TRE promoter, the enhancer sequence was deleted in
the 39 long terminal repeat (LTR). Subsequent transduction into target cells is expected to lead to enhancer deletion in both LTRs. The insert was
cloned in the opposite orientation of the LTRs, so that the polyA addition signals would not decrease the viral titer. (B) Excision of the lacZ reporter
gene from TIGRE loci. LoxP-flanked sequences within the retroviral vector are removed by transient expression of Cre recombinase in ES cells, leaving
a single copy of loxP site in the genome. ES cells become G418-sensitive since the loxneo gene loses its promoter and initiating AUG. (C) Introduction
of a new gene into the TIGRE locus. The G418-sensitive ES cells selected in (B) are cotransfected with the TIGRE-targeting vector carrying a new gene
(gene X) and the Cre expression vector. Proper Cre-mediated recombination between the TIGRE-targeting vector, containing the new gene, and the
TIGRE site introduces the new gene into the TIGRE locus and converts the G418 sensitive ES cells into G418 resistant (the expected recombinant leads
to neo expression by placing the PGK promoter and initiating AUG upstream of the loxneo gene). Symbols are: pAgl, rabbit b-globin gene polyA
addition signal; P, mouse phosphoglycerate kinase-1 gene promoter; AUG, initiating AUG of neomycin phosphotransferase gene; loxneo, neomycin
phosphotransferase gene having loxP sequence in-frame to initiating AUG; pABGH, bovine growth hormone gene polyA addition signal; G418r, G418
resistant; G418s, G418 sensitive.
doi:10.1371/journal.pgen.1000069.g002

Inducible and Reversible Genetic Rescue
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Figure 3. Characterization of gene regulation at TIGRE loci. (A) Screening for optimal integration sites in ES cells and classification of ES clones
by X-gal staining. A representative ES clone is shown for each class with and without phase contrast for better imaging of ES cell morphology and X-
gal staining, respectively. (B) Screening of class I clones for high inducibility. Forty three class I ES clones were transfected with a tTA expression vector
and b-gal activity was quantified 48 hours post-transfection. Bars: open, without tTA; filled, with tTA. A luciferase expression vector was cotransfected
to normalize b-gal activities. Three ES clones were designated as T1, T2 and T3 as shown in the figure, and were used to generate mice. (C) Gene
regulation in mice generated from tightly regulated ES clones. Three mouse strains were established from ES clones T1, T2 and T3, and crossed to

Inducible and Reversible Genetic Rescue
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particular case of ApoE, the virus is inserted in the third intron.

The vector contains splice acceptor, stop codons, polyA signal and

transcriptional terminator to ensure gene inactivation, which we

confirmed to be the case by showing that ,90% of isolated gene-

specific ES clones were null alleles [18]. (The remaining were

mostly knock-downs, and in nearly all these cases the retrovirus

was inserted into 59 UTR (exon or intron), suggesting that

retroviral insertions upstream of the coding regions of genes should

be avoided.) The vector also includes the rtTA gene immediately

downstream of the splice acceptor, stop codons and internal

ribosome entry site (IRES), so that rtTA protein can be

synthesized from the ApoE-IRES-rtTA hybrid transcript.

MMTV-tTA mouse. Top three panels: b-gal activity was measured in the following three genotypes: nontransgenic mice (lacZ(2)tTA(2), open bars);
mice with lacZ gene but without tTA (lacZ(+)tTA(2), lightly shaded bars); mice with both lacZ gene and tTA gene (lacZ(+)tTA(+), filled bars). Values are
shown as means with error bars of standard deviations from five male and five female animals. Values of nontransgenic mice (open bars) are common
in all three panels. Bottom panel: tTA mRNA expression level quantified by real-time PCR from one male and one female mouse. Mean values are
presented by filled bars. Note that values are shown in logarithmic scale.
doi:10.1371/journal.pgen.1000069.g003

Figure 4. Tightening of gene regulation at TIGRE loci by insulators. (A) Insulator effect in class I clones. Parental ES clones without the
insulator (T1, T2, T3) and clones with the insulator (T1inZ, T2inZ, T3inZ) were transfected by tTA expression vector, and b-gal activity was measured
48 hours post-transfection. Three independent integrant clones with insulator were analyzed in each integration site. A luciferase expression vector
was cotransfected to normalize the b-gal activities. Clone numbers correspond to those in Figure S1. WT, wild type ES cells. Bars: open, without tTA;
filled, with tTA. The same symbol was used in (B) and C). (B) Insulator effect on basal b-gal activity in class II, III and IV clones. Insulator sequence was

Inducible and Reversible Genetic Rescue
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To examine if random insertion of the retroviral vector

containing rtTA into a gene results in rtTA expression reflecting

the expression patterns of the inactivated gene, we compared rtTA

transcription with the transcription of the endogenous gene by

RT-PCR in different tissues for 26 different G protein coupled

receptor (GPCR) KO lines generated from the library. Hetero-

zygous mice carrying one allele of the intact endogenous gene and

one allele interrupted by the rtTA-bearing retroviral vector were

used to prepare total RNA samples from different tissues and

amplify gene-specific transcript and rtTA transcript from the same

RNA preps for side-by-side comparison. Figure 6B shows three

examples of such comparison for genes P2Y6, RE2 and LGR6

respectively. The retroviral vector was inserted into a different part

of each of the three genes – a 59UTR intron of P2Y6, an intron

within the coding region of RE2 and the 15th coding exon of

LGR6. In all three cases, rtTA expression profiles closely resemble

Figure 5. Chromosomal location of the T1 TIGRE locus. (A) Genomic sequences surrounding the T1 TIGRE locus. The underlined AAAG
sequence was duplicated upon viral integration and the viral TIGRE vector was inserted exactly in between the duplication. (B) BLAT search of the
UCSC Mouse Genome Browser (http://genome.ucsc.edu/cgi-bin/hgBlat) with genomic sequences (as in (A)) surrounding T1 revealed the localization
of T1 locus to chr9 qA3. This panel is a screen shot of the BLAT search result. The location of the sequences used for the search is indicated by a
vertical bar next to ‘‘YourSeq’’. The insertion site is in between two genes: AB124611 and Carm1 (alternative name Prmt4), and does not seem to
disrupt either gene.
doi:10.1371/journal.pgen.1000069.g005

introduced into three ES clones categorized in class II, III and IV of Figure 3A. Note that values are shown in logarithmic scale. (C) Insulator effect on
the regulation of luciferase gene. The lacZ gene of the three class I clones (T1, T2, T3) were replaced by luciferase gene without (T1L, T2L, T3L) or with
(T1inL, T2inL, T3inL) the insulator. Two independent integrants were established in each case. A lacZ expression vector was cotransfected to
normalize the luciferase activities. Clone numbers correspond to those in Figure S2. (D) Number of luciferase molecule per cell in class I clones with
the insulator sequence. (E) RT-PCR of the luciferase (Luc, upper panel) and positive control GAPDH (lower panel) transcripts in a TIGRE line (T1) with
TRE-Luc and insulators. Each tissue has an RT-PCR reaction (RT+, left lane) and an RT- control (right lane) run simultaneously to exclude any possibility
of genomic DNA contamination. The last lane is a positive control of genomic DNA PCR just for Luc. (F) b-gal staining of brain sagital sections (50 mm)
of mice carrying a TRE-LacZ (+insulators) TIGRE (T1) line alone (top panel) or combined with either aCaMKII-tTA (middle panel) or NSE-tTA (bottom
panel) transgene. There is no detectable b-gal staining in the absence of inducer (top panel). When TRE-LacZ TIGRE line is combined with aCaMKII-
tTA, b-gal staining is seen in the same regions aCaMKII-tTA is expressed – mainly cortex, hippocampus and striatum (middle panel). When TRE-LacZ
TIGRE line is combined with NSE-tTA, b-gal staining is seen in the same regions NSE-tTA is expressed – mainly striatum, dentate gyrus and cerebellum
(bottom panel).
doi:10.1371/journal.pgen.1000069.g004

Inducible and Reversible Genetic Rescue
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those of the endogenous genes to be inactivated. Real-time qPCR

for 16 tissues (Table S1) also showed high degree of correlation

between rtTA and endogenous gene from tissue to tissue. Overall,

out of the 26 lines examined, 19 lines showed good correlation

between rtTA and the endogenous gene’s expression (Table S2),

i.e. rtTA is expressed in the tissues where the corresponding

endogenous gene is expressed and the relative ratio across different

tissues for each transcript also appears similar between rtTA and

endogenous gene. In the remaining 7 lines in which rtTA was not

expressed well, 5 lines had the retroviral vector inserted upstream

Figure 6. Characterization of gene regulation in iKO mice. (A) Construction and genomic structure of the ApoE iKO mice. Endogenous ApoE
gene comprises of 4 exons. In the ApoE KO line, retroviral vector is inserted into the third intron of the ApoE gene, 205 bp upstream of the fourth
exon (the largest coding exon). The retroviral vector contains the virus backbone (including 59LTR and 39LTR), a splice acceptor (SA) – stop codon
(stop) – IRES cassette immediately followed by rtTA, a PGK promoter (P) driven neo selection marker flanked by two loxP sites (L), and a
transcriptional terminator sequence (t). pA, polyadenylation sequence. From this locus, transcription initiated from the endogenous ApoE gene
continues through rtTA to form an ApoE-SA-Stops-IRES-rtTA-polyA hybrid transcript in place of the full-length endogenous ApoE transcript. The rtTA
protein is produced from this hybrid transcript through IRES-mediated translation, and in turn turns on the expression of the TRE-ApoE from the
TIGRE locus only when Dox is present. The ApoE TIGRE locus contains an exogenous copy of ApoE cDNA driven by TRE and flanked by four copies of
chicken b-globin insulator (ins) sequences, two on each side, and a PGK promoter (P) driven loxneo selection marker. (B) Side-by-side comparison of
the expression of rtTA and each individual endogenous gene in various tissues by semi-quantitative RT-PCR. Three GPCR genes are shown here: P2Y6,
RE2 and LGR6. Heterozygous mice are used so that the endogenous transcripts from the WT allele and the rtTA-containing hybrid transcripts from the
KO allele can be amplified from the same RNA preps. Each RT-PCR reaction (RT+) has an RT- control run simultaneously to exclude any possibility of
genomic DNA contamination. (C) Comparison of three transcripts by RT-PCR from the same RNA prep of the liver, the major site of normal ApoE
production, of the ApoE+/2;TRE-ApoE mice – endogenous ApoE transcript (endoApoE), TRE-ApoE transcript from the TIGRE locus (TRE-ApoE) and
ApoE-rtTA hybrid transcript (endoApoE-rtTA). Mice were fed either with or without Dox. As expected, expression of endoApoE and rtTA were
independent of Dox. However, expression of TRE-ApoE was strictly dependent on Dox – it was undetectable in its absence and significantly expressed
in its presence, indicating high degree of ApoE regulation achieved in the mice.
doi:10.1371/journal.pgen.1000069.g006
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Figure 7. Plasma cholesterol levels and atherosclerotic lesion progression/regression regulated by Dox in ApoE iKO mice. (A) Plasma
cholesterol levels in the ApoE iKO, KO and WT group mice in the absence and presence of Dox. (Littermate mice of various genotypes other than
homozygous KO or iKO, i.e. ApoE+/+, ApoE+/2, ApoE+/+;TRE-ApoE and ApoE+/2;TRE-ApoE, all displayed normal and indistinguishable blood
cholesterol levels, and never developed lesions under any treatment regime used in our study. Consequently they were lumped together as the ‘‘WT
group’’.) Plasma cholesterol levels were first measured in mice fed with normal food without Dox (2Dox) and both ApoE iKO and KO mice showed
significantly higher cholesterol levels compared to WT group mice (p = 0.35 between iKO and KO, p,0.0001 between iKO and WT or between KO and
WT, Student’s t-test). The mice were then switched to Dox-containing food, and plasma cholesterol levels were measured again 4 days (+Dox 4d) and
7 days (+Dox 7d) later. Cholesterol level of ApoE iKO mice dropped to WT levels in less than 4 days while that of ApoE KO remained high (p,0.0001
between iKO and KO or between KO and WT, p = 0.86 between iKO and WT). Sometime later, some Dox-treated mice were switched back to normal
food, and plasma cholesterol levels were measured again 4 days (2Dox 4d) and 7 days (2Dox 7d) after Dox withdrawal. Cholesterol level of ApoE iKO
mice significantly elevated by day 4 (p,0.001 between iKO and WT, p,0.01 between iKO and KO) and approached pre-Dox treatment level by day 7
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of the first (and usually fairly large) intron of each gene. It has been

recognized that the first intron (especially if it is large) could

contain essential transcriptional regulatory elements, and thus

insertions in this region might disrupt the transcriptional

regulation and so should be avoided. Otherwise, our data showed

that in the majority of insertional sites, rtTA could be expressed

through the endogenous promoter upon integration via the

retroviral vector.

Tightly Regulated ApoE Expression and Blood
Cholesterol Levels by Dox in the ApoE iKO Mice

To prove the concept of iKO system, we generated ApoE iKO

mice by creating ApoE KO line and ApoE TIGRE line separately

and breeding them together (Figure 6A), and attempted to model

human conditions such as hypercholesterolemia and atheroscle-

rosis. ApoE KO line was created by screening the mutant ES cell

library as mentioned above. ApoE TIGRE line was created by

inserting a TRE-ApoE transgene, flanked with 4 copies of chicken

b-globin insulators, into the T1 TIGRE locus. RT-PCR analysis of

heterozygous mice (ApoE+/2; TRE-ApoE) showed that expres-

sion of TRE-ApoE was strictly dependent on Dox (Figure 6C).

Real-time qPCR using primers specific for the endogenous ApoE

or TRE-ApoE (2 sets of primers for each gene) showed that

endogenous ApoE mRNA level is very high (compared to 18s

rRNA), and the TRE-ApoE mRNA level in the presence of Dox is

,6.7 fold lower than the endogenous ApoE (DCt = 2.7 between

TRE-ApoE and endogenous ApoE), while in the absence of Dox

TRE-ApoE is .55,000 fold lower than the endogenous ApoE

(DCt.15.8). This shows the TRE-ApoE induction by Dox is

.8,000 fold.

Next, we carried out phenotypic analysis of homozygous ApoE

iKO mice (ApoE2/2; TRE-ApoE), i.e. mice having both

endogenous ApoE alleles inactivated and carrying TRE-ApoE in

the TIGRE locus. We analyzed blood cholesterol levels in these

mice in the absence and presence of Dox. Constitutive KO (i.e.

ApoE2/2 without TRE-ApoE in the TIGRE locus) and WT

group mice that were littermates of iKO were used as controls. As

shown in Figure 7A, in the absence of Dox the iKO mice had high

cholesterol levels similar to that of the KO mice; in the presence of

Dox, the iKO showed normal cholesterol levels, demonstrating

that inducible expression of ApoE can lead to the reversion of the

KO phenotype of hypercholesterolemia. When Dox was with-

drawn, the cholesterol levels in the iKO mice rose again. These

on/off switches occurred rapidly, within a few days after Dox

administration or withdrawal.

Dox-Regulated Atherosclerosis Progression and
Regression in the ApoE iKO Mice

We examined the atherosclerotic lesion formation in the aortas

of the ApoE iKO mice. As controls we used KO and WT group

mice that were littermates of iKO. In the absence of ApoE protein,

aortic atherosclerotic lesions start to form around 3–4 months of

age and progress continually with time. One set of iKO, KO and

WT group mice were treated with Dox-containing food

throughout their life, and were compared with mice fed with

normal food. Figure 7B shows the atherosclerotic lesions formed

around the arch region of the aorta, as visualized by Sudan IV

staining. By 7 months of age, extensive lesions had formed in KO

mice, regardless of whether they were treated with Dox or not,

whereas WT mice did not have any lesions in the absence

(Figure 7B) or presence (data not shown) of Dox. The iKO mice

developed extensive lesions in the absence of Dox (similar to KO

mice), whereas in the presence of Dox no lesions had formed.

We further investigated what happens if ApoE protein

expression is turned on after the atherosclerotic lesions have

already formed. ApoE iKO and KO mice of 5 months of age were

switched from normal food to Dox-containing food for the next 4

months. Aortic atherosclerotic lesions were examined before (at 5

months) and after (at 9 months) the Dox treatment. As shown in

Figure 7C, at 5 months of age, both iKO and KO had developed

similar levels of lesions. After 4 months of Dox treatment, the

lesions in KO mice continued to grow, whereas in the iKO mice,

the lesions had regressed nearly completely with only scar-like

tissues remaining, suggesting that the lipid-containing foam cells

have disappeared from the lesions. The results were verified by

quantification and statistical analysis of the lesions by one-way

ANOVA followed by Neuman-Keul’s post hoc test (Figure 7D).

Discussion

We have developed a reversible and inducible rescue system for

gene KO in mice and have applied this method into the ApoE

gene. Our system complements existing inducible gene expression

approaches and provides certain advantages. The tamoxifen-

dependent Cre-ERT2 [19,20] recombination can drive inducible

knockout of the endogenous gene, however, it is irreversible and

the efficiency of tamoxifen inducibility throughout the body is yet

to be demonstrated. The usefulness of the Tet-inducible system

[21,22] is critically dependent on the tightness of transcription

induction and suppression. When either the Tet-transactivator or

the target gene is randomly integrated into the genome, they are

subjects to positional effects [23]. It is often necessary to screen

(p,0.0001 between iKO and WT, p = 0.13 between iKO and KO). ***P,0.001. (B) Atherosclerotic lesion progression. Aortas were stained with Sudan IV
to visualize the lesions in red. The arch region of the aorta contains the most extensive areas of lesions and is shown here. A group of iKO, KO and WT
mice were treated with Dox-containing food starting before the onset of lesions, and were compared with mice fed with normal food. At 7 months of
age, aortas were dissected from these mice and lesions were examined. ApoE iKO mice showed extensive aortic lesions as the KO mice in the absence
of Dox, and yet no lesions at all as the WT mice in the presence of Dox. (C) Atherosclerotic lesion regression. ApoE iKO and KO mice of 5 months of
age were switched from normal food to Dox-containing food. Aortic lesions were examined before (at 5 months) and after (at 9 months) the Dox
treatment. After 4 months of Dox treatment, the lesions in KO mice continued to grow, whereas in the iKO mice the lesions had regressed. (D)
Quantification of the aortic atherosclerotic lesion areas in the arch region above the first intercostal artery, as expressed by the percentage of lesion
areas versus the whole aortic area in this segment. All genotypes are matched with ages for different Dox treatment. Dox-treated groups are:
iKO+Dox: Dox food started at 2–4 months of age (before the onset of atherosclerosis); iKO+Dox regression: Dox food started at 5–6 months of age
(after the onset of atherosclerosis); KO+Dox: Dox food started at 2–4 months of age (before the onset of atherosclerosis). The results are compared
using one-way ANOVA followed by Neuman-Keul’s post hoc test. Both iKO+Dox and iKO+Dox regression groups had significantly reduced
atherosclerotic areas compared to the remaining groups. *P,0.05, **P,0.01. The iKO mice without Dox, as well as KO mice either with or without
Dox, all developed comparable areas of lesions (p.0.05 in all pair-wise comparisons). The iKO mice treated with Dox before the onset of
atherosclerosis had nearly no lesions and were significantly different from the above groups (p,0.01 iKO+Dox versus iKO2Dox; p,0.01 iKO+Dox
versus KO2Dox; p,0.05 iKO+Dox versus KO+Dox). The iKO mice treated with Dox after the onset of atherosclerosis had significantly reduced
atherosclerotic areas compared to iKO mice without Dox or KO mice either with or without Dox (p,0.05 in all comparisons between iKO+Dox
regression versus iKO2Dox, KO2Dox or KO+Dox).
doi:10.1371/journal.pgen.1000069.g007
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through multiple transgenic lines every time a new transgene is

introduced. Attempts to target both tTA and TRE together into

an endogenous gene locus to achieve inducible activation and

inactivation were successful in a few cases [24,25,26], but this

method is not applicable to most other genes as the TRE is easily

subject to activation from nearby enhancers independent from

tTA. Our iKO technique utilizes each gene’s own promoter to

direct the expression of transcriptional activators, e.g. rtTA and

tTA. Therefore it is not limited to certain tissues and available

tissue-specific promoter driven transgenic lines. It could be

applicable to any gene in any tissue. Dox-regulated expression

can be turned on and off rapidly, i.e. within a few days, and at any

time in development or adult. It also allows analysis of the effects

of gene inactivation in the same animal. The TIGRE locus has

been selected to confer little or no basal transgene expression

throughout the body while maintaining high inducibility, enabling

stringent control of the on/off switching of the target gene. Our

system also has the flexibility to allow for further improvements.

For example, in some cases it may be more desirable to put the

genomic copy of the gene under TRE promoter into the TIGRE

locus instead of the cDNA to more precisely mimic the expression

of the endogenous gene. Also, the IRES we have used to drive

rtTA translation may not work uniformly well in all tissues, and

can be replaced by other approaches such as using the viral 2A-

like sequences for bicistronic translation [27] or direct targeting of

tTA/rtTA into the ATG start codon of the endogenous gene.

Unique chromosomal loci for predicted gene expression provide

fundamental tools for genetic studies. The most widely used is the

ROSA26 locus [28] in which ubiquitous gene expression is

achieved by endogenous promoter activity of this locus. The

TIGRE loci identified in this study allow a different mode of gene

regulation – they were selected from hundreds of insertion sites for

tight gene regulation by an exogenous promoter. Therefore, the

TIGRE loci offer a platform for easy insertion of any gene in a

tightly regulated locus, applicable to not only the tetracycline

system but also other gene expression systems utilizing exogenous

promoters such as constitutively active promoters, tissue specific

promoters, or other inducible promoters regulated by reagents

such as ecdysone [29], mifepristone [30] and streptogramin [31].

Recently a similar approach was also applied to a human

fibrosarcoma cell line to pre-screen optimal integration sites for

transgenes [32]. In addition, here we demonstrated that the

stringency of the regulation at TIGRE loci is further enhanced by

the incorporation of insulators, i.e. basal expression level was

reduced to less than one luciferase molecule per cell without

impairing inducibility (Figure 4C, D). Insulators were also shown

previously to improve inducibility of randomly integrated TRE-

reporters [33]. It should be noted that in our study the insulator

effect was limited in many other loci (Figure 4A versus 4B),

demonstrating the uniqueness of the TIGRE loci. The genomic

location of the T1 TIGRE locus, which was most extensively used

in our study including the ApoE iKO mice, was determined

(Figure 5). Further manipulation of this locus would be possible to

expand its application.

The stringent gene regulation is demonstrated in the ApoE iKO

mice. It is known that regulation of blood cholesterol levels is very

sensitive to the plasma ApoE protein levels. Even with the

production of 3% of wild-type level of ApoE protein, the

hypercholesterolemia and atherosclerosis phenotypes of the ApoE

KO mice can be reversed [9]. Given this high sensitivity, the fact

that our ApoE iKO mice in the uninduced state (i.e. in the absence

of Dox) exhibit similarly high levels of cholesterol compared to

ApoE KO mice indicates that there is hardly any expression of

functional APOE. Reversing the KO at will is a particularly

powerful approach in atherosclerotic regression studies. Dox-

treatment of ApoE iKO mice results in expression of ApoE,

marked reduction of plasma cholesterol levels, and regression of

aortic atherosclerotic lesions. These findings are consistent with

previous studies showing that aggressive lipid lowering or

expression of ApoE can induce regression of pre-existing

atherosclerotic lesion [7,8,34,35]. It is becoming increasingly clear

that lesion regression is regulated by a complex interplay between

lipids, inflammation and the immune system [35]. The ApoE iKO

mice will allow detailed studies on the roles of specific genes in

these complex interactions.

The binary nature of the iKO system is inherently simple, with the

KO line serving dual roles: it could be used as a constitutive KO or

combined with the TIGRE line to produce an inducible and

reversible iKO. The 10-million clone ES cell library we utilized [18]

has been estimated to contain insertional mutations for .90% of

genes, and individual ES clones with retroviral insertions in a specific

target gene can be rapidly identified through a PCR pooling strategy

and subsequently isolated in a streamlined process. The identifica-

tion and modification of the TIGRE locus allows rapid insertion of

any gene of interest via co-transfection with Cre. Therefore, each

component of the binary system, the KO or the TIGRE line, is

amenable for high-throughput production to generate inducible and

reversible KOs for a large number of genes.

It should be noted that the iKO system may not be applicable in

certain situations where highly stringent gene regulation is

required. For example, even though the system had enough

stringency in low basal activity and high induction, the induced

gene expression level is usually not exactly the same as the

endogenous gene’s level and this could be a problem for genes that

are highly sensitive to gene dosage effect or show haploid

deficiency. The kinetics of the system (days) may be also too slow

for some developmental problems where transient expression of

developmental genes are critical, although it should be noted that

it could still work well in carefully thought-out developmental

studies (as in [24]). In addition, it has been reported that rtTA

often can not induce sufficient gene expression in the brain, at least

partially due to developmental inactivation of the TRE promoter

in neurons [36]. It appears that the tTA (Tet-off) system is better

suited for the use in brain [14], as substantial b-gal induction was

observed in brain with tTA (Figure 4F).

Our results of the ApoE iKO mice and the quantitative data

using lacZ and luciferase reporters suggest that the iKO system

could be a useful tool in addressing a variety of biological

questions. The two components of the iKO system can be

independently modified, and pairing of their different forms can

generate numerous combinations. In KO lines, genes with unique

expression patterns are tagged with a transcription transactivator,

which can control, in an inducible fashion, the expression of a

variety of genes derived from TIGRE lines, enabling a number of

additional applications in specific types of tissues or cells. Those

include: 1) introducing mutant forms of the target gene into the

TIGRE locus for better functional probing of different domains,

splice variants, post-transcriptional modifications (e.g. phosphor-

ylation), or modeling human diseases; 2) humanizing target genes

by placing a human ortholog of the mouse gene under TRE

control, which can facilitate drug efficacy studies; 3) placing a

cytotoxic gene under TRE control to allow inducible cell-type

specific ablation; 4) introducing a marker gene such as GFP,

protein interacting probe, or transneuronal tracer, into the

TIGRE locus for cell-type specific tagging, functional analysis,

isolation of specific cell population, or mapping neuronal

networks; 5) combining with recently developed RNAi techniques

[37,38,39] to down-regulate any genes of interest in a tissue-
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specific and inducible manner; 6) re-engineering the TIGRE locus

to place a TRE-driven Cre, and combining it with a tissue-specific

rtTA or tTA line and floxed target genes to achieve inducible

region-specific gene knockout [40].

Materials and Methods

See Text S1 online for a more detailed description of the

methods.

Screening and Isolation of ES Clones with Insertions in
Target Genes

Construction of ES cell library infected with the retrovirus and

screening and isolation of ES clones with genes of interest inactivated

by the viral insertion is described previously [18]. Specifically for

ApoE, insertions were found by nested PCR analysis of the ES DNA

using two vector-specific and gene-specific primer pairs. The ApoE-

specific primers are antisense and located in the fourth exon. Several

independent retroviral insertions in the ApoE gene were identified.

PCR fragments were sequenced to confirm insertion into the gene. A

library tube with a clone of interest identified by the PCR also

contains a few hundred other ES cell clones. The sole desired clone

was isolated from the mixture by three rounds of cell sorting and

growing followed by PCR using the same pair of primers to identify

positive clones. Additional PCRs using ApoE primers located in the

third intron flanking the viral insertion site were conducted to

confirm the precision of the insertion and integrity of the genomic

sequence of ApoE.

Generation of TIGRE ES Clones Containing Target Genes
Full length cDNAs for the coding sequences of target genes were

cloned into the TIGRE-targeting vector containing TRE, insulators,

a PGK promoter and a pair of loxP sites (Figure 5A lower panel).

The TIGRE-targeting vectors were co-transfected with a Cre-

expressing plasmid into the neo-sensitive ES cells carrying the

minimal TIGRE locus with a single loxP site and the promoterless,

ATGless loxneo marker. When the TIGRE-targeting vector is

integrated into the TIGRE locus through Cre/lox-mediated

recombination, neo-resistance is restored to the ES cells by the

addition of PGK promoter and in-frame fusion of ATG to the

loxneo marker. Correctly integrated ES clones were identified and

confirmed by PCR screening and southern blot analysis.

Animal Production and Maintenance
ES cell clones were injected into blastocysts of C57BL/6J mice

following standard techniques. Chimeric mice were bred with

C57BL/6J mice to test germline transmission and generate

heterozygous mice. Mice from the corresponding KO lines and

TIGRE lines were crossed with each other to produce inducible

KO mice according to the scheme shown in Figure 1B. All mice

used for studies in this paper were in a mixed genetic background

of 50% 129S1/SvImJ and 50% C57BL/6. For the ApoE KO line,

southern blot using rtTA coding sequence as probe confirmed the

correct insertion of the retroviral vector into the endogenous ApoE

gene. It also revealed an additional retroviral insertion somewhere

else in the genome. The additional insertion was selectively bred

out, and the ApoE iKO colony was maintained with a single

retroviral insertion at the ApoE locus. MMTV-tTA, PCAMKII-tTA

and PNSE-tTA mice were purchased from The Jackson Laboratory

(Bar Harbor, ME). All experimental procedures were approved by

the Institutional Animal Care and Use Committee of NCI and

Nura, Inc. in accordance with NIH guidelines.

Dox was administered to the mice through Dox-containing

food, which was custom made by Bio-Serv (Frenchtown, NJ) to

contain 2 g Dox per kilogram of food. The nutrition content of the

Dox food (e.g. 19% protein and 8.6% fat) was very similar to the

regular diet (20% protein, 9% fat) used in our colony. Therefore

the switching of food types did not result in change of cholesterol

levels in mice.
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