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Abstract

Hierarchy provides a unifying principle for the macroscale organization of anatomical and 

functional properties across primate cortex, yet microscale bases of specialization across human 

cortex are poorly understood. Anatomical hierarchy is conventionally informed by invasive tract-

tracing measurements, creating a need for a principled proxy measure in humans. Moreover, 

cortex exhibits marked interareal variation in gene expression, yet organizing principles of cortical 

transcription remain unclear. We hypothesized that specialization of cortical microcircuitry 

involves hierarchical gradients of gene expression. We found that a noninvasive neuroimaging 

measure—MRI-derived T1w/T2w mapping—reliably indexes anatomical hierarchy, and captures 

the dominant pattern of transcriptional variation across human cortex. We found hierarchical 

gradients in expression profiles of genes related to microcircuit function, consistent with monkey 

microanatomy, and implicated in neuropsychiatric disorders. Our findings identify a hierarchical 

axis linking cortical transcription and anatomy, along which gradients of microscale properties 

may contribute to the macroscale specialization of cortical function.
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Introduction

The neocortex of human and nonhuman primates exhibits interareal patterns of structural 

and functional variation. Cortical areas are distinguished by differences in their cellular 

composition, laminar differentiation, and long-range anatomical connectivity. Primate cortex 

is characterized by large-scale gradients of specialization in physiology and function, 

including in representational selectivity1–3 and dynamics of intrinsic activity4,5. Recent 

advances in large-scale high-throughput transcriptomics, which can produce genome-wide 

atlases of spatially distributed gene expression profiles, have also revealed a rich 

transcriptional architecture in humans characterized by spatially heterogeneous gene 

expression levels across brain areas6–8. Interareal transcriptional diversity has been related to 

differences in cortical function, including the spatiotemporal structure of intrinsic network 

activity7,9–11, and to spatially heterogeneous patterns of anatomical connectivity11,12. Yet 

unifying principles for the macroscale organization of structural, functional, and 

transcriptional differences across human and nonhuman primate cortex are still unknown.

A parsimonious principle for the large-scale anatomical and functional organization of 

nonhuman primate cortex is the concept of cortical hierarchy2–4,13–16. Anatomical hierarchy, 

defined as a globally self-consistent ordering of cortical areas according to characteristic 

laminar patterns of interareal projections, has been studied extensively in monkeys through 

histological tract-tracing methods13–15. The ordering of cortical areas along the anatomical 

hierarchy, which situates early sensory areas toward the bottom and higher-order association 

areas toward the top of the hierarchical levels, has also been found to align with areas’ 

functional organization in sensory processing hierarchies13,15. We hypothesized that the 

transcriptional architecture of human cortex is also hierarchically organized, such that the 

functional specialization of human cortical microcircuitry involves hierarchical gradients of 

gene expression levels. However, the highly invasive nature of the tract-tracing data 

acquisition procedures which are required to index hierarchy in nonhuman primates has thus 

far precluded analogous investigations of cortical organization in humans, thereby creating 

the need for noninvasive alternative measures.

To address these open questions, we analyzed transcriptional, anatomical, and neuroimaging 

data from humans and monkeys to study the hierarchical organization of cortical 

microcircuit specialization. We found that a structural neuroimaging measure, the MRI-

derived T1w/T2w map17, provides a noninvasive proxy for anatomical hierarchy in primate 

cortex. To test for hierarchical gradients in gene expression, we then compared the spatial 

expression profiles of genes in the Allen Human Brain Atlas (AHBA) to the topography of 

the human T1w/T2w map. We found strong hierarchical gradients in expression profiles of 

genes related to synaptic physiology, cell-type specificity, and cortical cytoarchitecture, in 

line with monkey microanatomical measurements. Furthermore, we observed a remarkably 

close topographic correspondence between the T1w/T2w map and the dominant spatial 

pattern of gene expression variation across human cortex. Finally, we found that 

hierarchically patterned genes are preferentially associated with functional processes and 

brain disorders. Taken together, these findings suggest that the transcriptional and 

anatomical architectures of human cortex share a common principal axis of areal variation 
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related to hierarchy, and that hierarchical gradients of microscale properties contribute to the 

macroscale specialization of cortical function.

Results

T1w/T2w maps noninvasively capture anatomical hierarchy

To enable the study of hierarchy in human cortex, we first sought to establish a 

neuroimaging measure that can serve as a noninvasive proxy for indexing anatomical 

hierarchy. One measure we examined was the cortical T1w/T2w map, a structural 

neuroimaging map defined by the contrast ratio of T1- to T2-weighted (T1w/T2w) magnetic 

resonance images. The cortical T1w/T2w map has been proposed as an in vivo measure that 

is sensitive to regional variation in gray-matter myelin content, based on its close 

correspondence with myelin stained sections in histological validation studies, and its 

recapitulation of known neuroanatomical borders between cyto- and myelo-architecturally 

delineated areas17,18 (see Discussion). Motivated by the empirical observation that T1w/T2w 

map values are high in primary sensory cortex (visual, somatosensory, auditory) and low in 

association cortex, homologously in human and monkey (Fig. 1a–c, Supplementary Fig. 1), 

and stably across individuals, we hypothesized that the group-averaged cortical T1w/T2w 

map, through an inverse relationship with hierarchy, provides a noninvasive correlate for 

areas’ hierarchical positions.

We validated the T1w/T2w map as a proxy for hierarchy in monkey cortex by comparing 

T1w/T2w map values to model-estimated anatomical hierarchy levels, derived from 

conventional tract-tracing approaches that quantify long-range interareal projections and 

their laminar specificity15. These laminar connectivity data, which include only direct 

cortico-cortical projections, are used to specify a globally optimal hierarchical ordering of 

cortical areas, such that lower areas send feedforward projections to higher areas, and higher 

areas send feedback projections to lower areas13–15,19 (Supplementary Fig. 2). Feedforward 

and feedback projections primarily originate from the supragranular and infragranular 

cortical layers, respectively13,15. At the level of individual projections, we found that the 

difference in T1w/T2w map values between connected areas is correlated with the laminar 

feedforward/feedback structure of the connection (Fig. 1d), more strongly in high-T1w/T2w 

sensory areas than in low-T1w/T2w association areas (Supplementary Fig. 3). Global 

anatomical hierarchy levels were estimated by fitting a generalized linear model to pairwise 

laminar projection data15,19 (see Methods). We found a strong negative correlation between 

model-estimated anatomical hierarchy levels and T1w/T2w map values (rs = −0.76, P < 

10−5; Spearman rank correlation) (Fig. 1e, f).

How well does the T1w/T2w map capture estimated anatomical hierarchy levels, relative to 

other putative proxy measures? We compared the performance of the T1w/T2w map against 

two alternative proxy candidates derived from structural MRI20: the map of cortical 

thickness, as cortex is generally thicker in association cortex than sensory cortex; and the 

map of geodesic distance from primary visual cortex, which defines a posterior-anterior 

gradient. We found that the T1w/T2w map was more strongly correlated with model-

estimated hierarchy than were either of the two other candidate proxy measures (Fig. 2). 

This finding, together with the observed inter-species homology18, supports the use of the 
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T1w/T2w map as a noninvasive correlate of hierarchy across human cortex, for which lack 

of invasive tract-tracing data precludes a more direct characterization of anatomical 

hierarchy per conventional approaches.

Hierarchical gradients in cortical microcircuit specialization

We hypothesized that the large-scale organization of cortical microcircuit specialization—

that is, areal variation in synaptic and cellular composition with functional relevance—may 

involve hierarchical gradients of gene expression levels across human cortex. To test this 

hypothesis, we examined areal patterns of cortical gene expression variation from the AHBA 

in relation to the T1w/T2w map. The AHBA is a transcriptional atlas that contains gene 

expression levels measured with DNA microarray probes and sampled from hundreds of 

neuroanatomical structures in the left hemisphere across six normal post-mortem human 

brains6. From these data, we calculated group-averaged gene expression profiles across 180 

unilateral cortical areas using a multimodal parcellation from the Human Connectome 

Project21 (Fig. 3, see Methods). We then computed correlations of these expression profiles 

with the human T1w/T2w map. Because of the strong inverse relationship found between 

the T1w/T2w map and model-estimated hierarchy (Fig. 1), then by extension, expression 

levels of genes which negatively correlate with the T1w/T2w map tend to increase with 

progression to higher hierarchical levels—i.e., from sensory to association cortex—and thus 

exhibit a positive hierarchical gradient; conversely, genes with positive T1w/T2w map 

correlations (TMCs) exhibit decreasing expression levels along the hierarchical axis. To 

support the validity of our interpretations, we compared the TMCs of microcircuitry-related 

gene expression profiles in human cortex to TMCs with more direct anatomical measures in 

monkey cortex, with a focus on cytoarchitecture, inhibitory interneuron densities, and 

synaptic processes (Fig. 4).

An established feature of microcircuit specialization that varies along the cortical hierarchy 

is the degree of laminar differentiation in local cytoarchitecture22: primary sensory cortex is 

highly laminated and exhibits a thick and well-defined granular layer, whereas association 

cortex is characterized by decreasing laminar differentiation and a gradual loss of the 

granular layer with progression up hierarchical levels. In monkey cortex, we found that 

areas’ cytoarchitectural types22 correlate strongly with their T1w/T2w map values (Fig. 4a). 

In human cortex, we examined average expression profiles of genes reported to be 

preferentially expressed in specific cortical layers23. Consistent with the cytoarchitectural 

trends observed in monkey cortex, we found a positive TMC for granular (L4) layer-specific 

genes, and negative TMCs for supra- (L1–3) and infra-granular (L5/6) layer-specific genes 

(Fig. 4b, c). These findings demonstrate that the noninvasive T1w/T2w map captures 

anatomical gradients related to cortical hierarchy in humans and nonhuman primates.

To gain further insight into microcircuit bases of hierarchical specialization, we examined 

the spatial distributions of markers for different inhibitory interneuron cell types. Inhibitory 

interneuron cell types fall into several biophysically distinct classes which differ in their 

synaptic connectivity patterns, morphology, electrophysiology, and functional roles24,25. In 

monkey cortex, we found that immunohistochemically measured densities of parvalbumin- 

and calretinin-expressing interneurons exhibit positive and negative TMCs, respectively 
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(Fig. 4d). Consistent with these trends, in human cortex we found corresponding negative 

and positive hierarchical gradients in the expression profiles for the genes which code for 

parvalbumin and calretinin (Fig. 4e). In general, we observed strong hierarchical gradients in 

transcriptional markers for a number of inhibitory interneuron cell types24 (Fig. 4f), as well 

as for composite gene expression profiles associated with specific neuronal cell types 

derived from RNA sequencing in individual human neurons26 (Supplementary Fig. 4). These 

findings suggest that hierarchical gradients in neuronal cell-type distributions may contribute 

to sensory–association specialization of cortical microcircuit function.

Gradients in the composition of synapses may endow cortical areas with diverse 

physiological properties required to perform the various computations which underlie 

specialized cognitive and behavioral functions. For instance, local increases in the strength 

of recurrent excitatory connectivity may endow cortical circuits in association cortex with 

extended temporal integration supporting cognitive computations4,19,27. One putative 

microanatomical correlate for the strength of recurrent synaptic excitation in local cortical 

microcircuits is the number of excitatory synapses on pyramidal neurons, which can be 

quantified by counting the number of spines on pyramidal cell dendrites. In monkey cortex, 

we found a strong negative TMC for basal-dendritic spine counts on cortical pyramidal 

neurons28 (Fig. 4g). This finding suggests a gradient of increasing local recurrent excitation 

strength along the cortical hierarchy in primates19.

Distinct subunits of synaptic receptor proteins that mediate neurotransmission are 

differentially expressed across neuronal cell types and produce physiologically diverse 

synaptic properties. In the AHBA dataset, we examined expression profiles of genes that 

code for various excitatory and inhibitory synaptic receptor subunits (Fig. 4h–j). The gene 

GRIN2B, which codes for a glutamatergic NMDA receptor subunit that mediates synaptic 

excitation preferentially in association cortex29, exhibited a strong negative TMC. This 

result suggests increased recurrent excitatory strength in association cortical areas and is 

consistent with the spine count gradient observed in monkey. Gene sets coding for 

neuromodulatory synaptic receptor subunits also contain strong positive and negative TMCs 

(Supplementary Fig. 5). The positive and negative TMCs reported in Fig. 4i, j suggest that 

hierarchical gradients in local excitatory and inhibitory synaptic machinery contribute to the 

functional specialization of cortical microcircuitry4,19.

T1w/T2w topography captures the dominant axis of transcriptional variation across human 
cortex

How well does the T1w/T2w map capture areal variation in the transcriptional architecture 

of human cortex in general? We performed principal component analysis (PCA) to identify 

the dominant areal patterns of gene expression variation (Fig. 5, Supplementary Fig. 6). To 

test for generality of effects, we analyzed categorical sets of genes which are preferentially 

expressed in human brain tissue, neurons, oligodendrocytes, and synaptic 

compartments30,31. To assess statistical significance of effects, we developed a novel method 

for spatial autocorrelation-preserving permutation testing to generate random surrogate maps 

(Supplementary Fig. 7, see Methods). The first principal component (PC1) is defined as the 

spatial map that captures the greatest fraction of total gene expression variance across 
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cortical areas (Fig. 5a). Across all five gene sets, PC1 captures a large fraction of gene 

expression variance (range: 21–27%, more than twice PC2) (Fig. 5b, Supplementary Fig. 6), 

revealing that cortical gene expression patterns are effectively low-dimensional.

Remarkably, we found that T1w/T2w map topography is strongly correlated with PC1, i.e., 

the dominant spatial pattern of gene expression variation, across all tested gene sets (TMC 

range: 0.80–0.81; P < 10−5) (Fig. 5c, d). Like the T1w/T2w map, PC1 exhibits relatively 

high values in primary sensorimotor areas and low values in association areas 

(Supplementary Fig. 8), consistent with a prior report on a subset of the AHBA dataset6. We 

also quantified how much gene expression variance is captured by the T1w/T2w map (see 

Methods). We found that across all gene sets the T1w/T2w map captures more than half as 

much variance as PC1, which by construction is the spatial map that captures the maximum 

possible gene expression variation (Fig. 5e). We then compared performance of the 

T1w/T2w map against the two alternative candidate proxy maps, cortical thickness and 

geodesic distance from primary visual cortex (Fig. 6). Across all gene sets, the T1w/T2w 

map was more strongly correlated with PC1 and captured more gene expression variance 

than either alternative map. The close alignment between T1w/T2w map topography and 

spatial gene expression variation suggests that the dominant axis of transcriptional variation 

in human cortex relates to hierarchy. Furthermore, the robustness of our findings across gene 

sets demonstrates that this axis captures areal variation in general across a number of 

neurobiological processes.

What effects may be driving the outliers which deviate from the otherwise strikingly strong 

correspondence between gene expression PC1 and the T1w/T2w map shown in Fig. 5c? We 

constructed a map of the absolute deviation (i.e., residual) of each cortical area from the 

best-fit line illustrated in Fig. 5c (Supplementary Fig. 9a), and noticed that the anomalously 

large residuals were preferentially located in areas of cortex with large gradients in local 

T1w/T2w map values (Supplementary Fig. 1a). Due to sparse cortical sampling in the 

AHBA (203 ± 27 samples per subject, 1220 total across six subjects), substantial spatial 

interpolation was required to produce our parcellated gene expression maps (Fig. 3). We 

therefore hypothesized that large discrepancies were due to relatively poor gene expression 

estimates in regions with large T1w/T2w gradients. To test this quantitatively, we computed 

for each area a measure of local T1w/T2w gradient and compared these values to the PC1 

residuals. We indeed found a strong correlation between local T1w/T2w gradient and PC1 

residual magnitude (rp = 0.70, P < 10−5; Pearson correlation) (Supplementary Fig. 9b, c). 

Our prediction was further supported by a validation of our key results with an earlier group-

averaged (N = 69) T1w/T2w map from the Conte69 dataset17. Results were highly 

consistent, and the Conte69 T1w/T2w map tended to yield stronger TMC values than did the 

HCP T1w/T2w map (Supplementary Fig. 10). Compared to the smoother Conte69 map, the 

HCP map contains more sharply separated T1w/T2w values among neighboring cortical 

parcels (autocorrelation space constant: 6.38 mm for Conte69 vs 6.16 mm for HCP), likely 

due to differences in surface registration21 and smoothing17. Together, these findings suggest 

that the remarkable relationships reported in this study, between cortical structure and 

transcription in humans, may be systematically underestimated, due to the limited spatial 

resolution in the AHBA dataset.
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Stably expressed genes preferentially exhibit hierarchical gradients

Genes that are especially vital to normal healthy cortical function may be more likely to 

have consistent spatial expression profiles across individual subjects. Hawrylycz and 

colleagues defined differential stability (DS) as the mean pairwise correlation between 

subjects’ individual gene expression profiles, which they found predicts association with key 

neurobiological functions when computed across all (i.e., cortical and subcortical) brain 

structures7. We found a strong nonlinear and positive relationship between DS computed 

across cortical areas (DSc) and TMC magnitude (Fig. 7a). To gain additional insight into this 

relationship, we explored the impact of filtering genes through progressively higher DSc 

thresholds on the TMC distribution. Exclusion of low-DSc genes greatly alters the shape of 

the TMC distribution, collapsing the prominent peak centered near zero while progressively 

producing two roughly symmetric bimodal peaks at strong TMCs (Fig. 7b). Furthermore, 

exclusion of low-DSc genes strongly increases the fraction of transcriptional variance 

captured by PC1 (Fig. 7c), rendering gene expression patterns more quasi-one-dimensional. 

Together, these findings suggest that high-DSc genes—that is, genes whose spatial 

expression profiles in cortex are highly stable across individuals—preferentially exhibit 

strong positive and negative hierarchical gradients.

Hierarchically expressed genes are enriched for functional and disease annotations

To examine the functional roles of genes with strong hierarchical gradients, we tested for 

their preferential enrichment in gene sets defined by functional and disease ontologies. We 

found that genes with stronger TMCs are enriched in more functional categories, relative to 

genes with weaker TMCs, for all functional gene ontologies tested7,32: biological processes, 

cellular components, molecular functions, microRNA binding sites, and drug targets (Fig. 

8a). These results suggest that diverse key cell-biological processes contribute to hierarchical 

differentiation of cortical microcircuitry. Finally, we examined whether hierarchical 

expression is a preferential property found in group-averaged profiles of genes associated 

with psychiatric and neurological disorders. For instance, we found that the genes APOE 
and SNCA, which are strongly linked to Alzheimer’s and Parkinson’s diseases, 

respectively33, exhibit robust negative TMCs and are therefore more highly expressed in 

association cortex (Fig. 8b, c). For a systematic examination, we statistically quantified the 

enrichment of genes with strong hierarchical variation in disease-related gene sets7, obtained 

from the DisGeNet database34. We found that genes with strongly negative TMCs were 

significantly over-represented across multiple disease-related gene sets (Fig. 8d). In 

particular, gene sets for schizophrenia, bipolar disorder, autistic disorders, and depressive 

disorders are significantly enriched with strongly negative TMC genes which are more 

highly expressed in association cortex. These findings suggest that brain disorders involve 

differential impacts to areas along the cortical hierarchy.

Discussion

Taken together, our findings show that multiple complementary measurement approaches 

reveal a robust hierarchical organization of microscale variation that may contribute to the 

macroscale specialization of primate cortical function. First, the MRI-derived T1w/T2w map 

provides a noninvasive neuroimaging proxy for anatomical hierarchy in the absence of 
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axonal tract-tracing data. Second, the principal axis of transcriptional variation across human 

cortex aligns with cortical hierarchy as captured by the T1w/T2w map. Third, this 

hierarchical axis reflects a gradient of local microcircuit specialization involving synapses 

and cell types, with relevance to brain disease pathophysiology. Strong similarities between 

the patterns of anatomical, functional, and transcriptional variation suggest that hierarchical 

gradients of microcircuit properties play key roles in the functional specialization of large-

scale networks across the human cortex. Moreover, the agreement between human 

transcriptional and monkey anatomical measures suggests conserved organizing principles in 

human and nonhuman primate cortex.

Specialization of cortical function may derive in part from the multiple features of 

microcircuitry identified here to exhibit hierarchical gradients. For instance, stronger 

recurrent excitation in association cortex can endow association circuits with longer 

timescales of intrinsic activity19,35, as observed empirically4,5, which subserve the 

prolonged integration of signals in these areas3,16,27. Furthermore, computational modeling 

of cortical circuits identifies recurrent excitation strength as a key property governing 

functional specialization across areas for core cognitive computations such as working 

memory and decision making27,35. Hierarchical gradients of inhibitory interneuron cell 

types can additionally shape regional specialization of dynamics and function, due to cell-

type differences in physiology and synaptic connectivity24,25. For example, parvalbumin-

expressing inhibitory interneurons preferentially target the perisomatic areas of pyramidal 

neurons where they can gate pyramidal-neuron outputs. In contrast, calretinin-expressing 

inhibitory interneurons preferentially target distal dendrites of pyramidal neurons and other 

inhibitory interneurons, where they may play key computational roles in disinhibition-

mediated gating of dendritic inputs36. Cytoarchitectural differences between areas correlate 

with their pairwise laminar projection profiles14,22, linking local microcircuit specialization 

of areas to their hierarchical long-range interactions.

Our study adds to a growing understanding of how transcriptional specialization shapes 

cortical function. Transcriptional diversity, particularly of genes which regulate synaptic 

function and ion channel activity, relates to the spatiotemporal organization of intrinsic 

activity in large-scale cortical networks7,9–11, and transcriptional markers for synaptic, 

neuronal, and axonal structure relate to patterns of anatomical connectivity11,12. Of note, 

Hawrylycz et al. (2015) found that genes most strongly predictive of functional connectivity 

patterns in cortex were shifted toward high DSc, and that across all brain regions, high-DS 

genes were significantly enriched in gene sets related to functional ontologies and brain 

diseases, leading the authors to suggest these genes constitute a “canonical transcriptional 

blueprint” for the human brain7. We found that high-DSc genes exhibit strong hierarchical 

gradients across human cortex (Fig. 7a), and that these strong-TMC genes exhibit similar 

functional and brain disease-related enrichments. These results suggest that hierarchically 

and stably expressed genes across the cortex contribute significantly to the transcriptional 

regulation of cortical function, and to its pathophysiological disruption in disease.

Our findings demonstrate that the T1w/T2w map generally captures an axis of hierarchical 

differentiation across cortex that reflects multiple features of interareal variation. The 

T1w/T2w map—an MR contrast map that removes shared imaging intensity biases and 
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increases image contrast—is sensitive to gray-matter myelin content17, which may itself 

contribute to functional specialization in several ways18. However, both T1- and T2-

weighted image intensities depend on multiple MRI parameters, each of which is sensitive to 

several other brain microstructural properties, including cell size and density, degree of 

dendritic arborization, iron, and water37,38. Further in vivo characterization of 

microstructural variation can be provided by quantitative MRI techniques such as T1 

mapping39–42. Thus, the T1w/T2w map provides a readily acquired, noninvasive 

neuroimaging measure which is sensitive to areal variation in not one but several structural 

components of local cortical microarchitecture. We note that there are interesting deviations 

between the topographies of the T1w/T2w map and other hierarchical features. For instance, 

primary motor cortex and retrosplenial cortex exhibit high T1w/T2w map values yet differ 

from primary sensory areas in their laminar structure17,18.

Multiple functionally defined hierarchies in human and nonhuman primate cortex have been 

proposed, none of which are mutually exclusive with the anatomical hierarchy informed by 

long-range laminar projection patterns. For instance, studies have found hierarchical 

differences across areas in the temporal selectivity of spontaneous dynamics and sensory 

processing4,5, but it remains unclear how these differences relate to hierarchies of 

microcircuit specialization. In this study, we have identified multiple microanatomical and 

transcriptional properties of cortical microcircuitry which exhibit hierarchical gradients and 

may contribute to physiological and functional specialization. Importantly, cortical function 

has a complex multidimensional organization with multiple axes of areal variation43,44, each 

of which can be represented by a scalar-valued map. Distinct information processing 

hierarchies can be defined for different sensory modalities, and within a modality, such as 

the dorsal and ventral processing streams in the primate visual system13,15,45. Future studies 

can investigate how integration of multiple neuroimaging measures, for instance combining 

T1w/T2w imaging with diffusion weighted imaging, can reveal new multidimensional 

principles of cortical organization, both within and across functionally specialized networks.

Multiple lines of evidence point to a transcriptional basis for disease phenotypic variation, 

linking white matter dysconnectivity46 and developmental changes in structural topology47 

to genes implicated in schizophrenia. Further characterization of the developmental 

trajectory of hierarchical transcriptional specialization46,48,49, and structural brain tissue 

degeneration50, may inform the progression of neurodevelopmental disorders. Strong 

hierarchical gradients in drug targets, such as receptor subunits, could enable preferential 

modulation of sensory or association cortical areas, at the group level, through targeted 

pharmacology. This may guide future rational design of drug treatments to target specific 

macroscale cortical circuits. Large-scale mapping of the cortical transcriptome at finer 

spatial resolution will further elucidate the microcircuit basis of hierarchical specialization 

with laminar23 and cell-type8,26 specificity.

Methods

Parcellated structural neuroimaging maps

The human T1w/T2w and cortical thickness maps in the surface-based CIFTI file format21 

were obtained from the Human Connectome Project (HCP)51. To produce the T1w/T2w 
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maps, high resolution T1- and T2-weighted images were first registered to a standard 

reference space using a state-of-the-art areal-feature-based technique21,52, which precluded 

the need for spatial smoothing, and then corrected for bias-field intensity inhomogeneities, 

yielding dimensionless quantities defined with respect to a reference group-averaged map 

(for more details, see [17], [53], and [21]). Group-averaged (N=339) left-hemispheric 

T1w/T2w and thickness maps were parcellated into 180 areas using the HCP’s Multi-Modal 

Parcellation (MMP1.0)21. Parcellated maps were highly stable across individual subjects: the 

mean pairwise Spearman rank correlation between subjects’ individual maps was 0.94 (0.76) 

for the T1w/T2w (thickness) map. We note that the areal-feature-based surface registration 

technique is informed, in part, by alignment of subjects’ T1w/T2w maps52, which likely 

contributes to the discrepancy in stability observed between the two structural maps. 

Assignment of MMP1.0 parcels to functional networks (Fig. 1b, Supplementary Fig. 1d) was 

performed through community detection analysis54 on time-series correlations in the HCP 

resting-state fMRI dataset. Six of 180 parcels were not assigned to one of the eight networks 

analyzed in this study.

For validation, key findings reported for human cortex were replicated using group-averaged 

(N=69) T1w/T2w maps from the publicly available Conte69 dataset17 (Supplementary Fig. 

10). In contrast to the HCP maps, both individual and group-averaged T1w/T2w maps in the 

Conte69 dataset were smoothed using Gaussian filters weighted by geodesic distance to 

reduce high frequency spatial artifacts17.

The group-averaged (N=19) T1w/T2w and thickness maps for macaque monkey cortex were 

obtained from the publicly available BALSA database55 (https://balsa.wustl.edu/study/show/

W336) and were produced by adapting the HCP pre-processing pipelines to work with 

monkey MRI data (see [55] for more details). Monkey T1w/T2w map values for the left 

cortical hemisphere were parcellated into 91 areas using the M132 parcellation, which was 

used for the anatomical tract-tracing dataset55.

To construct maps of geodesic distance from primary visual area V1 in human and monkey 

cortex, pairwise geodesic distance between two parcels i and j was calculated as the average 

of all pairwise surface-based distances between grayordinate vertices in parcel i and vertices 

in parcel j.

Anatomical hierarchy levels in monkey cortex

To assess whether macaque cortical T1w/T2w maps could reliably capture the laminar-

specific interareal projection patterns conventionally used to define anatomical hierarchy, we 

fit a generalized linear model (GLM) to quantitative laminar projection data, yielding ordinal 

hierarchy values in 89 cortical areas, following the procedure of ref. [15]. Anatomical tract-

tracing data, derived from retrograde tracers, was obtained from the publicly available Core-

Nets database (http://core-nets.org). Retrograde tracer was injected into a target area i, and 

the number of tracer-labeled neurons in source area j were counted. The fraction of external 

labeled neurons, FLNeij, provides a quantitative measure of connection strength defined as 

the number of labeled neurons in the source area normalized by the total number of labeled 

neurons in all external cortical source areas for a given injection56. Labeled neurons in 

source areas are classified by their location in either supragranular or infragranular layers. 
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For a given projection, the proportion of supragranular labeled neurons, SLNij, is defined as 

the ratio of Nsupra to Nsupra + Ninfra for neurons labeled in source area j. As feedforward and 

feedback connections preferentially originate in supragranular and infragranular layers, 

respectively13–15, SLN is a quantitative measure of hierarchical distance between two 

cortical areas15: within this paradigm for laminar-specific projection motifs, a pure 

feedforward connection from source area j to target area i would originate entirely in the 

superficial layers, resulting in an SLN of 1. Conversely, a pure feedback projection 

originating entirely in deep infragranular layers would result in an SLN of 0. We note that 

two of the 91 areas in the M132 parcellation – SUBICULUM and PIRIFORM – were 

excluded from the model fitting procedure, as SLN for these two areas was undefined.

The GLM procedure for estimating hierarchy levels from SLN data is described in detail in 

ref. [15]. In brief, the hypothesis that SLN is a measure of hierarchical distance can be 

expressed as g(SLNij) = Hi − Hj, where Hi corresponds to the hierarchical level of area i, and 

g is an arbitrary and possibly nonlinear function linking SLN values on the unit interval (0, 

1) to their corresponding hierarchical distance. We used a logit link function to map SLN 

values from the unit interval to the entire real number line following the procedure of ref. 

[19]. Fitting linear predictors (i.e. hierarchical levels) to logit-transformed SLN values 

constitutes a type of generalized linear model, with maximum likelihood estimation 

assuming a binomial family probability distribution for the supra- and infra-granular neuron 

counts. To assign more weight to stronger connections during model estimation of 

hierarchical levels, we also weight each pathway in the model by the negative logarithm of 

the FLNe value. We clip SLN values to lie in the interval (0.01, 0.99) so the logit-

transformed SLN value is well-defined for all pathways used to fit the model. Furthermore, 

to reduce the impact of noise on model parameter estimation, we only included the N=1243 

pathways which contained at least 10 projection neurons when fitting the GLM; we 

confirmed that results were generally robust to the choice of neuron count threshold.

Maximum likelihood estimation of model parameters was done in the R programming 

language using the glm function. The model-estimated hierarchy levels, invariant under 

linear transformations, were shifted and rescaled to span the unit interval [0,1]. To assess the 

statistical relationship between T1w/T2w map value and hierarchy level, we calculated the 

Spearman rank correlation between the 89 ordinal hierarchy values and their corresponding 

parcellated T1w/T2w map values (Fig. 1f). For visual clarity in Fig. 1e, f we remove the 

nonlinear logit transformation by displaying model-estimated hierarchy levels after applying 

the inverse-logit (i.e., logistic) transformation. This rescaling preserves the ordering of areas 

and therefore does not affect the reported Spearman rank correlations.

Macaque monkey anatomical data: cytoarchitectural types, inhibitory interneuron 
densities, and pyramidal neuron spine counts

To quantify the statistical relationship between T1w/T2w map value and categorical 

cytoarchitectural type (Fig. 4a), we compared T1w/T2w map values to structural 

classification values reported for 29 regions of primate visual cortex, obtained from ref. [22]. 

To characterize hierarchical distributions of cortical inhibitory interneuron cell types (Fig. 

4d), we compiled, from multiple immunohistochemical studies, the relative densities of 
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inhibitory interneurons which are immunoreactive (ir) to the calcium-binding proteins 

parvalbumin (PV) and calretinin (CR)57–60. To characterize hierarchical variation in 

pyramidal neuron excitatory synaptic connectivity (Fig. 4g), we compiled, from multiple 

studies by Elston and colleagues61–66, the number of spines of basal-dendritic trees of 

layer-3 pyramidal neurons.

For each of these three analyses, we produced a mapping between the 91 areas in the M132 

atlas parcellation, which was used to calculate parcellated T1w/T2w map values in monkey 

cortex, to the architectonic areas reported in these collated studies (Supplementary Table 1). 

Where the anatomical mapping was not a one-to-one correspondence, we mapped the 

reported architectonic area onto the set of all M132 parcels with nonzero spatial overlap, and 

the corresponding T1w/T2w map value was calculated as the average across these M132 

parcels.

Gene expression preprocessing

The Allen Human Brain Atlas (AHBA) is a publicly available transcriptional atlas 

containing gene expression data, measured with DNA microarrays, and sampled from 

hundreds of histologically validated neuroanatomical structures across six (five male and 

one female) normal post-mortem human brains6. After no significant interhemispheric 

transcriptional differences were observed in the first two bilaterally profiled brains6, the 

remaining four donor brains were profiled only in the left cortical hemisphere7. To construct 

parcellated group-averaged gene expression profiles, we therefore restricted all analyses to 

microarray data sampled from the left cortical hemisphere in each of the six brains. 

Microarray expression data and all accompanying metadata were downloaded from the 

AHBA (http://human.brain-map.org)6,7. The raw microarray expression data for each of the 

six donors includes expression levels of 20,737 genes, profiled by 58,692 microarray probes. 

These data were preprocessed according to the following procedure:

1. Gene probes without a valid Entrez Gene ID were excluded.

2. Microarray samples exhibiting exceptionally low inter-areal similarity were 

excluded. We first computed the spatial correlation matrix of expression values 

between samples using the remaining 48,170 probes, then summed this matrix 

across all samples. Samples whose similarity measure was more than five 

standard deviations below the mean across all samples were excluded. At most, 

this step excluded three samples within a subject.

3. Samples whose annotations did not indicate that they originated in the left 

hemisphere of the cerebral cortex were excluded. To focus analysis on neocortex, 

we also excluded samples taken from cortical structures that are 

cytoarchitecturally similar to the hippocampus, including piriform cortex, the 

parahippocampal gyrus, and the hippocampal formation.

4. Samples whose measured expression level was not well above background, as 

provided in the AHBA dataset, were excluded7. Samples surviving this step i) 

belonged to a probe whose mean signal was significantly different from the 
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corresponding background, and ii) had a background-subtracted signal which 

was at minimum 2.6 times greater than the standard deviation of the background.

5. The remaining cortical samples were mapped from volumetric space to the two-

dimensional cortical surface by minimizing the pairwise Euclidean distance 

between stereotaxic MNI coordinates reported for each cortical sample, and 

coordinates of grayordinate vertices in each subject’s native cortical surface 

mesh (which was constructed using the procedure described in the following 

section below). Samples whose Euclidean distance to the nearest surface vertex 

was more than two standard deviations above the mean distance computed across 

all samples were excluded (excluding between 2 and 15 samples per subject). An 

average of 203 ± 27 samples per subject, yielding 1220 total samples across all 

six subjects, remained at this stage.

6. Expression levels for samples mapped onto the same surface vertex were 

averaged. Then expression levels within each remaining sample were z-scored 

across all gene probes.

7. Using cortical samples mapped onto subjects’ native surface meshes, expression 

profiles for each of the 180 unilateral parcels in the HCP’s MMP1.0 cortical 

parcellation21 were computed in one of the two following ways. (I) For parcels 

which had at least one sample mapped directly onto one of their constituent 

surface vertices, parcellated expression values were computed by averaging 

expression levels across all samples mapped directly onto the parcel. (II) For 

parcels which had no samples mapped onto any of their constituent vertices, we 

first created densely interpolated expression maps, in which each vertex in the 

native surface mesh was assigned the expression level associated with the most 

proximal surface vertex onto which a sample had been directly mapped, 

determined using surface-based geodesic distance along each subject’s cortical 

surface mesh (i.e., a Voronoi diagram approach); the average of expression levels 

across parcels’ constituent vertices was then computed to obtain parcellated 

expression values, effectively equivalent to performing a weighted average.

8. A coverage score was also assigned to each gene probe, defined as the fraction of 

180 parcels that had at least one sample mapped directly onto one of its 

constituent surface vertices. Probes with coverage below 0.4 (i.e., probes for 

which fewer than 72 of the 180 parcels contained samples) were excluded from 

further analysis.

9. For each gene profiled by multiple gene probes, we selected and used the 

expression profile of a single representative probe. If two probes were available, 

we selected the probe with maximum gene expression variance across sampled 

cortical structures, in order to more reliably capture spatial patterns of areal 

heterogeneity. If three or more probes were available, we computed a correlation 

matrix of parcellated gene expression values across the available gene probes, 

summed the resultant matrix along one of its dimensions to obtain a quantitative 

similarity measure for each probe, relative to the other gene probes, and selected 
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the probe with the highest similarity measure, as it is most highly representative 

among all available gene probes.

10. Each subject-level gene expression profile was z-scored before we computed 

group-level expression profiles, which were obtained by computing the mean 

across subjects which were assigned a probe for that gene. Group-level gene 

expression profiles were not computed if fewer than four subjects had an 

available gene probe. Finally, group-level expression profiles were z-scored 

across all 180 areas for each gene.

These steps yielded group-averaged expression values for 16,088 genes across 180 cortical 

areas, which were used for all reported analyses. The T1w/T2w map correlation (TMC) for 

each gene is reported in Supplementary Table 2. We also replicated all reported findings 

after mapping subjects’ gene expression samples to the HCP’s group-averaged surface mesh 

instead of subjects’ native surface meshes in step 5 above. However, we found that native 

surface-based expression sample mapping yielded slightly stronger TMCs and improved 

spatial registration in general (not shown).

Native surface mesh construction

Single-subject surface registration for each of the six subjects in the AHBA was performed 

following a procedure adapted from the HCP’s minimal preprocessing pipelines53. Briefly, 

the T1w image was first rigidly aligned to the MNI coordinate axes to produce a native 

space volume, which was then nonlinearly registered to the standard MNI template using 

FSL’s FLIRT and FNIRT. The native space image was run through FreeSurfer’s recon-all 
pipeline, which performs automated segmentation of brain structures to reconstruct the 

white matter and pial surfaces. The FreeSurfer output surface was then converted to standard 

GIFTI format to produce each subject’s native surface mesh. Finally, subjects’ native surface 

meshes were registered to the standard HCP surface mesh.

Categorical gene sets

We conducted analyses on biologically and physiologically meaningful gene sets extracted 

from existing databases and neuroscientific literature, reported below (Supplementary Table 

2):

1. Brain-specific. N=2413 genes with expression specific to human brain tissue, 

relative to other tissues, were obtained from supplementary data set 1 of ref. [67]. 

Following ref. [30], brain-specific genes were selected for which expression in 

brain tissue was four times higher than the median expression across all 27 

different tissues.

2. Neuron- and oligodendrocyte-specific. Brain genes with expression specific to 

neurons (N=2530) or oligodendrocytes (N=1769), relative to other central 

nervous system (CNS) cell types, were obtained from supplementary data set 

S3b of ref. [68]. Following ref. [30], neuron-specific genes were selected for 

which log-expression in neurons of P7n cell type in the mouse was 0.5 greater 

than the median log-expression across 11 CNS cell types.
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3. Synaptome. We aggregated four sets of synaptic genes (N=1886 in total) 

encoding proteins found in the presynaptic nerve terminal, presynaptic active 

zone, synaptic vesicles, and postsynaptic density, which were obtained from 

SynaptomeDB, an ontology-based database of genes in the human synaptome31.

4. Neuron subtype-specific. Gene sets representing distinct classes of neuronal 

subtypes were obtained from ref. [26], in which clustering and classification 

analyses yielded 16 distinct neuron subtypes, on the basis of differential gene 

expression measured by RNA sequencing from single neurons in human cortex. 

The fraction of positive values using exon-only derived transcripts per million 

(TPM) associated with each subtype-specific gene were obtained from 

supplementary table S5; within each neuronal subtype cluster, the TPM values 

for the cluster genes were normalized and used to create a weighted gene 

expression profile representative of each subtype’s spatial topography 

(Supplementary Fig. 4).

5. Layer-specific. Sets of laminar-specific genes localized to different layers of 

human neocortex were obtained from supplementary table S2 of ref. [23]. Genes 

were broadly grouped into sets representative of supragranular (L1–3), granular 

(L4), and infragranular (L5/6) layers.

Spatial autoregressive modeling

Significance values indicated by the number of stars reported on bar plots for T1w/T2w map 

correlations (TMCs) were corrected to account for spatial autocorrelation structure in 

parcellated T1w/T2w maps and gene expression maps. Because physical quantities like 

microstructural tissue composition and gene expression must vary smoothly and 

continuously in space, measurements recorded from proximal cortical areas tend to be more 

similar than measurements recorded from distal areas of cortex. This departure from the 

assumption of independent observations biases calculations of statistical significance. To 

model this spatial autocorrelation, we used a spatial lag model (SLM) commonly applied in 

the spatial econometrics literature69, of the form y = ρWy + Xβ + v, where W is a user-

defined weight matrix implicitly specifying the form of spatial structure in the data, and v is 

normally distributed.

To implement a spatial lag model in the python programming language, we used the 

maximum likelihood estimation routine defined in the Python Spatial Analysis Library 

(pysal)70. We first determined the surface-based spatial separation between each pair of 

cortical parcels by computing the mean of the pairwise geodesic distances between each 

vertex in parcel i and each vertex in parcel j, from which we constructed a pairwise parcel 

distance matrix, D.

Similarity of gene expression profiles was well-approximated by an exponential decaying 

spatial autocorrelation function (Supplementary Fig. 7a, b), as was found in mouse cortex12. 

We fit the correlation of gene expression profiles between two areas with the exponential 

function Corr(xi, xj) ~ exp(−Dij/d0), where xi and xj are vectors containing the parcellated 

gene expression values at parcels i and j, Dij is the geodesic distance between the parcels, 
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and d0 is the characteristic spatial scale of autocorrelation. We empirically determined d0 by 

first computing the pairwise gene co-expression matrix Cij ≡ Corr(xi, xx). We then fit the 

free parameter d0 using ordinary least squares (OLS) regression on the off-diagonal (upper-

triangular) elements of the gene co-expression and parcel distance matrices, so as to 

minimize the sum-of-squared-residuals between empirical and model-estimated gene co-

expression values over all pairs of cortical parcels, 

S = ∑i > jri j
2 = ∑i > j Ci j − exp ( − Di j/d0) 2

. This empirical fit was performed on the gene 

co-expression matrix computing using the set of brain-specific genes. Using the OLS 

estimate of the spatial autocorrelation scale from the fit to the empirical gene expression 

data, we calculated the elements of the spatial weight matrix, Wij = exp(−Dij/d0). Finally, we 

fit the SLM to parcellated gene expression profiles, using the maximum likelihood estimator 

routine ( pysal.spreg.ml_lag.ML_Lag) in pysal. P-values indicated by the number of 

stars in the bar plots of T1w/T2w map correlations (TMCs) correspond to p-values for 

model parameter β defined above.

Of note, spatial autoregressive model parameters do not have the same interpretation as they 

do in OLS regression. The parameter β reflects the direct (i.e. local) impact on the 

dependent variable y due to a unit change in the independent variable x. In addition, because 

of the underlying spatial structure, the direct impact of xi on yi results in an indirect effect of 

yi on neighboring yj. Therefore β cannot be interpreted as a corrected, global correlation 

coefficient, and we restrict our use of the SLM to correcting for the biasing effect of 

spatially autocorrelated samples on reported significance values.

Theil-Sen estimator

Grey trend lines in all figures were calculated using the Theil-Sen estimator – a 

nonparametric estimator of linear slope based on Kendall’s tau rank correlation – that is 

insensitive to the underlying distribution and robust to statistical outliers71. It is defined as 

the median of the set of slopes computed between all pairs of points.

Principal components analysis

We used principal component analysis (PCA) to identify the dominant modes of spatial 

variation in the transcriptional profiles of gene expression in the human cortex. For a set of 

N genes, each with group-averaged expression values for P cortical parcels, we constructed a 

gene expression matrix G with one row for each cortical parcel and one column for each 

unique gene (i.e. with dimensions P × N). The P × P spatial covariance matrix C was 

constructed by computing the covariance between vectors of gene expression values for each 

pair of cortical parcels: Cij = Cov(Gi, Gj), where Gi is the i-th row in the matrix G, 

corresponding to the vector of N gene expression values for the i-th cortical parcel. Eigen-

decomposition is performed on the spatial covariance matrix to obtain the matrix 

eigenvectors (i.e., the principal components, PCs) and their corresponding eigenvalues, 

which are proportional to the amount of variance captured by the corresponding PC. To 

enumerate each principal component, eigenvalues are ranked in descending order of absolute 

magnitude, with larger magnitudes indicating a greater proportion of the total variance 

captured by the associated PC (i.e., the associated mode of spatial covariation). PCA 
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therefore allows for simultaneous identification of spatial patterns of covariation and 

quantification of the extent to which these spatial modes capture variance in cortical gene 

expression profiles.

To quantify the overlap of these spatial PCs with the cortical T1w/T2w map, we compute the 

Spearman rank correlation coefficient between each P-dimensional PC and the P-

dimensional vector of T1w/T2w map values for each cortical parcel. We can quantify the 

amount of gene expression variance that is captured by any given spatial map, such as the 

T1w/T2w map (Fig. 5e, Supplementary Fig. 6f–j): from the spatial covariance matrix C, the 

variance captured along a unit-length vector a, here a demeaned and normalized map, is 

given by a⊤Ca.

Differential stability

Differential stability (DS) is a correlation-based metric which quantifies the consistency of 

spatial gene expression patterns across individual brains. DS was originally defined in ref. 

[7] as “the tendency for a gene to exhibit reproducible differential expression relationships 

across brain structures.” To compute DS for a gene, we calculated the average pairwise 

Spearman rank correlation (rs) across all subject-level gene expression profiles, for the (four 

to six) AHBA subjects with an available gene probe, for a maximum of 15 possible pairs 

(Supplementary Table 2). That is, for gene g whose expression profile across 180 cortical 

areas in brain i is the vector bi(g), we define the DS in cortex (DSc) by: 

DSc(g) ≡ 1
15 ∑i = 1

6 ∑ j > irs (bi(g), b j(g)). We note that DS is therefore defined with respect to a 

specified set of brain structures, in this case 180 unilateral cortical areas. We note that any 

differences between cortical DS values shown in our Fig. 7a and those shown in Fig. 7b of 

ref. [7] are due to i) different cortical parcellations (containing 180 vs. 52 parcels, 

respectively); ii) different pre-processing procedures; and iii) different correlation 

coefficients (Spearman vs. Pearson, respectively).

Functional enrichment analyses

Functional enrichments were determined using the ToppGene (https://toppgene.cchmc.org/) 

web portal32, including gene ontology annotations (biological process, cellular component, 

and molecular function); microRNA targets (from all sources indicated on https://

toppgene.cchmc.org/navigation/database.jsp); and drug annotations (from DrugBank, 

Comparative Toxicogenomics Database, including marker and therapeutic, and Broad 

Institute CMAP). Significant genes in each category were identified using the ToppFun 

utility. Disease annotations were determined using curated disease gene associations in the 

DisGeNet database34 (http://www.disgenet.org/web/DisGeNET/menu/home). 

Hypergeometric testing was used to determine significant over-representation of brain-

related disease genes in the top and bottom gene quintiles (20%, 3,218 genes) ranked by 

T1w/T2w map correlation, following ref. [7].

Burt et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2019 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/navigation/database.jsp
https://toppgene.cchmc.org/navigation/database.jsp
http://www.disgenet.org/web/DisGeNET/menu/home


Statistical Methods

Multiple comparisons corrections

Significance values indicated by the number of stars reported on bar plots for T1w/T2w map 

correlations (TMCs) were Bonferroni-corrected for multiple comparisons. Specifically, 

statistical significance thresholds (*, P < 0.05; **, P < 10−2; ***, P < 10−3) were divided by 

the number of null hypotheses tested, i.e., by the number of constituent bars contained in 

each bar plot (Fig. 4, Supplementary Figs. 4, 5, and 10).

Surrogate data generation

To nonparametrically determine significance values in our PCA results, in Fig. 5 and 

Supplementary Fig. 6, we generated surrogate maps with a spatial autocorrelation structure 

matched to the empirical data (Supplementary Fig. 7c). Parameters characterizing the 

empirical spatial autocorrelation were determined numerically for the cortical T1w/T2w 

map, cortical thickness map, and the map of surface-based geodesic distance from area V1; 

in each case, we fit the data using a spatial lag model of the form y = ρWy, where y is a 

vector of first Box-Cox transformed and then mean-subtracted map values. The Box-Cox 

transformation was first applied to the maps so their values were approximately normally 

distributed. W is the row-normalized weight matrix with zero diagonal and off-diagonal 

elements proportional to W i j = zi
−1 exp ( − Di j/d0), where Dij is the surface-based geodesic 

distance between cortical areas i and j, and zi ≡ Σjexp(−Dij/d0) is a row-wise normalization 

factor. Weights Wij define the fraction of spatial influence on area i attributable to area j. 
Two free parameters ρ and d0 are estimated by minimizing the residual sum-of-squares69. 

Using best-fit parameter values ρ̂ and d0, surrogate maps ysurr are generated according to 

ysurr = 𝕀 − ρW[d0] −1u, where u ~ (0,1). To match surrogate map values distributions to 

the distribution of values in the corresponding empirical map (e.g. the T1w/T2w map), rank-

ordered surrogate map values were re-assigned the corresponding rank-ordered values in the 

empirical map. Note that this approach to surrogate data generation approximates a spatial 

autocorrelation-preserving permutation test of the empirical neuroimaging map.

Using these surrogate maps, we constructed null distributions for N = 10,000 statistics and 

report significance values as the proportion of samples in the null distributions whose 

absolute value is greater than or equal to the absolute value of the test statistic. To compute 

significance values reported in Fig. 6c, f, we first constructed null distributions of the 

statistic σMap
2 /σPC1

2  using surrogate maps constructed for each neuroimaging map. For each 

neuroimaging map, we then computed distributions of the difference between the test 

statistic and each sample statistic in the null distribution. Finally, we used the non-

parametric Wilcoxon signed-rank test on these difference distributions, one for the T1w/T2w 

map and one for either the cortical thickness or geodesic distance map, to test for 

statistically significant differences in the means of the distributions. The interpretation of our 

statistically significant results reported in Fig. 6c, f is that the T1w/T2w map tends to 

capture a more appreciable fraction of gene expression variance, relative to its surrogate 

maps, than do either of the other two candidate neuroimaging maps.
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Jackknife estimate of standard error

To nonparametrically estimate the error on reported Spearman rank correlations between 

length-N vectors x and y, we used a leave-one-out jackknife replication procedure72. We 

generated N jackknife samples, denoted θ−i, by removing the i-th element from vectors x 
and y, re-computing the rank correlation between the two new length-(N-1) vectors x−i and y

−i, and repeating for i = 1 … N. Because the jackknife estimate consists of a linear operation 

(i.e., subtraction), we applied the Fisher z-transformation to the N jackknife sampled 

correlation coefficients. The jackknife estimate of standard error on the Fisher z-transformed 

jackknife samples, z(θ−i), was then computed as SE = N − 1
N ∑i = 1

N [z(θ−i) − z(θ)]2, where 

z(θ) ≡ 1
N ∑i = 1

N z(θ−i) is the mean of the N z-transformed jackknife samples. We then added 

(subtracted) SE from the Fisher z-transformed sample statistic, z(rs), before applying the 

inverse transformation to obtain the upper (lower) bound on each reported error bar, i.e., 

z−1 z(rs) ± SE . For all human analyses (i.e., for all correlations performed between principal 

components, neuroimaging maps, random surrogate maps, and gene expression profiles in 

Figs. 4–8, Supplementary Figs. 4–7, 9 and 10), correlations and their jackknife estimates 

were computed using N=180 cortical areas. For monkey analyses (i.e., Figs. 1, 2, 4, and 

Supplementary Fig. 3), we used the number of areas reported in figure legends. The 

interpretation of the jackknife estimate of standard error is the amount by which the 

correlation coefficient would change with the addition or removal of one area.

Bootstrap estimated confidence intervals

To nonparametrically estimate confidence intervals on reported statistics derived from PCA 

(i.e., Figs. 5–7, Supplementary Figs. 6 and 10) we performed a percentile bootstrap73. We 

constructed bootstrap distributions for each sample statistic by repeatedly resampling with 

replacement from the sample data distribution – e.g., expression profiles of genes in each 

categorical gene set – and recomputing the test statistic on each of the resampled data sets. 

Specifically, we first performed PCA on the resampled data to obtain the first ten PCs and 

percent variance captured by each. The Procrustes rotation was used to align the bootstrap 

loading matrix to the sample loading matrix74 – i.e., to establish the correspondence between 

bootstrap and sample PCs – then the bootstrap distributions of all test statistics derived from 

the PCA eigenspectrum were re-computed (e.g., PC1 TMCs and σMap
2 /σPC1

2 ). We estimated 

confidence intervals on sample statistics using percentiles of bootstrap distributions – i.e., 

the 2.5% and 97.5% percentiles for the upper and lower bounds on the 95% confidence 

interval, respectively. All bootstrap distributions were computed using N=1,000 bootstrap 

samples. The bootstrap technique rests on the assumption that the sample distribution is a 

reasonable approximation of the “true” population distribution, which is unknown; thus, 

statistical inference on the resampled sample data is used to approximate statistical inference 

on the population.

No statistical methods were used to predetermine sample sizes, but our sample sizes are the 

same as those reported in previous publications [6,7,15]. Nonparametric tests that do not 

make assumptions about the form of the data distribution were used to compute statistical 

significance values. Spatial autocorrelation structure in the data violated the assumption that 
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samples were independent, though we note that this is a feature which is frequently present 

in neuroimaging and transcriptional data, yet rarely addressed in the neuroscience literature. 

No data were excluded from our analyses unless otherwise noted. Data analyses were not 

performed blind to the conditions of the experiments. There were no allocated experimental 

groups or new data collected in this study.

Life sciences reporting summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Code availability

Custom analysis codes written in Python are available from the corresponding author upon 

reasonable request.

Data availability

All results derive from data that is publicly available from sources described above. Monkey 

neuroimaging maps were obtained from https://balsa.wustl.edu/study/show/W336. Monkey 

tract-tracing data were obtained from http://core-nets.org. Human gene expression data were 

obtained from http://human.brain-map.org. Annotated disease gene sets were obtained from 

http://www.disgenet.org/web/DisGeNET/menu/home. Monkey microanatomical data used in 

Fig. 4; correlations for each target area in Supplementary Fig. 3; TMC and DSC values for 

all 16,088 genes; and constituent genes in the brain-, neuron-, oligodendrocyte-, synaptome-, 

and layer-specific sets are included in Supplementary Tables 1 and 2. Parcellated maps and 

connectivity matrices related to this study are available via the BALSA database (https://

balsa.wustl.edu/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
T1w/T2w neuroimaging maps noninvasively capture the hierarchical organization of primate 

cortex. (a) The parcellated group-averaged (N=339) human T1w/T2w map exhibits high 

values in primary sensory cortical areas relative to association areas. (b) Human T1w/T2w 

map values are significantly lower in functionally defined association networks than in 

sensory networks (P < 10−5; two-sided Wilcoxon signed-rank test on N=6608 paired 

differences) (Supplementary Fig. 1c, d). Box plots mark the median and inner quartile 

ranges for areas in each network, and whiskers indicate the 95% confidence interval. (c) The 

parcellated group-averaged (N=19) macaque monkey T1w/T2w map topography is similar 

to that of the human. (d) Interareal variation in the T1w/T2w map correlates with the 

laminar specificity of directed feedforward (FF) and feedback (FB) projections in monkey 

cortex, as quantified by the fraction of labeled supragranular layer neurons (SLN) in the 

source area. High and low SLN correspond to FF and FB projection motifs, respectively. 

SLN significantly correlates with pairwise difference (target minus source) in areal 

T1w/T2w map values across N=1243 directed projections (rs = −0.44, P < 10−5; Spearman 

rank correlation). (e) Anatomical hierarchy levels across cortical areas are estimated by 

fitting a generalized linear model to predict projections’ SLNs as a function of pairwise 

hierarchical distance. (f) Model-estimated anatomical hierarchy levels are highly anti-

correlated with T1w/T2w map values across N=89 areas of monkey cortex (rs = −0.76, P < 

10−5). T1w/T2w map values and model-estimated hierarchy levels in panels a, c, and e are 

standardized (i.e., z-scored) and shown in units of standard deviations (σ) from the mean.
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Figure 2. 
Model-estimated anatomical hierarchy in monkey cortex is better captured by the group-

averaged T1w/T2w map than by two other candidate proxy measures derived from structural 

MRI. (a) Correlation between hierarchy and cortical thickness. (b) Correlation between 

hierarchy and geodesic distance from primary visual cortex (V1), which follows a rostro-

caudal gradient. (c) Comparison of hierarchy correlation values for the T1w/T2w map, 

cortical thickness map, and map of geodesic distance from area V1. The T1w/T2w map is 

much more strongly correlated with model-estimated anatomical hierarchy than the other 

two maps (P < 10−5 for both maps). Grey lines mark the jackknife estimate of standard error. 

Statistical significance is calculated by a two-sided test of the difference between dependent 

correlations (*, P < 0.05; **, P < 10−2; ***, P < 10−3). Correlations and statistical 

significance values were computed across N=89 cortical areas.

Burt et al. Page 25

Nat Neurosci. Author manuscript; available in PMC 2019 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Procedure for generating group-averaged parcellated maps of gene expression levels. All 

analyses of gene expression patterns used group-averaged parcellated expression maps 

derived from the Allen Human Brain Atlas (AHBA) (see Methods for details). The AHBA 

contains genes expression levels measured with DNA microarray probes and sampled from 

hundreds of neuroanatomical structures in the left hemisphere across six normal post-

mortem human brains. First, cortical samples for each subject were mapped from volumetric 

space onto that subject’s native reconstructed two-dimensional cortical surface. Second, 

parcellated gene expression maps were constructed, for each subject, using the Human 

Connectome Project’s (HCP) Multi-Modal Parcellation (MMP1.0) of the left cortical surface 

into 180 contiguous areas. For genes profiled by multiple microarray probes, we selected a 

single representative probe for each subject. Finally, a group-level parcellated expression 

map for each unique gene was computed by averaging parcellated expression levels across 

subjects’ selected gene probes (see Methods).
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Figure 4. 
Group-averaged T1w/T2w maps capture specialization of cortical microcircuitry in humans 

and nonhuman primates. (a) Cortical cytoarchitectural type is very strongly correlated with 

the macaque monkey T1w/T2w map across N=29 areas (τ = 0.87; P < 10−5; two-sided 

Kendall’s tau-b correlation) (rs = 0.96; P < 10−5; Spearman rank correlation). (b) The 

average expression map of 5 genes preferentially expressed in human granular layer 4 (L4) 

is positively correlated with the human cortical T1w/T2w map (rs = 0.68; P < 10−5; 

Spearman rank correlation), consistent with a more prominent granular L4 in sensory than 

association cortex. Expression is plotted in units of standard deviations (s.d.; σ) from the 

mean. (c) Average expression maps of laminar-specific genes show significant T1w/T2w 

map correlations (TMCs). L1–3: supragranular layers 1–3 (rs = −0.42; P < 10−5); L5/6: 

infragranular layers 5 and 6 (rs = −0.44; P = 2.49 * 10−3). (d) The T1w/T2w map captures 

areal variation in the relative proportions of calretinin- (rs = −0.72; P < 10−5) and 

parvalbumin-expressing (rs = 0.58; P = 1.7 * 10−5) inhibitory interneurons across N=47 

areas of monkey cortex. (e) Genes coding for calretinin (CALB2; rs = −0.45; P < 10−5) and 

parvalbumin (PVALB; rs = 0.70; P < 10−5) exhibit homologous hierarchical gradients in 

human cortex. (f) TMCs of genes coding for markers of specific inhibitory interneuron cell 

types. (g) Basal-dendritic spine counts on pyramidal cells are significantly anti-correlated 

with the monkey T1w/T2w map across N=23 areas (rs = −0.71; P = 1.6 * 10−4). (h) The 

gene coding for the NMDA receptor subunit NR2B (GRIN2B) exhibits a negative TMC (rs = 

−0.63; P < 10−5). (i, j) TMCs of genes coding for distinct subunits of the excitatory NMDA 

receptor and inhibitory GABAA receptor. For comparison with monkey measurements in 

panels a, d, and g, Spearman rank correlations with model-estimated hierarchy levels 

(instead of T1w/T2w map values) were −0.92 for cytoarchitectural type; 0.72 (−0.77) for 

relative calretinin (parvalbumin) expressing interneuron proportion; and 0.78 for spine 

count. Statistical significance in panels c, f, i, and j is calculated using a spatial 
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autoregressive model to account for spatial autocorrelation, Bonferroni-corrected by the 

number of genes in each set (*, P < 0.05; **, P < 10−2; ***, P < 10−3), and grey lines mark 

the jackknife estimate of standard error (see Methods).
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Figure 5. 
The group-averaged T1w/T2w map captures the dominant axis of gene expression variation 

across human cortex. (a) The first principal component (PC1), here for a set of brain-specific 

genes, is the areal map that linearly captures the maximum variation in gene expression. 

Both maps are standardized (i.e., z-scored) and shown in units of standard deviations (σ) 

from the mean. (b) PC1 captures a large fraction of total gene expression variance. Inset: 
Variance captured by PC1 for five categorical gene sets: all genes, and genes preferentially 

expressed in brain, neurons, oligodendrocytes, and synaptic processes (see Methods). (c) 
PC1 for the brain-specific gene set is highly correlated with the T1w/T2w map (rs = 0.81; P 
< 10−5; Spearman rank correlation). (d) Across all sets, PC1 exhibits a highly similar areal 

topography to the T1w/T2w map (TMC range: 0.80–0.81; P < 10−5 for each). (e) Gene 

expression variance captured by the T1w/T2w map ( σT1w/T2w
2 ) relative to PC1 ( σPC1

2 ). 

Statistical significance in panels d and e is calculated through permutation testing with 

surrogate maps that preserve spatial autocorrelation structure (*, P < 0.05; **, P < 10−2; ***, 

P < 10−3), and grey lines in panels b, d, and e mark the bootstrap estimated 95% confidence 

interval (see Methods).
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Figure 6. 
Principal component analysis (PCA) shows that the dominant mode of gene expression 

variation (PC1) is better captured by the group-averaged T1w/T2w map than by other 

candidate proxies. (a) Parcellated group-averaged (N=339) map of human cortical thickness. 

(b) The difference in correlation with PC1 between the T1w/T2w map and the cortical 

thickness map, i.e., (rs(T1w/T2w, PC1) − rs(Thickness, PC1)), across several categorical 

gene sets. Negative values indicate that the T1w/T2w map is more strongly correlated with 

PC1 than is the thickness map. (c) The difference in the fraction of gene expression variance 

captured, relative to the variance captured by PC1, between the T1w/T2w map and the 

cortical thickness map, i.e., σT1w/T2w
2 − σThickness

2 /σPC1
2 , across several categorical gene sets. 

Negative values indicate that the T1w/T2w map captures more gene expression variance 

than does the thickness map. (d) Parcellated map of geodesic distance from primary visual 

cortical area V1. Maps in panels a and d are standardized (i.e., z-scored) and shown in units 

of standard deviations (σ) from the mean. (e) The difference in correlation with PC1 

between the T1w/T2w map and the map of distance from area V1. (f) The difference in the 

fraction of gene expression variance captured, relative to the variance captured by PC1, 

between the T1w/T2w map and the map of distance from V1. Statistical significance in 

panels b and e is calculated by a two-sided test of the difference between dependent 

correlations (N=180), and in panels c and f, through permutation testing with surrogate maps 

that preserve spatial autocorrelation structure (*, P < 0.05; **, P < 10−2; ***, P < 10−3). 

Grey lines in panels b, c, e, and f mark the bootstrap estimated 95% confidence interval.
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Figure 7. 
Expression profiles of genes which exhibit strong hierarchical gradients tend to be relatively 

stable across individuals. (a) Differential stability across cortex (DSC), defined as the mean 

pairwise Spearman rank correlation between subjects’ cortical gene expression maps, as a 

function of the magnitude of the T1w/T2w map correlation (TMC) for all 16088 genes (rs = 

0.66, P < 10−5; Spearman rank correlation). Each gray dot represents a single gene. The 

black line indicates the average value in a sliding window of size 600 points. (b) Filtering 

genes by a threshold on DSC alters the shape of the TMC distribution. Increasing the DSC 

threshold filters out genes whose cortical expression profiles are not relatively consistent 

across subjects. The trough which develops near TMC=0 suggests that high-DSC genes 

preferentially exhibit strong hierarchical gradients. (c) Thresholding genes by DSC 

substantially increases variance captured by the first principal component (PC1) of gene 

expression variation (blue), whereas it has little effect on PC1’s TMC (red). Shaded regions 

in panels b and c mark the bootstrap estimated 95% confidence interval. Number of genes 

which exceed each DSC threshold: 0, 14509; 0.025, 12169; 0.05, 9494; 0.075, 7332; 0.1, 

5853.
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Figure 8. 
Hierarchical variation relates to enrichment in neurobiological function and brain disorders. 

(a) Genes with strong TMCs are overrepresented in functional annotations across multiple 

gene ontologies (GOs). BP, biological process; CC, cellular component; MF, molecular 

function; MiRNA, microRNA binding sites; Drug, drug targets. (b, c) Two key risk genes for 

neurodegenerative disorders, APOE for Alzheimer’s disease and SNCA for Parkinson’s 

disease, exhibit strongly negative TMCs, with higher expression levels in association cortex 

relative to sensory cortex (APOE: rs = −0.62, P < 10−5; SNCA: rs = −0.72, P < 10−5; 

Spearman rank correlation). APOE is a leading risk gene for Alzheimer’s disease. The ε4 

allele of APOE is the largest genetic risk factor for late-onset Alzheimer’s disease. SNCA 
(PARK1/PARK4) is a key risk gene for Parkinson’s disease. Duplication of SNCA is risk 

factor for familial Parkinson’s disease with dominant inheritance. SNCA codes for the 

alpha-synuclein protein which is the primary component of Lewy bodies, a biomarker of 

Parkinson’s disease. (d) Genes with strong negative TMCs are overrepresented in multiple 

gene sets associated with neuropsychiatric disorders. Left: 20–80% percentile range of 

TMCs for each disease gene set. Right: Enrichment is quantified by the hypergeometric test, 

which assesses the statistical significance of overlap between each gene set and the top (red) 

or bottom (blue) 20% TMC genes. Inset: Distribution of TMCs across all genes. Expression 

in panels b and c is plotted in units of standard deviations (s.d.; σ) from the mean for each 

map.
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