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Abstract: Mitochondrial nicotinamide adenine dinucleotide phosphate (NADP+)-dependent isocitrate
dehydrogenase (IDH2) plays a key role in the intermediary metabolism and energy production via
catalysing oxidative decarboxylation of isocitrate to α-ketoglutarate in the tricarboxylic acid (TCA)
cycle. Despite studies reporting potential interlinks between IDH2 and various diseases, there is lack of
effort to comprehensively characterize signature(s) of IDH2 knockout (IDH2 KO) mice. A total of 6583
transcripts were identified from both wild-type (WT) and IDH2 KO mice liver tissues. Afterwards,
167 differentially expressed genes in the IDH2 KO group were short-listed compared to the WT
group based on our criteria. The online bioinformatic analyses indicated that lipid metabolism is the
most significantly influenced metabolic process in IDH2 KO mice. Moreover, the TR/RXR activation
pathway was predicted as the top canonical pathway significantly affected by IDH2 KO. The key
transcripts found in the bioinformatic analyses were validated by qPCR analysis, corresponding to
the transcriptomics results. Further, an additional qPCR analysis confirmed that IDH2 KO caused
a decrease in hepatic de novo lipogenesis via the activation of the fatty acid β-oxidation process.
Our unbiased transcriptomics approach and validation experiments suggested that IDH2 might play
a key role in homeostasis of lipid metabolism.

Keywords: Idh2; hepatic transcriptomics; lipid metabolism; bioinformatics; knockout mouse

1. Introduction

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate into
α-ketoglutarate [1] and are classified into two subclasses based on a type of cofactors utilized
in the reaction. Either nicotinamide adenine dinucleotide (NAD+) or NADP+ is utilized as a cofactor
to form NADH (reduced form of NAD+) or NADPH (reduced form of NADP+), respectively [2].
There are three isoforms of IDHs depending upon their localization: Cytosolic NADP+-dependent
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isocitrate dehydrogenase (IDH1), mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2),
and mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH3) [3]. Of the three isoforms,
IDH1 and IDH2 produce NADPH, which is a molecule required not only for the regeneration of
glutathione [4], but also for the utilization of anabolic pathways, such as fatty acid elongation
processes [5]. Regarding NADPH production, IDH2 plays a critical role in mitochondrial homeostasis
since glucose 6-phosphate dehydrogenase, another key enzyme participating the pentose phosphate
pathway to produce NADPH, is lacking in mitochondria [1].

Thus far, a few studies have utilized IDH2 deficient in vitro or in vivo models. In non-cancer
studies, the mechanistic contributions of IDH2 are fairly clear as to ROS homeostasis which might
be related to NADPH production and glutathione regeneration. Multiple studies have shown that
IDH2 knockout (KO) mice elicited enhanced disease susceptibility ulcerative colitis [6], cardiac
hypertrophy [7], and others [8–10]. Most these studies explained the mechanisms by which IDH2
deficiency worsens disease susceptibility through the imbalances of the mitochondrial redox status [1,11].
In agreement with these studies, in a recent publication, the inactivation of IDH2 or deletion of Idh2
increased cytosolic reactive oxygen species (ROS), thereby potentiating oxidative damages to DNA,
proteins, and lipids in ischemia induced liver damages [9]. Of note, the enzymatic activity of IDH2
can be affected by various factors, such as chemicals [12], diet [13] in addition to post-translational
regulation [14]. Despite important physiological roles of IDH2 in energy metabolism in the TCA
cycle, most studies however are overly weighted towards redox systems and are thus somewhat
biased. To this end, the global gene expression analyses, such as mRNA sequencing (RNAseq), allows
researchers to unravel novel function(s) and identify candidate genes associated with characteristics of
interest, in our case, IDH2 deficiency.

To the best of the authors’ knowledge, a global gene expression analysis in IDH2 KO mice
has never been undertaken, in spite of studies reporting potential interlinks between this gene and
various diseases as aforementioned. Therefore, the present study was conducted to capture metabolic
signatures of IDH2 KO liver transcriptome using RNAseq which may provide information to discover
new transcripts and to quantify transcript levels [15]. Further, using the RNAseq dataset, a gene
ontology (GO) analysis and software-based pathway analysis were performed to further identify key
biological functions of IDH2 influencing disease-related signaling pathways.

2. Materials and Methods

2.1. Animal Housing, and Study Design

The animals used in this study were idh2−/− germ-line knockout (IDH2 KO) mice (both male (n = 2)
and female (n = 3)) and their littermate wild type (WT) mice (both male (n = 3) and female (n = 4)).
Both WT and IDH2 KO mice share same C57BL/6N stain background. All mice were maintained
in cages (up to 4 mice per cage) in a windowless room with a 12 h-light–dark cycle at a constant
temperature of 23 ± 2 ◦C and humidity of 40 ± 10%. Mouse tail genotyping was carried out before use
(Figure 1A) and further confirmed by measuring the IDH2 protein expression (Figure 1B). All mice
were killed by exsanguination at 8–10 weeks of age via cardiac puncture under anesthesia using
2,2,2-tribromoethanon (Sigma-Aldrich, St. Louis, MO, USA). The harvested liver tissues were quickly
placed in the RNALater solution (Invitrogen, Carlsbad, CA, USA) for 12 h at 4 ◦C, and then were
stored at −80 ◦C until further RNA isolation. All animal handling and experiments were performed
in accordance with a protocol approved by the Institutional Animal Care and Use Committee of the
University of Arkansas (IACUC protocol approval number: 17044).
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Figure 1. The validation of Idh2 deletion in mice. The ablation of Idh2 was verified by tail DNA 
genotyping method (A), and by comparing IDH2 protein expression in liver tissues of wild-type (WT) 
and IDH2 KO mice (B). 

2.2. Liver Transcriptomics Analysis 

The total RNA from liver tissues was isolated using the RNeasy Plus Mini Kit (Qiagen, Hilden, 
Germany) and then the quality of isolated RNA was first assessed using the conventional A260/280 
ratio and A260/230 ratio measurement (SpectraMax i3x; Molecular Devices, Sunnyvale, CA, USA) 
which were all satisfactory. In addition, the RNA Integrity Number (also known as RIN) was assessed 
using the RNA R6K assay for the Agilent 2200 TapeStation (Agilent Technology, Santa Clara, CA, 
USA) in which RINs ranged between 8.5 and 9.5 and were hence satisfactory. For the RNAseq 
analysis, library preparation and sequencing analyses were carried out at the Research Technology 
Support Facility of Michigan State University (East Lansing, MI, USA). Liver transcriptome (n = 7 for 
WT group and n = 5 for IDH2 KO group) was analyzed using a 1 × 50 bp single end read method of 
Illumina HiSeq system (Illumina Inc., San Diego, CA, USA) as described in an earlier report [16]. The 
total read counts were normalized by the transformation to log2 number of reads per million in order 
to stabilize the variance. The normalized reads per million values were then subjected to further 
statistical analyses followed by computational bioinformatics. The sequencing dataset supporting 
this article has uploaded to the Gene Expression Omnibus repository (GEO; 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128361), which will be published on 15 
March 2020. 

2.3. Bioinformatics Analyses 

For the transcriptomics dataset, a short list of differentially expressed genes (DEGs) was 
produced based on the criteria: mRNAs showing p-value < 0.05 and fold change > 2. To visualize fold 
changes in the transcriptome dataset in response to Idh2 deletion compared to the WT mice, a volcano 
plot and heat map were generated using the R package software (R Studio 3.5.2 version; The R 
Foundation, Boston, MA; available at r-project.org). The heat map was generated for the short-listed 
mRNAs by creating a normalized z-score that was calculated in the R. The short-listed DEGs were 
subjected to the DAVID, which is web-based tools to identify enriched biological themes including 
GO terms, group functionally related genes, cluster annotation terms for large gene lists and 
pathways in the KEGG database. The functional annotation clustering algorithm was used to 
generate a clustered, non-redundant report of related annotation terms, and the groups of annotation 
clusters with gene count threshold > 10, and EASE scores (i.e., modified Fisher Exact p-value for gene-
enrichment analysis) < 0.01 were retained. Similarly, the short list was subjected to the IPA software 
(Qiagen) to perform a core analysis in order to identify the upstream regulators for DEGs and related 

Figure 1. The validation of Idh2 deletion in mice. The ablation of Idh2 was verified by tail DNA
genotyping method (A), and by comparing IDH2 protein expression in liver tissues of wild-type (WT)
and IDH2 KO mice (B).

2.2. Liver Transcriptomics Analysis

The total RNA from liver tissues was isolated using the RNeasy Plus Mini Kit (Qiagen,
Hilden, Germany) and then the quality of isolated RNA was first assessed using the conventional
A260/280 ratio and A260/230 ratio measurement (SpectraMax i3x; Molecular Devices, Sunnyvale,
CA, USA) which were all satisfactory. In addition, the RNA Integrity Number (also known as RIN)
was assessed using the RNA R6K assay for the Agilent 2200 TapeStation (Agilent Technology, Santa
Clara, CA, USA) in which RINs ranged between 8.5 and 9.5 and were hence satisfactory. For the
RNAseq analysis, library preparation and sequencing analyses were carried out at the Research
Technology Support Facility of Michigan State University (East Lansing, MI, USA). Liver transcriptome
(n = 7 for WT group and n = 5 for IDH2 KO group) was analyzed using a 1 × 50 bp single
end read method of Illumina HiSeq system (Illumina Inc., San Diego, CA, USA) as described
in an earlier report [16]. The total read counts were normalized by the transformation to log2

number of reads per million in order to stabilize the variance. The normalized reads per million
values were then subjected to further statistical analyses followed by computational bioinformatics.
The sequencing dataset supporting this article has uploaded to the Gene Expression Omnibus repository
(GEO; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128361), which will be published on
15 March 2020.

2.3. Bioinformatics Analyses

For the transcriptomics dataset, a short list of differentially expressed genes (DEGs) was produced
based on the criteria: mRNAs showing p-value < 0.05 and fold change > 2. To visualize fold changes in
the transcriptome dataset in response to Idh2 deletion compared to the WT mice, a volcano plot and heat
map were generated using the R package software (R Studio 3.5.2 version; The R Foundation, Boston,
MA; available at r-project.org). The heat map was generated for the short-listed mRNAs by creating a
normalized z-score that was calculated in the R. The short-listed DEGs were subjected to the DAVID,
which is web-based tools to identify enriched biological themes including GO terms, group functionally
related genes, cluster annotation terms for large gene lists and pathways in the KEGG database.
The functional annotation clustering algorithm was used to generate a clustered, non-redundant report
of related annotation terms, and the groups of annotation clusters with gene count threshold > 10,
and EASE scores (i.e., modified Fisher Exact p-value for gene-enrichment analysis) < 0.01 were retained.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128361
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Similarly, the short list was subjected to the IPA software (Qiagen) to perform a core analysis in order to
identify the upstream regulators for DEGs and related canonical pathways in response to Idh2 deletion.
The IPA core analyses are based on previous knowledge of the associations of upstream regulators
and their downstream target genes archived in the Ingenuity Knowledge Base. The p-values were
calculated by Fisher’s exact test for the upstream regulator analysis. A schematic diagram of the data
acquisition, bioinformatics analyses, and validation experiments is shown in Figure 2A.
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Figure 2. Procedures of hepatic transcriptomics dataset. The analyses of transcriptomics dataset
followed by computational analyses and qPCR validation: A flowchart (A), A volcano plot (B), and heat
map (C) showed differentially expressed genes and the relationships among samples used, respectively.

2.4. Quantitative RT-PCR Validation

The transcriptomics and computational bioinformatics analyses were validated by quantitative
RT-PCR analysis using StepOnePlus system (Applied Biosystems; Foster City, CA, USA). Two µg
of total RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) according to the manufacturer’s protocol. The reaction mixture contained
TaqMan Gene Expression Mastermix, respective primer(s) tagged with TaqMan probes (Table S5),
and cDNA. The amplification was conducted under the following conditions: One cycle at 50 ◦C for
2 min and 95 ◦C for 10 min, followed by 40 cycles of denaturation (95 ◦C for 15 s) and annealing/extension
(60 ◦C for 1 min). The genes of interest were normalized to that of the reference gene (Actb). The data
were analyzed with StepOne Software (Ver. 2.1; Applied Biosystems) using the 2−∆∆CT method.
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2.5. Statistical Analyses

All data were analyzed by a two tailed, Welch’s t test. A p-value of 0.05 or less was considered
statistically significant (SAS 9.4 version; SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Transcriptome Profiles and Identification of DEGs

A total of 12 RNAseq libraries were constructed using RNA samples of liver tissues from both
wild-type (WT) and IDH2 KO mice. After filtering low read counts and normalization, a total of 6583
transcripts remained. Of the 6583 genes, only mRNAs showing p-value < 0.05 and fold change >2
were considered differentially expressed genes (DEGs) for further bioinformatics analyses and qPCR
validation (Figure 2A). Using these criteria, this study was able to select 167 DEGs as shown in a
volcano plot (Figure 2B). The red dots indicate that the DEGs passed the criteria (i.e., p-value < 0.05,
and fold change >2). The complete gene list is provided in the Table S1. Further, the gene expression
profiles of DEGs were visualized using a heat map (Figure 2C). A cluster dendrogram for two biological
replicates (i.e., WT and IDH2 KO mice) shows clear segregation between the 77 upregulated (red keys)
and 90 downregulated genes (blue keys).

3.2. Computational Bioinformatic Pathway Prediction of DEGs

To explore the key pathways in which 167 DEGs were involved and enriched, the computational
bioinformatic pathway prediction analyses were performed using core analysis function of both
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Ingenuity Pathway Analysis (IPA) software
(Qiagen). In the core analysis, the canonical pathway analysis function ranked the most enriched
pathways of the DEGs based on p-values and the number of overlapping genes within the list of DEGs.
In this, the top 5 canonical pathways enriched in DEGs include TR/RXR activation (p = 0.0003), breast
cancer regulation by Stathmin1 (p = 0.0040), ERK/MAPK signaling (p = 0.0044), PXR/RXR activation
(p = 0.0046), and RAR activation (p = 0.0049) (Figure 3).

In order to obtain further insights into the interaction networks related with IDH2 KO, the potential
functional networks of DEGs were predicted. The IPA network analysis revealed that the DEG can be
clustered into 9 significant networks (Table 1). Each network was automatically scored and ranked by
the IPA software based on the number of network eligible molecules. The primary functional roles
(labeled as Top Biofunctions in the Table 1) of top three networks include lipid metabolism, molecular
transport, and small molecule biochemistry (Figure 4A). Of the 9 networks, due to their similar Top
Biofunctions, the top two networks were integrated and visualized in the Figure 4B. As shown, the key
genes in lipogenesis (i.e., Ppara, Rara, Acaca, and Fasn) were found in the integrated network, and these
genes are at the core position of the network as they are associated with neighboring factors.

Subsequently, to identify potential regulatory upstream gene(s), the upstream analysis of the IPA
was utilized. In this, three upstream regulators Srebf1, Srebf2, and Scap (Activation z-scores: −2.527,
−2.200, and −2.207, respectively) were able to be found, which were suppressed in live tissues of IDH2
KO mice. Three common target molecules in the DEGs, namely Aacs, Acaca, and Fasn, were regulated
by all three upstream regulators (Figure 4C).
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Table 1. Nine networks of differentially expressed genes 1 and their biofunctions predicted by Ingenuity Pathway Analysis (IPA) software.

Rank Molecules in Network Score
2 Focused Molecule 3 Top Functional Networks

1

AHCY, ALAS1, AMFR, Apoc3, C1S, C3, CAT, CEBPD, Ces2a, Clec2d,
CLOCK, CXCL3, Cyp2c40, CYP2C9, CYP2E1, Cyp4a14, DHCR7,
DNAJC7, EEF2K, FOS, G0S2, Gstm6, HES1, HMGCL, HSF2, ICAM1,
IL1B, NFE2L1, NR1I2, PPARA, PPARGC1A, RXRA, ST3GAL5,
SULT2A1, TXNIP

21 17 Lipid Metabolism, Molecular Transport, Small
Molecule Biochemistry

2

AACS, ACACA, ACACB, AGPAT2, BTC, CCND3, CEBPA, Cyp2c12,
DUSP1, ELOVL2, FABP5, FASN, FOS, HSD3B7, KLB, MBTPS1,
MID1IP1, MLX, MLXIPL, NCOR1, NEUROG3, NFIL3, ONECUT1,
PRKAA2, PSME3, RARG, RXRA, SREBF2, SRSF2, SULT2A1, THRSP,
TKFC, TRIB1, Ugt1a7c, VDR

19 16 Lipid Metabolism, Molecular Transport, Small
Molecule Biochemistry

3

ARNT, C3, Calm1, CEBPD, CIAPIN1, DDC, DNM2, EGF, EGR1, ESR1,
FOS, GDF15, HAMP, HDAC3, ICAM1, IL6ST, JAK2, MAPK3, ME1,
MTOR, NCOA1, PCNA, PDE4A, PPP2CB, PRKAR1A, RGS16, RGS3,
RICTOR, RPS15, RPS4Y1, RPS6KB1, SDHB, SERPINA1, SP1, STAT3

19 16 Cell Death and Survival, Cancer,
Hematological Disease

4 DYNC1H1, S100A10 1 1 Cellular Growth and Proliferation,
Developmental Disorder, Hereditary Disorder

5 DLG1, GJB1 1 1
Carbohydrate Metabolism, Cell-To-Cell
Signaling and Interaction, Cellular Function
and Maintenance

6 GATA1, MYCN 1 1 Cancer, Hematological Disease, Organismal
Injury and Abnormalities

7 EIF2AK2, TUBA1A 1 1 Developmental Disorder, Hereditary Disorder,
Neurological Disease

8 ADAM15, MBD2 1 1
Cell-To-Cell Signaling and Interaction, Hair
and Skin Development and Function, Cellular
Compromise

9 PRKAA1, PRKAB1, PRKAG1 1 1 Protein Synthesis, Cell Morphology, Cellular
Function and Maintenance

1 Differentially expressed genes were subjected to the IPA software to identify highly-interconnected networks and enriched genes representing significant biological function in mice liver
transcriptome influenced by deletion of IDH2. 2 Scores were calculated for each Functional Network based on relevance of the network to the focused molecules on the IPA software.
This indicates a significance of link between Molecules in Networks and Top Functional Networks based on the number of focused molecules and the size of the network to approximate
the relevance of the network to the original list of focused molecules. 3 Genes present in our differentially expressed genes.
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Figure 3. Canonical pathway analysis using Ingenuity Pathway Analysis software. Enriched canonical
pathways in IDH2 KO mice liver were listed. The green bars indicate the number of downregulated
genes while the red portion in bars show the number of upregulated genes.
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Figure 4. Biofunctions, networks, and upstream analyses using the Ingenuity Pathway Analysis
(IPA). Enriched functional roles of networks in IDH2 KO mice are listed (A), and IPA Networks only
related to lipid metabolism are integrated. The key transcripts at core position of the networks are
highlighted with red color (B). Upstream regulators including Srebf1, Srebf2, and Scap, were predicted
in the interactome image (C).

3.3. Database for Annotation, Visualization, and Integrated Discovery (DAVID) Web-Based Bioinformatic
Analysis of DEGs

The DAVID GO terms enrichment analysis was carried out using the list of DEGs. The results
demonstrated that 132 genes (79.5%, 132/167) were significantly enriched in the biological process
category. A total of 139 GO terms for the biological category were annotated, and 16 GO terms were
retrieved with the gene counts >10 and EASE Score < 0.01. The list of 16 GO terms with respective
p-values is provided in the Table S2. As shown in the Table S2, the lipid metabolic process (GO:
0051186) showed the highest significant enrichment (by enrichment 12.7%), followed by organonitrogen
compound biosynthesis process (GO: 1901566) and amide biosynthetic process (GO: 0043604). A pie
chart depicts contributions of enriched biological processes and three processes related to lipid
metabolism were highlighted which account for 28.3% of total (Figure 5A).



Genes 2019, 10, 728 9 of 16
Genes 2019, 10, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. Functional analyses of differentially expressed genes by DAVID gene ontology (GO) 
enrichment analysis. The representative GO terms for biological processes (A) were utilized for 
DAVID functional annotation clustering of categories (B). 

Additionally, the DAVID functional annotation clustering of the GO terms in the biological 
process category was performed. The lists of particular genes for the most enriched clusters are 
shown (Figure 5B), and the annotation clusters are listed in Table S3. The annotation clustering 
analysis revealed that the Acyl-CoA metabolic process (p = 0.00032), the Thioester metabolic process 
(p = 0.00032), the cofactor metabolic process (p = 0.00042), the Acetyl-CoA metabolic process (p = 
0.00120), and the coenzyme metabolic process (p = 0.00190) were the most enriched annotation 
clusters, followed by the annotation cluster 2 which includes the lipid metabolic process (p = 0.00053), 
the lipid biosynthetic process (p = 0.00680), and the cellular lipid metabolic process (p = 0.00710) 
(Figure 5B). Taken together, the lipid metabolic process was the common enriched term in both the 
DAVID GO terms enrichment analysis and the functional annotation clustering analysis. 

Last, the DEGs were subjected to the KEGG pathway analysis, which uses the most diverse tools 
among the multiple pathway databases. In the KEGG pathway database, the AMPK signaling 
pathway (p = 0.005) was found to be the most enriched (shown in the Figure 6) followed by fatty acid 
metabolism (p = 0.010), the PPAR signaling pathway (p = 0.034), and the insulin signaling pathway (p 
= 0.035) (Table S4). 

Figure 5. Functional analyses of differentially expressed genes by DAVID gene ontology (GO)
enrichment analysis. The representative GO terms for biological processes (A) were utilized for DAVID
functional annotation clustering of categories (B).

Additionally, the DAVID functional annotation clustering of the GO terms in the biological
process category was performed. The lists of particular genes for the most enriched clusters are shown
(Figure 5B), and the annotation clusters are listed in Table S3. The annotation clustering analysis revealed
that the Acyl-CoA metabolic process (p = 0.00032), the Thioester metabolic process (p = 0.00032),
the cofactor metabolic process (p = 0.00042), the Acetyl-CoA metabolic process (p = 0.00120), and the
coenzyme metabolic process (p = 0.00190) were the most enriched annotation clusters, followed by the
annotation cluster 2 which includes the lipid metabolic process (p = 0.00053), the lipid biosynthetic
process (p = 0.00680), and the cellular lipid metabolic process (p = 0.00710) (Figure 5B). Taken together,
the lipid metabolic process was the common enriched term in both the DAVID GO terms enrichment
analysis and the functional annotation clustering analysis.

Last, the DEGs were subjected to the KEGG pathway analysis, which uses the most diverse tools
among the multiple pathway databases. In the KEGG pathway database, the AMPK signaling pathway
(p = 0.005) was found to be the most enriched (shown in the Figure 6) followed by fatty acid metabolism
(p = 0.010), the PPAR signaling pathway (p = 0.034), and the insulin signaling pathway (p = 0.035)
(Table S4).
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Figure 6. KEGG AMPK signaling. The AMPK signaling pathway was predicted as the most enriched
pathway from the KEGG pathways analysis provided by the DAVID tools. The key player genes are
highlighted with red color.

3.4. Quantitative PCR Validation of Predicted Pathway of DEGs

The genes found from (1) core positions in the integrated networks (retrieved from the upstream
analysis, and canonical pathway analysis of IPA) and (2) the functional annotation clustering analysis
of the DAVID tools were selected and validated using qPCR analysis to assess the reliability of
RNAseq results and computational predictions. First, the core positioned genes in the gene networks
(Figure 4B), Rxra, Acaca, Fasn, and Ppara, were quantified by qPCR analysis. The expression levels of
Rxra, Acaca, and Fasn were significantly downregulated in IDH2 KO mice liver, but Ppara expression
was significantly upregulated. These expression patterns are all in agreement with our RNAseq dataset
(Figure 7A). Additionally, an upstream regulator, responsible for the de novo lipogenesis pathway,
Srebf1, was also significantly downregulated by 16.7% in IDH2 KO mice liver (Figure 7A) as predicted
by the IPA. Furthermore, Me1 and Thrsp were validated, as these two genes were both shown in both
the IPA and DAVID analyses and are included in our list of DEGs. The expression of both Me1 and
Thrsp was significantly downregulated in IDH2 KO mice liver thus consistent with the RNAseq dataset
(Figure 7A). In order to further validate computational predictions, additional representative genes
related to lipid metabolism were measured. As a result, the genes responsible for the fatty acid uptake
(i.e., Cd36, and Slc27a1) and fatty acid β-oxidation (i.e., Sirt1, Ppargc1, and Acox1) were all significantly
upregulated (Figure 7B), whereas the genes responsible for fatty acid elongation (i.e., Elovl6) and fatty
acid desaturation (i.e., Scd1) were all downregulated in IDH2 KO mice liver tissues (Figure 7B). A fatty
acid esterification gene (i.e., Dgat2) showed marginal difference (p = 0.07). Overall, our qPCR results
showed consistent expression patterns to RNAseq results and computational bioinformatic predictions.
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Figure 7. The validation of RNA sequencing results using quantitative PCR. The genes found at the
core positions of the networks, upstream regulators, canonical pathway (TR/RXR), and found in the
functional annotation clustering of DAVID tools were randomly selected and validated using qPCR
analyses. The data were expressed as the means ± standard error of means (SEM; n = 5 for male,
and n = 7 for female) (A). In addition to the validation, the representative genes of each lipid metabolic
process were randomly selected and their expression levels were assessed. The genes responsible
for fatty acid uptake (Cd36, and Slc27a1), fatty acid β-oxidation (Sirt1, Ppargc1, and Acox1), fatty acid
esterification (Dgat2), and fatty acid desaturation/elongation (Scd1, and Elovl6) were quantified using
qPCR analysis (B). * p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

Multiple studies have demonstrated the implications of IDH2 in diverse disease models, such
as colitis and non-alcoholic liver disease [6,10,17]. However, most studies suggested that increased
disease susceptibility might be due to a compromised mitochondrial redox status in IDH2 KO mice.
Thus far, however, no study has attempted to comprehensively characterize metabolic signature(s) of
IDH2 KO mice. To this end, this study analyzed the hepatic transcriptome profiles of the IDH2 KO mice
followed by computational pathway analyses in order to explore key functional genes and pathways
that are significantly impacted when Idh2 is deficient. As a result, the transcriptome analysis showed
that overall genetic signatures were substantially altered in IDH2 KO mice livers. More specifically,
the computational analytic tools, including DAVID, KEGG, and IPA software used in this study all
suggested that lipid metabolism is a significantly altered signature of IDH2 KO liver transcriptome.

In our IPA canonical pathway analysis, the TR/RXR activation pathway was found to be most
significantly enriched in IDH2 KO mice (Figure 3). The downstream genes of the TR/RXR activation
pathway included Fasn, and Acaca that are both related to lipogenesis and decreased expressions of
the genes were confirmed in our qPCR validation (p < 0.01 and p < 0.001, respectively; Figure 7A).
These results are consistent with the IPA predictions. The thyroid hormone itself is one of the master
regulators of de novo lipogenesis [18]. The thyroid hormone acts through thyroid hormone receptors
which bind to a thyroid hormone response elements as a form of heterodimer with a retinoid X receptor
(or RXR), thereby orchestrating gene expressions related to fat metabolism [19]. In the absence of the
thyroid hormone, TR coupled with a corepressor binds to the hormone response elements to negatively
regulate gene expression [20]. In the present study, lipogenesis genes of the TR/RXR pathway were
significantly downregulated in IDH2 KO mice liver tissues, suggesting that Idh2 might affect lipogenesis
via modulating the canonical TR/RXR pathway.

In order to better understand potential cross-talks between signaling networks, the network
analysis of the IPA core analysis was also carried out. In this, the top two networks both included
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the lipid metabolism biofunction (Table 1). To visualize the networks, this study highlighted lipid
metabolism biofunction genes in Figure 4B that include Acaca, Fasn, and Elovl. The de novo lipogenesis
is a metabolic pathway of fatty acid synthesis from excessive energy intake (e.g., carbohydrates) and
multiple regulatory genes are involved in this pathway. For example, Acaca (also known as acetyl-CoA
carboxylase-1; encoded by the Acaca) is a key enzyme of de novo lipogenesis [21]. Acetyl-CoA is a
substrate of Acaca to synthesize malonyl-CoA which is an essential intermediate metabolite for fatty
acid synthesis. The liver specific Acaca deletion significantly reduced lipid accumulation, emphasizing
the importance of hepatic Acaca in de novo lipogenesis [22]. Subsequently, Fasn also plays a key role by
converting the acetyl-CoA and malonyl-CoA into palmitate, the end product of glucose metabolism [23].
This end product can be esterified to produce triacylglycerol for further storage [23].

Further, the qPCR assays for additional representative genes of lipid metabolism showed that the
expression patterns of genes responsible for fatty acid uptake (Cd36, and Slc27a1), lipogenesis (Srebf1,
Acaca, and Fasn), fatty acid esterification (Dgat2), fatty acid β-oxidation (Sirt1, Ppargc1, and Acox1),
and fatty acid desaturation/elongation (Scd1, and Elovl6) were in good agreement with current
transcriptomics results (Figure 7A,B). In line with this, our previous report also showed a trend of a
decrease in hepatic lipogenesis mRNAs (i.e., Srebf1, Fasn, and Dgat2) in female IDH2 KO mice [17].
Additionally, it was reported that IDH2 deficient mice are resistant to obesity and hepatic steatosis via
the suppression of lipogenesis and the elevation of thermogenesis in the liver and adipose tissues [8,24].
These findings all support our results that IDH2 KO might suppress lipogenesis in the liver.

The upstream analysis revealed that the three upstream regulators including Srebf1, Srebf2, and Scap
(activation z-scores: −2.527, −2.200, and −2.207, respectively) were suppressed in IDH2 KO mice livers
(Figure 4C). Importantly, there were three common molecules (i.e., Aacs, Acaca, and Fasn; Figure 4C)
targeted by the all three upstream regulators. These genes are, as mentioned above, responsible for
lipogenesis. The regulatory roles of Srebf1 in lipid metabolism, specifically de novo lipogenesis, have
been highlighted elsewhere [25–28]. In our study, a decrease in Srebf1 was predicted (Figure 4C) and
was validated by the qPCR analysis in IDH2 KO mice liver tissues (Figure 7A). This supports well
established roles of Srebf1 that control the expression of lipogenic genes such as Thrsp, Acaca, and
Me1 [29–31]. In particular, Srebf1 enhances the Acaca expression by forming a tetrameric complex with
TR/RXR [32], which is important to note because Acaca is an earlier target of Srebf1 in the lipogenesis
process, followed by Fasn, Scd1, and other lipogenic genes. Similarly, the dramatic down-regulation of
Srebf1 and SREBP1 (i.e., encoded by Srebf1) in liver tissues of IDH2 KO mice was reported [24].

The Srebf1-mediated transcriptional activation of de novo lipogenesis is well-established and there
are auxiliary genes supporting lipogenesis indirectly by providing NADPH [26]. The expressions of
these auxiliary genes are also regulated by Srebf1. For instance, the over-expression of hepatic Srebf1
upregulates the transcription of lipogenic genes, which are involved in NADPH production [28,33].
This might suggest there is an indirect regulatory role of IDH2 in lipogenesis because Idh2 is also one
of the major NADPH producing enzymes. Further, Idh2 gene transcription might be regulated in a
sterol dependent manner in hepatocytes [34]. In this study, Idh1 transcription was activated by both
Srebf1 and Srebf2. Although Idh1 showed a stronger association with sterols (2.3-fold induction of Idh1
mRNA by sterol depletion), a regulatory role of sterols in Idh2 expression was clearly observed (1.3-fold
induction of Idh2 mRNA by sterol depletion). In this study, the IDH2 deficiency led the downregulation
of both Srebf1 and Srebf2 in the qPCR or transcriptomics analyses, suggesting that there might be a
feedback mechanism between these genes. Taken together, the previous and current studies represent
a clear association between Srebfs and Idh. However, further investigation is warranted to unravel the
causal relationship of Srebfs expression in IDH2 KO mice.

In addition to the IPA database, DAVID tools were utilized, which annotated that the lipid
metabolic process is the major process influenced in IDH2 KO mice (Figure 5). Specifically, the AMPK
signaling pathway was predicted as the most enriched pathway with DEGs (Figure 6). AMPK, known
to be activated in response to an increased AMP/ATP ratio or ADP/ATP ratio [35,36], is a master
regulator of both lipogenesis and lipolysis. Of note, activated AMPK inhibits Srebf1, followed by
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decreasing downstream lipogenic genes [37]. This prediction is plausible since Idh2 deletion causes ATP
depletion in several tissues such as the heart, white adipose tissue, and kidney [7,8,38]. Interestingly,
the AMPK-mediated lipid metabolism can also be directly modulated by thyroid hormones [39,40].
The thyroid hormone analogues act differently on lipid metabolism. For instance, T2 thyroid hormone
is known to exert anti-lipogenic activity against high-fat diet intervention through the direct activation
of Sirt1 [41]. On the other hand, T3 thyroid hormone up-regulates Acaca expression by binding to
Acaca gene promoters [32,42,43]. Therefore, our results indicate that there might be possible links
between Idh2 and thyroid hormone homeostasis in relation to the AMPK pathway. However, this is
beyond the scope of the study but clearly requires further investigations.

The accumulating evidences indicate that the excessive production of mitochondrial ROS (mtROS)
damages cellular components as well as induces cytotoxicity and senescence [44]. In that regard,
Idh2 deficient mice have been utilized as a model of mitochondrial-related diseases since IDH2 is
one of the major NADPH generating enzymes in mitochondria [45]. In line with this, multiple
studies, including our previous works, demonstrated that Idh2 deletion significantly increases mtROS
production, thereby increasing susceptibility to diseases [9,24,38]. Previously, the authors reported
that the mtROS level was elevated, while lipogenesis was suppressed in Idh2 deficient mice [8,24].
These are similar results to the current findings (although mtROS level was not measured in this study).
Thus, it was speculated that the suppression of lipogenesis might be somehow related with elevated
thermogenesis, possibly via Ucp1 [8]. This is strengthened by a recent finding showing that mtROS
might be a non-canonical activator of AMPK [46]. Additionally, another recent study reported that
mtROS-mediated AMPK activation suppresses lipogenesis in lung adenocarcinoma cell lines [47].
In fact, the AMPK signaling pathway was predicted as the most enriched pathway in the present
study (Figure 6). Therefore, it is possible to hypothesize that Idh2 deletion, due to the accumulated
mtROS, activates the AMPK, thus upregulates the genes involved in β-oxidation (e.g., Ppargc1, Ucp1),
which leads to the suppression of lipogenesis. Further mechanistic studies are warranted to elucidate
if mtROS accumulation is a precedent event for lipogenesis suppression in Idh2 deficient mice.

In summary, the current study is the first attempt to investigate comprehensive transcriptome
signatures in liver tissues of IDH2 KO mice compared to WT mice. The online knowledge-based
software analyses and qPCR validation indicated that IDH2 might be primarily responsible for the
regulation of hepatic lipid metabolism (more specifically, de novo lipogenesis suppression). A combined
analysis of the IPA upstream analysis and KEGG pathway analysis predicted that AMPK activation,
likely resulting from an increased AMP/ATP ratio in IDH2 KO mice, inhibits lipogenic genes via Srebf1.
It was also suggested that the thyroid hormone may play a key role in the regulation of lipogenesis
in IDH2 KO mice via the TR/RXR activation. Since our unbiased study, for the first time, provided
evidence on transcriptome characteristics of IDH2 KO mice liver, further investigations are warranted.
For example, the implications of thyroid hormones on lipid metabolism in IDH2 KO mice are likely
to provide deeper insights. Moreover, based on our report, the physiological roles of Idh2 can be
reappraised in a different perspective rather than controlling ROS homeostasis.
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