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Abstract

Background

Breast cancer is the fifth most prevalent cause of death among women worldwide. It is

also one of the most common types of cancer among Malaysian women. This study

aimed to characterize and differentiate the proteomics profiles of different stages of

breast cancer and its matched adjacent normal tissues in Malaysian breast cancer

patients. Also, this study aimed to construct a pertinent protein pathway involved in each

stage of cancer.

Methods

In total, 80 samples of tumor and matched adjacent normal tissues were collected from

breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital

(KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and

normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophore-

sis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GEL-

FREE) Technology System was used for the separation and fractionation of extracted

proteins, which also were analyzed to maximize protein detection. The protein fractions

were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS

LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tis-

sue samples using de novo sequencing and database matching via PEAKS software. We

performed two different pathway analyses, DAVID and STRING, in the sets of proteins

from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by

the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in

order to generate a connected network. Then, pathway enrichment was obtained, and a

graphical model was created to depict the participation of the input proteins as well as the

linker nodes.
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Results

This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins

that were detected in stage 3 tumor tissues, related to their normal counterparts. It also iden-

tified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on

these results, this study clarified unique proteins pathways involved in carcinogenesis within

stage 2 and stage 3 breast cancers.

Conclusions

This study provided some useful insights about the proteins associated with breast cancer

carcinogenesis and could establish an important foundation for future cancer-related discov-

eries using differential proteomics profiling. Beyond protein identification, this study consid-

ered the interaction, function, network, signaling pathway, and protein pathway involved

in each profile. These results suggest that knowledge of protein expression, especially in

stage 2 and stage 3 breast cancer, can provide important clues that may enable the discov-

ery of novel biomarkers in carcinogenesis.

Introduction

Breast cancer has been reported to be the fifth most common cause of death among women

and one of the most widely diagnosed cancers afflicting women globally [1–3]. The impact of

breast cancer’s prevalence is illustrated to affect more than 1.3 million women each year, and 1

in 8 women at some point in their lives [4]. Similarly, breast cancer is the second leading can-

cer in the United States and was approximated to cause about 14% of all cancer-related deaths.

In the past few decades, the volume of deaths from breast cancer prompted a rapid effort to

improve screenings, leading to an upward trend in breast cancer diagnoses that some pre-

dicted to continue in the future [5].

Breast cancer is reported most frequently in specific parts of the world, including developed

countries in Northern Europe and North America, Mediterranean and South America, and

impoverish countries in Africa and Asia [6]. With references to these expectations, Ziegler

et al. [7] postulated that in the coming year, breast cancer diagnoses will affect 230,000 women,

of which 40,000 may lose their lives because of this cancer. Historically, there are few reported

cases of breast cancer in Asian countries, but now they are witnessing an increase in diagnoses

[8–10].

Several reports have questions about the incidence and prevalence of breast cancer in Asian

countries that affected almost every 1 in 19 women [11, 12]. In Malaysia, breast cancer is one

of the most common types of cancer among women, with an estimated age-standardized rate

(ASR) of approximately 38.7 per 100,000, with 5410 new cases each year [13, 14]. However,

the number of Malaysian women at risk for breast cancer may be much higher than what is

reported currently because some patients still seek traditional therapy and may not document

their breast cancer cases in a conventional way [15].

Among breast cancer, ductal carcinoma is the most prevalent and the most life-threatening

type of breast cancer [16]. Invasive ductal carcinoma (IDC) starts in the lactiferous duct, pene-

trates the duct tube, and then attacks the nearest breast tissue. From there, it can metastasize

to other parts of the body through the lymph and blood systems (metastasis) [17]. Thus, it is

critical that researchers devote attention to the identification of markers that discriminate
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tumorigenic from normal cells and may differentiate between different stages of malignant

pathology. This essential task is made possible by proteomics, which analyzes protein expres-

sion profiles and maps the differences between the profiles of breast cancer tissue and the pro-

files of adjacent normal tissues. Since breast cancer patients have a promising prognosis only if

their disease is diagnosed early, before advancing to an extent that modern medicine cannot

address, there is a need to find dependable tissue target of breast cancer. The identification of

potential proteins among breast cancer patients could aid early detection, treatment, monitor-

ing, identify carcinogenesis, and prognosis of breast cancer stages. Mass spectrometry-based

platforms have become an essential component for rapidly testing and qualifying a large num-

ber of candidate biomarkers for further development and validation of breast cancer [18–20].

Recently, Devlin et al. [21] were used liquid chromatography coupled to an LTQ-XL linear ion

trap mass spectrometer to highlight novel roles of protein septin 9 in the pathogenesis of breast

cancer. However, there is a persisting need to discover a reliable biomarker that can detect

breast cancer reliably and at an early stage. In this study, proteomic profiling was carried out

on samples of both breast cancer and adjacent normal tissues using advanced techniques such

as the LTQ-Orbitrap, the GELFREE fraction system, and bioinformatics PEAKS software,

with the aim of identifying protein biomarkers that may be employed in the diagnosis and/or

treatment of breast cancer.

Materials and methods

Study ethics and sample collection

Ethics approval for the collection of breast tissue samples was obtained from the Human Ethi-

cal Committee of the Ministry of Health Malaysia and the Human Ethical Clearance Commit-

tee of Universiti Sains Malaysia (Reference No. USMKK/PPP/JEPeM "211.3.15"). The study

was designed and conducted in accordance with the ethical principles, and all participants

signed informed consent forms to allow the researcher to take the breast tissues for the experi-

mental procedures (see S1 Appendix). In the current study, all consent forms were only self-

signed by the patients who agreed to be part of this research study for the use of their tissues in

the experimental procedures during their Mastectomy and if needed just confirmed from their

legal representative (relatives).

In this study, all samples were collected through a surgical procedure and were not biopsies

nor postmortem. Through a surgical procedure, a total of eighty samples comprised forty pairs

of breast tumor and adjacent normal tissues from the same patient were collected from Janu-

ary 2010 till February 2012 in the present study. Breast samples were collected at Seberang

Jaya Hospital (SJH) and Kepala Batas Hospital (KBH) in Penang, Malaysia. The tissues were

obtained from middle-aged and elderly women (32–78 years). The collected samples were

evaluated and grouped in the analysis according to histopathology report after diagnosis.

All tumor tissues were collected by removal the whole affected breast tissues through surgical

procedure (Mastectomy). The breast carcinoma typing and grading were confirmed by a

pathologist according to the World Health Organization criteria [22, 23]. In the control group,

adjacent tissues were taken from the non-afflicted tissue of breast cancer patients, sampled

from a distance of at least 10 cm from the tumor. Then, the tissue samples were preserved at

-80˚C. Before the protein extraction step, the samples were left to thaw at room temperature

and rinsed with cold distilled water. A scalpel was used to remove the fatty coating from each

sample. The remaining tissue was chopped into very small pieces, weighed, and placed in

labelled microcentrifuge tubes for the analysis stage. All clinical information was obtained

from archives of case history from SJH and KBH that included demographic details, medical

history, notes from clinical examinations, histopathology type of breast cancer (such as, the
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stage of breast cancer at presentation), the technique of diagnosis, treatment offered at diagno-

sis, therapy and diagnostic investigation, respectively. The clinical-pathological characteristics

of breast cancer patients are listed in Table 1. This research represents a critical step toward

fulfilling the exigent need to differentiate and detect more sensitive markers for the early

Table 1. Clinical pathological characteristics and molecular sub-type of stage 2 and stage 3 of breast cancer patients.

Patient No. Patient ID. Stage Histopathological Diagnosis ER/PR/HER2 TNBC ANT

1 P2 2 IDC +/+/- - - +

2 P3 2 IDC +/-/+ - - +

3 P4 2 IDC +/+/- - - +

4 P5 2 IDC +/+/- - - +

5 P7 2 IDC +/+/+ - - +

6 P10 2 IDC +/+/- - - +

7 P20 2 IDC -/+/+ - - +

8 P21 2 IDC +/+/- - - +

9 P31 2 IDC +/+/- - - +

10 P32 2 IDC +/+/+ - - +

11 P40 2 IDC +/+/- - - +

12 P41 2 IDC +/+/+ - - +

13 P42 2 IDC +/+/- - - +

14 P64 2 IDC +/+/+ - - +

15 P65 2 IDC +/+/- - - +

16 P74 2 IDC +/+/- - - +

17 P78 2 IDC +/-/- - - +

18 P82 2 IDC +/+/+ - - +

19 P99 2 IDC +/+/- - - +

20 P113 2 IDC +/-/+ - - +

21 P114 3 IDC +/-/+ - - +

22 P115 3 IDC +/-/- - - +

23 P137 3 IDC +/-/- - - +

24 P138 3 IDC +/++ - - +

25 P139 3 IDC +/-/+ - - +

26 P147 3 IDC +/-/+ - - +

27 P148 3 IDC -/-/+ - - +

28 P150 3 IDC -/-/+ - - +

29 P156 3 IDC +/-/+ - - +

30 P157 3 IDC +/-/- - - +

31 P160 3 IDC +/-/- - - +

32 P161 3 IDC +/-/+ - - +

33 P165 3 IDC +/-/- - - +

34 P168 3 IDC +/+/+ - - +

35 P176 3 IDC +/+/+ - - +

36 P178 3 IDC +/+/+ - - +

37 P180 3 IDC +/+/+ - - +

38 P191 3 IDC +/+/+ - - +

39 P198 3 IDC +/-/+ - - +

40 P201 3 IDC +/-/- - - +

IDC, Invasive ductal carcinoma; ER/PR/HER2, estrogen receptor/ progesterone receptor/ human epidermal growth factor receptor 2; TNBC, Triple-negative breast

cancer; ANT, adjacent non-tumor breast tissue.

https://doi.org/10.1371/journal.pone.0227404.t001
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detection and diagnosis of breast cancer. Thus, the study carried on the three major ethnic

groups namely Malays, Chinese and Indians that exist in Malaysia. This research was in the

same line for breast cancer prevention and control programs in Malaysia which could hope-

fully help oncology professionals in the planning of practical preventive research strategies

[24–26]. The ethnicity of the patients was based on the documentation from the hospital

which was self-identified by the patients.

Protein extraction and processing

Liquid nitrogen was used to grind all tissues individually and then the tissues were disrupted

with a glass homogenizer [27]. All tissue samples were run individually in triplicate. The pro-

teins were extracted with lysis buffer containing 25 mM Tris, 150 M NaCl, 5 mM EDTA, and

1% CHAPS, with the pH adjusted to 7.4. The homogenized tissue was then subjected to vortex-

ing (about 30 seconds) and centrifugation at 1500 x g (Thermo Fisher Scientific, Osterode,

Germany) at 4˚C for 10 minutes. The eluted proteins were dialyzed with 7000-MW cut-off

(MWCO) SnakeSkin pleated dialysis tubing (Thermo Scientific Co., Rockford, IL, USA)

and sealed firmly. Cool dialysis buffer (50 mM ammonium bicarbonate, pH 7.5) was used to

homogenize the tissues at 4˚C. The dialysis buffer was changed every 48 hours. The homoge-

nates were placed in microcentrifuge tubes and kept at -80˚C until analysis. The protein con-

centrations of all samples were determined by the Bradford assay method [28]. Briefly, an

amount of 5 μL of each sample was mixed with 250 μL of Bradford reagent in a 96-well plate

and then incubated at room temperature for 15 minutes to measure the total protein concen-

tration in each sample following the manufacturer’s instructions obtained from Bio-Rad Labo-

ratories (Hercules, CA, USA). A serial dilution ranging from 0.0 to 2 mg/mL of bovine serum

albumin (BSA) was used to generate a calibration curve. Thereafter, the absorbance of both the

samples and standard was measured at 595 nm. The average concentration of each sample was

calculated from the calibration curve.

Protein fractionation by GELFREE 8100 system

The GELFREE 8100 fractionation system (Expedeon, CA, USA) was chosen for protein

fractionation using 10% Tris-acetate cartridge [29]. The complexity of the protein extracts

was reduced with molecular weight fractionation, applied to 150 μg portions of the protein

extracts. Furthermore, the electrophoretic separation was performed using SDS-PAGE mate-

rial in a tubular environment. Finally, GELFREE was used to fractionate the proteins in the liq-

uid phase. This process yielded 12 liquid fractions (separated by MWCO), these fractions were

aggregated into four groups, each comprising three fractions, and the total protein concentra-

tion was measured for each combined fraction. A 50 μg protein sample from each combined

fraction was frozen for 30 minutes at -80˚C. Thereafter, it was freeze-dried overnight in prepa-

ration for the analysis. S1 Table displays fractionation conditions of the GELFREE 10% Mass

Cartridge Kit (see S1 Appendix).

Image analysis

In this study, SDS-PAGE was employed with 12.5% resolving slab gels to evaluate the success

of the GELFREE fractionation and quality of separation. The first and last lanes of each gel

were loaded with the Precision Plus Protein™ SDS-PAGE Standards (Bio-Rad Laboratories

Inc., Hercules, CA, USA). The gel scan was performed with GeneSys G: Box Chemi-XX8

image analyzer (Syngene, Funakoshi Co. Ltd., Japan). The GeneSys program was used to cap-

ture the image (GeneSys V1.3.9.0 -Syngene). SDS-PAGE was used to evaluate the resolution of

the GELFREE fractions, to verify the quality of the fractionation process, and to demonstrate

Comparative proteomic analysis of different stages of breast cancer tissues using UHPLC-MS/MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0227404 January 16, 2020 5 / 27

https://doi.org/10.1371/journal.pone.0227404


successful separation. If the proteins had been separated adequately, different bands would

appear in different fractions.

Protein digestion by in-solution tryptic digestion

To prepare the samples for nanoflow UHPLC separation and analysis using high-resolution

Mass Spectrometry (MS) and Tandem Mass Spectrometry (MS/MS), 50 μg of protein from

each GELFREE-combined fraction was retained subjected to the In-Solution Tryptic Digestion

method as reported by Ru et al. [30]. Each of the combined fraction was re-suspended with

6M guanidine-HCL/25 mM ammonium bicarbonate (NH4HCO3) at pH 8.5, and then reduced

with 250 μL of 1 mg/mL dithiothreitol (DTT, 200 mM) in 25 mM NH4HCO3. The sample was

incubated at 55˚C for 30 minutes, alkylated with 500 μL of 1 mg/mL iodoacetamide (IAA, 200

mM) in 25 mM NH4HCO3, and incubated in a dark room at 55˚C for 15 minutes. The reduced

and alkylated protein samples were concentrated and desalted using buffer exchange with 25

mM NH4HCO3 in a spin-column with a molecular cut-off of 3 kDa, run 3 times at 3500 x g

(Eppendorf AG, Hamburg, Germany) for 45 minutes, follow by digestion of the concentrated

protein with the addition of 1 μL of reconstituted 1 μg/μL trypsin (ratio 1:50). The reaction

was run at 37˚C for 18 hours (overnight), after which 0.1 μL of formic acid was added to stop

the trypsin reaction.

Quantitative LC-MS/MS analysis

Prior to LC-MS/MS analysis, the peptide samples were mixed with 100 μL of 0.1% formic acid

in deionized water and filtered with a 0.45 μm syringe filter. A 10 μL sample of each peptide

was desalted using Zip-Tip C18 tips (Millipore Co., Billerica, MA, USA) according to the man-

ufacturer’s protocol (www.millipore.com). All analyses of LC-MS and MS/MS were performed

using a nano UHLPC system coupled with LTQ-Orbitrap Fusion MS (Thermo Scientific Co.,

San Jose, CA, USA). The chromatographic separation of tryptic-digested peptides was carried

out using the easy-column C18 (10 cm, 0.75 mm i.d., 3 μm particles size; Thermo Scientific

Co., USA), which was used as the analytical column. Easy-column C18 (2 cm, 0.1 mm i.d.,

5 μm particles size; Thermo Scientific Co., USA) was used as the pre-column. A 1 μL of the

sample was injected and chromatographically separated at a flow rate of 0.3 μL/min. Two

mobile phase running buffers: (A) 0.1% formic acid in deionized water, and (B) acetonitrile

with 0.1% formic acid were used and the samples were eluted using a gradient of buffer B,

ranging from 5% to 100%, over the course of about 85 minutes. Data was acquired with Xcali-

bur software version 2.1 (Thermo Scientific Co., San Jose, CA, USA) with a mass tolerance

threshold of 5 ppm.

The eluent was sprayed into the mass spectrometer at 2.1 kV (source voltage) at a capillary

temperature of 220˚C. Peptides were detected using full-scan mass analysis, from m/z 300 to

2,000 at a resolving power of 60,000 (at m/z 400, FWHM; 1-s acquisition), with data-depen-

dent MS/MS analyses (ITMS) triggered by the eight most abundant ions from the parent mass

list of predicted peptides. Peptides with single or unassigned charge states were rejected. Colli-

sion-induced dissociation (CID) with a collision energy of 35 was used as the fragmentation

technique. To perform de novo sequencing and database matching, PEAKS software version

7.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada) was implemented. The MS/MS

analysis was carried out using similar resolving power (60,000). The CID was applied with an

isolation width of 2 Da, a normalized collision energy of 35, an activation q of 0.25, an activa-

tion time of 50 ms, and a charge state of 2. Higher-energy Collisional Dissociation (HCD) was

applied with an isolation width of 2 Da, normalized collision energy of 35, an activation time

of 0.1 ms, and an FT first mass value (m/z) of 100 [31].
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Protein identification

From the raw data generated by LC-MS/MS-LTQ-Orbitrap, protein identities were investi-

gated using the standard PEAKS workflow by using the following parameters: Homo sapiens

UniProt reference proteome for the database (http://www.uniprot.org/) released March 2015,

trypsin for enzyme, and cysteine carbamidomethylation and methionine oxidation as fixed

post-translation modifications (PTM). The PTM variables comprised the phosphorylation

sites S, T, and Y. The error tolerance, parent ion and fragment ion were set at 15 ppm and 0.8

Da, respectively. Using LTQ-Orbitrap instrument with a maximum of 2 missed cleavages per

peptide and a maximum of 5 variable PTMs per peptide. The protein –10logP was set to�20,

peptide –10logP was set to�15, Peptide Spectrum Match’s false discovery rate (FDR) was set

to 1.00%, and the number of unique peptides was set to�1.

Data mining and bioinformatics analysis

Gene ontology and pathway enrichment. DAVID webserver was used to analyze the sig-

nificance of the presence of the detected proteins in different pathways [32]. Specifically, anno-

tations were assessed in the following categories: Gene Ontology terms, GAD and OMIM for

diseases, chromosome and cytoband for general annotations, BioCarta, KEGG and Reactome

for molecular pathways, SMART and INTERPRO for protein domains, INTACT and BioGrid

for protein-protein interactions, the UCSC repository for Transcription Factor enrichment,

and CGAP and UP_TISSUE for gene expression enrichment. Then, the significant terms

P<0.05 and P�0.01 were obtained for each list of proteins in the cancer samples and the adja-

cent normal samples.

Network analysis. The potential interactions across previously-detected proteins were

studied with the STRING webserver [33]. The P-value was calculated from the ratio of the

number of interactions observed in the set of proteins and the number of interactions pre-

dicted in the set while all the sets were more connected than expected. Finally, relevant biologi-

cal action in these networks was estimated by plotting only the interactions for each gene set

(e.g., activation, inhibition, binding, reaction).

Cytoscape-based representative models. The lists of molecules were the input of the

REACTOME-FI plugin [34], part of the CYTOSCAPE tool [35]. Linker nodes were added to

generate a connected network. Then, pathway enrichment was obtained (FDR<0.25) and

a graphical model of the participation of the input proteins as well as the linker nodes was

generated.

Statistical analysis

Statistical analysis was performed according to Li et al. [36] and Torres-Luquis et al. [37]. Data

were stored in Excel and descriptive statistics were calculated for all the variables. The statisti-

cal analyses were performed with SPSS 20.0 software. The presence of the detected proteins in

the tumor tissues and not exist in their matched adjacent normal tissues was performed against

a chi-square test. Two-sample paired t-test was used to compare tumor and normal breast tis-

sues. Zero was used to signify the lack of intensity if no protein was seen. The most significant

proteins were reported. All the values of the percentages found in the tumor samples were

found to be statistically P<0.05.

Results

The protein extracts from tissue samples of both tumor and adjacent normal origins were sub-

jected to molecular weight fractionation via electrophoretic separation through SDS-PAGE
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material in the tubular environment, all in the liquid-phase (GELFREE). This yielded 12 liquid

fractions (separated by MWCO) for each protein extract (Fig 1). In addition, all uncropped

and full images of SDS-PAGE for the GELFREE images were added (see S2 Appendix).

Initially, each of these 12 fractions was reduced, alkylated, and subjected to trypsin diges-

tion before nanoflow UHPLC separation and high-resolution MS and MS/MS analysis. Each

specimen required a minimum of 12 injections for LC-MS analysis. We decided to investigate

the possibility of combining some of these GELFREE fractions to reduce the number of

LC-MS analyses required for each tissue specimen. To investigate this possibility, several crude

protein extracts were separated by GELFREE and then two experimental protocols were inves-

tigated in parallel. In the first protocol, each of the 12 fractions was digested and subjected

individually to MS and MS/MS analysis with a nanoflow UHPLC separation. The quality of

each of these 12 data sets was evaluated with protein and peptide identifications. In the second

protocol, the 12 GELFREE fractions were combined into 4 groups (fractions 1–3, 4–6, 7–9,

and 10–12). These combined fractions were digested and evaluated with MS as in the first pro-

tocol. Finally, we compared the final protein and peptide profiles that were generated by the

two different protocols [38].

After several comparisons, the study combined fractions yielded equivalent results in terms

of identification, coverage, and data fidelity as the sum of the individual constituent fractions

and we reanalyzed separately. Since the combination strategy did not degrade the quality or

usefulness of the protein and peptide identifications combining the 12 initial fractions into 4

groups of 3 fractions, each therefore was adopted as the standard operating procedure, thus

reducing the number of analyses per fraction from 12 to 4 (67% reduction in time and instru-

ment resources).

In this study, a comprehensive analysis was performed using the LTQ-Orbitrap Elite

with CID fragmentation technique, and PEAKS Client software version 7.5 with the Uniprot

(Homo sapiens) database. Fig 2A and 2B show representative MS/MS fragments for the base

Fig 1. GELFREE protein fraction bands of tissue sample separated by 12% SDS-PAGE.

https://doi.org/10.1371/journal.pone.0227404.g001
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peak chromatogram of the tissue sample on Orbitrap LTQ-LC/MS–CID activation, and for

the expanded region of a single FTMS full scan, with a mass range of m/z 400–1800.

Protein profiling

Table 2 shows the presence of 12 specific proteins that were identified and detected in stage 2

breast cancer tissues but not in normal tissues. Chi-squared values revealed significant results

for 12 of these proteins (P<0.05). The list of proteins identified by LC-MS/MS, in stage 2 of

breast cancer tissue and their details as shown in PEAKS Software (S2 Table and S3 Appendix).

PEAKS provides a number of statistical charts for the peptide and proteins score distributions

and Venn diagrams. The figures show the peptides and proteins score distributions, and the

Venn diagrams show clearly the non- redundant unique and overlapping of the peptide and

proteins numbers in both tumor and the adjacent normal breast tissues for the stages 2 and 3

(see S4 Appendix).

Additionally, we found 17 proteins that were detected in stage 3 breast cancer samples com-

pared to the normal samples (Chi-square values indicated significant results for all 17 proteins,

P�0.01) as revealed in Table 3 (S4 Table and S5 Appendix).

Fig 2. (A) Base peak chromatogram of tissue sample on Orbitrap LTQ-LC/MS–CID activation. (B) Expanded region of a single FTMS full scan,

with a mass range of m/z 400–1800, and ion peaks with double or higher charge (612.30, z = 3).

https://doi.org/10.1371/journal.pone.0227404.g002

Table 2. List of proteins detected in stage 2 breast cancer samples.

No. Protein Name Normal Tumor Chi^2 P-value Difference

N % N %

1 Prolyl 3-hydroxylase 1 0 0% 14 70% 30.77 0.0130 70%

2 Peptidyl-prolyl cis-trans isomerase FKBP10 0 0% 12 60% 28.57 0.0356 60%

3 CAP-Gly domain-containing linker protein 1 0 0% 12 60% 28.57 0.0356 60%

4 Peptidyl-prolyl cis-trans isomerase FKBP9 0 0% 12 60% 28.57 0.0356 60%

5 Zinc finger CCCH domain-containing protein 18 0 0% 12 60% 28.57 0.0356 60%

6 Immunoglobulin superfamily containing leucine-rich repeat protein 0 0% 12 60% 28.57 0.0356 60%

7 MOB kinase activator 1A 0 0% 12 60% 28.57 0.0356 60%

8 Protein enabled homolog 0 0% 12 60% 28.57 0.0356 60%

9 Collagen alpha-1(V) chain 0 0% 12 60% 28.57 0.0356 60%

10 Protein canopy homolog 4 0 0% 12 60% 28.57 0.0356 60%

11 Perilipin-4 (PLIN4) 0 0% 12 60% 28.57 0.0356 60%

12 Transmembrane emp24 domain-containing protein 10 0 0% 12 60% 28.57 0.0356 60%

N: number of specific identified proteins.

Unit: % percentage of total detection.

https://doi.org/10.1371/journal.pone.0227404.t002
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In this study, the protein profiles of stage 2 breast cancer tissues and normal tissues were

successfully identified with the proteomics approach. This study yielded high confidence data

with high mass accuracy and resolution. In addition, the results produced by the GELFREE

combined fractions were equivalent, in terms of protein identifications, coverage, and data

fidelity, to the results produced by individual fractions. Based on a series of experiments over

several months, it was concluded that such a combination strategy did not degrade the quality

or utility of the protein and peptide identifications.

Proteins that showed significant differences between tumor and normal breast tissues were

projected on the heatmap using the R statistical package (version 2.14, www.r-project.org/),

representing a snapshot summary of the actual intensities of these proteins. Proteins were z-

scaled by subtracting their means followed by division by standard deviations (Fig 3).

Protein pathways in stage 2 breast cancer

The DAVID results revealed that several proteins were detected in stage 2 breast cancer act

as significant protein folding chaperones (Fig 4). The complete list of proteins identified by

LC-MS/MS in stage 2 of breast cancer tissue (S3 Table).

Fig 5A and 5B show the unique proteins in stage 2 breast cancer constitute a highly inter-

connected functional network, which suggests a large conserved complex with the involve-

ment of at least three proteins (MOB1A, FKBP9, and FKBP10). It shows a non-directed graph

with the functional interactions as predicted by STRING. Each node represents a protein

name that is located near each circle.

The full biological network obtained in Cytoscape (Fig 6) is notable in that the roles of

linker nodes are filled by transcription factors, including RXRA, PPARG, RPTOR, WWTR1,

and SMAD3, all of which are known to interact with one another and unify the input proteins

involved in Hippo, Robo receptor, MTOR, and PPAR signaling pathways.

Table 3. List of proteins detected in stage 3 breast cancer samples.

No. Protein Name Normal Tumor Chi^2 P-value Difference

N % N %

1 Golgi resident protein GCP60 0 0% 16 80% 33.33 0.0040 80%

2 Eukaryotic peptide chain release factor subunit 1 0 0% 14 70% 30.77 0.0130 70%

3 Nucleoside diphosphate kinase 3 0 0% 14 70% 30.77 0.0130 70%

4 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 0 0% 14 70% 30.77 0.0130 70%

5 Protein SEC13 homolog 0 0% 14 70% 30.77 0.0130 70%

6 Protein enabled homolog 0 0% 14 70% 30.77 0.0130 70%

7 Rho GTPase-activating protein 1 0 0% 14 70% 30.77 0.0130 70%

8 LEM domain-containing protein 2 0 0% 14 70% 30.77 0.0130 70%

9 TAR DNA-binding protein 43 0 0% 14 70% 30.77 0.0130 70%

10 V-type proton ATPase subunit E 1 0 0% 14 70% 30.77 0.0130 70%

11 Prefoldin subunit 1 0 0% 14 70% 30.77 0.0130 70%

12 Coiled-coil domain-containing protein 58 0 0% 14 70% 30.77 0.0130 70%

13 Inhibitor of nuclear factor kappa-B kinase-interacting protein 0 0% 14 70% 30.77 0.0130 70%

14 DNA-dependent protein kinase catalytic subunit 0 0% 14 70% 30.77 0.0130 70%

15 Transmembrane glycoprotein NMB 0 0% 14 70% 30.77 0.0130 70%

16 MOB kinase activator 1A 0 0% 14 70% 30.77 0.0130 70%

17 MOB kinase activator 1B 0 0% 14 70% 30.77 0.0130 70%

N: number of specific identified proteins.

Unit: % percentage of total detection.

https://doi.org/10.1371/journal.pone.0227404.t003
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Our results clearly show alterations in multiple signaling pathways in stage 2 breast cancer,

and the functions of the proteins involved are illustrated in Table 4. Notably, many impact pro-

liferation, invasion, and migration pathways.

Proteins pathway for stage 3 breast cancer

The analysis of this set by DAVID revealed a greater presence of proteins that can be acety-

lated, which suggests the involvement of a PTM in breast cancer progression to stage 3 (Fig 7

and S4 Table).

The STRING functional network shows in Fig 8A that there is a remarkable core node,

SAMHD1 that is independently related to three different proteins and may represent a path-

way regulator. It shows a non-directed graph with the functional interactions in the set as pre-

dicted by STRING. Each node represents a protein, Edges represent functional interaction

between the proteins, so an edge between protein X and Y means that there is a predicted

interaction between these proteins. This could represent a protein regulated by another, a

genetic interaction, a physical interaction, the participation in the same biological process or

the common regulation of both proteins by a third (known or unknown) one, among others.

Fig 3. Heat map analysis of the detected proteins in stage 2 and 3 of the tumor and normal breast tissues. Heatmap of significantly different

proteins between tumor and normal breast tissues. Samples on x-axis were ordered by tumor or normal group. The color code denotes z-scaled

values of proteins signal intensities.

https://doi.org/10.1371/journal.pone.0227404.g003
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Nevertheless, these proteins are not present in a shared pathway. The other subnetwork

among these proteins contains MOB1A and MOB1B, both of which represent the MOB1 pro-

tein, an important regulator of the Hippo signaling pathway that can be affected deeply by the

presence of these proteins (Fig 8B).

This figure shows a snapshot of a part of the Hippo regulatory pathway. The proteins from

the list that participate in the process (MOB1A and B) are encircled, representing their role in

Hippo pathway. Their phosphorylation (MOB1 to p-MOB1) is crucial for the final activation

of the pathway. The biological network with linker nodes displays important cellular pathways

like Hippo, Insulin Receptor, and Rho-GTPase signaling, as well as the trans-Golgi network

(Fig 9). Two key proteins in cell physiology—CDC42 and EGFR—seem to be central to these

pathways, suggesting their relevance for tumor progression to stage 3.

Thus, its relation to detected proteins in stage 3 breast cancer is remarkable. The functions

of proteins detected in stage 3 are illustrated in Table 5. Interestingly, a subset of these proteins

is related to metastasis, which supports the previous pathway results. The complete list of GO

and other pathway terms enriched in the set among stage 3 breast cancer samples (S5 Table).

Discussion

In this work, we compared the proteomics profiling on samples of both breast cancer and adja-

cent normal tissues using advanced techniques using LTQ-Orbitrap, the GELFREE fraction

system, and bioinformatics PEAKS software. Clinical proteomics remains the tool of choice

for biochemical studies of cancer since it measures gene end products (proteins) to identify

biomarkers in breast tissues. Therefore, identification of protein biomarkers may be employed

in the diagnosis and/or treatment of breast cancer as useful biomarkers of biological function.

Breast cancer is known as the most common type of cancers leading cause of death in women.

Here, while this study founded an up-regulation in the expression of prolyl 3-hydroxylase 1 in

stage 2 of breast cancer tissue compared with normal tissue, [64] reported the down-regulation

Fig 4. DAVID analysis for stage 2 breast cancer samples.

https://doi.org/10.1371/journal.pone.0227404.g004
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of this protein. This protein is required for normal bone formation, and a deficiency in this

protein causes a similar effect as the bone disorder, osteogenesis imperfecta [39].

Another probable mediator of the osteogenesis imperfect pathway is Peptidyl-prolyl cis-

trans isomerase FKBP10 [40]. Our result showed FKBP10 was up-regulated in stage 2 breast

cancer tissue, aligning with the finding of Ge et al. [65] that FKBP10 is overexpressed in renal

cell carcinoma. In addition, it is suggested that FKBP10 could be a new promising therapeutic

target for the treatment of renal cell carcinoma. These results imply that FKBP10 could be a

promising biomarker and therapeutic option for breast cancer.

A related protein, FKBP9, also was up-regulated in stage 2 breast cancer tissue. This entire

family of isomerases are named for their ability to bind immunosuppressive drugs and are

responsible for the catalysis of the cis-trans conversion of peptidyl-prolyl bonds [66]. Previous

studies have identified 16 human FKBP proteins ranging from 12 to 135 kDa, and have sug-

gested that this specific immunophilin plays a critical role in tumorigenesis [65]. CAP-Gly

domain-containing linker protein 1 was up-regulated in stage 2 breast cancer tissues and is

known to be involved in proliferation [41].

Fig 5. (A) Functional network of proteins in stage 2 breast cancer samples, (confidence level = 0.150). (B) Molecular

pathway of proteins as predicted by STRING. Schematic representation of potential protein-protein interactions. This

is predicted directly by DAVID, each ellipse represents a protein, and the representation suggests the interaction

pathway. In this case, MOB1A interacts independently with FKBP9 and FKBP10.

https://doi.org/10.1371/journal.pone.0227404.g005
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Another novel finding of this study is the significant up-regulation of zinc finger CCCH

domain-containing protein 18 in the tumor tissue sample compared with the normal tissue

sample. This protein belongs to a protein family designated as MCPIP1, 2, 3, and 4 (encoded

by the genes Zc3h12a–d). Although a distinctive feature of this protein family is the single

CCCH-type zinc finger, we do not yet understand the actual function of these proteins as a

whole [67], but protein 18 in the family is involved in proliferation [43].

Fig 6. The biological network obtained using linker nodes for stage 2 breast cancer samples. Schematic

representation of the molecular pathways in which the proteins of the set participate. Green ellipses represent proteins,

while blue ellipses represent proteins that link all the input proteins. Overlapping proteins suggest physical

interactions, while arrows indicate direct regulation. In dashed rectangles the different biological pathways that

Reactome-FI detects as overrepresented in the full. The nucleus is represented as a wide orange ellipse because several

pathways end with the effect on gene expression.

https://doi.org/10.1371/journal.pone.0227404.g006

Table 4. List of protein functions identified in stage 2 breast cancer samples.

No. Protein Function Reference

1 Prolyl 3-hydroxylase 1 Osteogenesis imperfecta [39]

2 Peptidyl-prolyl cis-trans isomerase FKBP10 Osteogenesis imperfecta [40]

3 CAP-Gly domain-containing linker protein 1 proliferation [41]

4 Peptidyl-prolyl cis-trans isomerase FKBP9 Stress [42]

5 Zinc finger CCCH domain-containing protein 18 Proliferation [43]

6 Immunoglobulin superfamily containing leucine-rich repeat protein Differentiation [44]

7 MOB kinase activator 1A proliferation [45]

8 Protein enabled homolog Tumor invasion [46]

9 Collagen alpha-1 (V) chain Pro-metastatic [47]

10 Protein canopy homolog 4 Pro-metastatic [47]

11 Perilipin-4 (PLIN4) Adipogenesis [48]

12 Transmembrane emp24 domain-containing protein 10 Pro-metastatic [49]

https://doi.org/10.1371/journal.pone.0227404.t004
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Fig 7. DAVID analysis on stage 3 breast cancer samples.

https://doi.org/10.1371/journal.pone.0227404.g007

Fig 8. (A) Functional network of proteins in stage 3 breast cancer samples. (B) Molecular pathway of the proteins in stage 3 breast

cancer samples, as predicted by STRING.

https://doi.org/10.1371/journal.pone.0227404.g008
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Fig 9. The biological network obtained using linker nodes for stage 3 breast cancer samples. Schematic

representation of the molecular pathways in which the proteins of the set participate. Green ellipses represent proteins

in the set, while blue ellipses represent ‘connector’ proteins that link all the input proteins. Overlapping proteins

suggest physical interactions, while arrows indicate direct regulation. In dashed rectangles the different biological

pathways that Reactome-FI detects as overrepresented in the full list (input proteins + connectors).

https://doi.org/10.1371/journal.pone.0227404.g009

Table 5. List of proteins functions identified in stage 3 breast cancer samples.

No. Protein Name Function Reference

1 Golgi resident protein GCP60 Stress [50]

2 Eukaryotic peptide chain release factor subunit 1 Proliferation [51]

3 Nucleoside diphosphate kinase 3 DNA repair [52]

4 Deoxynucleosidetriphosphate triphosphohydrolase SAMHD1 Tumor suppression [53]

5 Protein SEC13 homolog Inflammation [54]

6 Protein enabled homolog Tumor invasion [55]

7 Rho GTPase-activating protein 1 Anti-proliferation [56]

8 LEM domain-containing protein 2 Differentiation [57]

9 TAR DNA-binding protein 43 (Fragment) Glycolysis [58]

10 V-type proton ATPase subunit E 1 Metastasis [59]

11 Prefoldin subunit 1 Pro-metastasis [55]

12 Coiled-coil domain-containing protein 58 (Fragment) Resistance to infection [60]

13 Inhibitor of nuclear factor kappa-B kinase-interacting protein Stress [61]

14 DNA-dependent protein kinase catalytic subunit Proliferation [62]

15 Transmembrane glycoprotein NMB Proliferation [63]

16 MOB kinase activator 1A Proliferation [45]

17 MOB kinase activator 1B Proliferation [45]

https://doi.org/10.1371/journal.pone.0227404.t005
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Receptor tyrosine kinases can be inhibited by various tumor suppressors, most notably leu-

cine-rich repeats and immunoglobulin-like domains 1 (LRIG1). It still not well understood

how LRIG1 actually suppresses the activity of receptor tyrosine kinases on a molecular level

[68]. The immunoglobulin superfamily contains leucine-rich repeats that are highly concen-

trated in stage 2 breast cancer samples. The function seems to be important for differentiation,

protein-protein interactions, and cell adhesion, so it has been speculated that this class of pro-

teins may interact with other proteins or cells [44].

In this study, MOB kinase activator 1A (MOB1A) was detected in stage 2, while both

MOB1A and MOB1B were detected in stage 3 breast cancer samples. These findings are simi-

lar to what has been reported by Shen et al. [69], which revealed that MOB1A was up-regulated

in breast cancer tissue. Furthermore, Shen et al. [69] explained that the roles of MOB kinase

activator 1A include activation of LATS1/2 in the Hippo signaling pathway, restriction of pro-

liferation, and promotion of apoptosis. Interestingly, other studies have shown that MOB1A

can restrict the growth of cancer by activating the tumor-suppressing Hippo signaling path-

way; this actually induced apoptosis in several cancer cell lines [70]. Nishio et al. [71] have

established that the functions of MOB1A and MOB1B in skin homeostasis clearly overlap.

They also explained that these two proteins can function as tumor suppressors specifically

when they are downstream in the Hippo pathway.

Recent studies show overexpression of protein enabled homolog (ENAH) in several cancer

types, and it has been shown to correlates with tumor invasiveness [72]. This study detected

ENAH in both stages 2 and 3 and found evidence that it is important in cellular signaling. It

is involved in carcinogenesis because certain invasive behaviors of breast cancer cells depend

on the enzyme PI3K, induced by platelet-derived growth factor [73]. With this invasive trait,

breast cancer cells can migrate and even gain metastatic potential [74].

Collagen type V performs a regulatory function and is also known to be up-regulated

in multiple types of malignant tumors [75]. For example, it is expressed in the stroma of pan-

creatic ductal adenocarcinoma, where it is known to affect cell-cell adhesion, migration, and

viability [47]. These functions do not seem to be impacted significantly even by chemothera-

peutic drugs. Other studies have concurred, noting that collagen type V is up-regulated in

breast cancer and colon cancer [76, 77]. Collagen type V is usually found in the extracellular

matrix, where it influences tissue development, but it has also been discovered in association

with cancers [78]. When breast cancer tissue becomes inflamed, collagen V is produced by adi-

pocytes and macrophages. It increases resistance to chemotherapy and may therefore be a use-

ful biomarker for cancer diagnosis. This study detected collagen type V in stage 2 breast cancer

tissue. This finding bolsters evidence for this molecule’s role in tumor progression and alludes

to the potential usefulness of collagen VI as a prognostic factor in the treatment of breast can-

cer [79].

In a novel departure from other studies, we found an up-regulation in the expressions of

both canopy homolog 4 and perilipin (PLIN4) in stage 2 breast cancer tissues. Satish et al. [48]

reported that PLIN4 is overexpressed in cancer and is a known marker for differentiated adi-

pocytes since PLIN4 is involved in adipogenesis. Transmembrane emp24 domain-containing

protein 10 (TMED10) was detected in stage 2 breast cancer tissues, concurring with Dong

et al. [80]. They used a similar proteomics approach and reported TMED10 among the 13

unique proteins in oral squamous cell carcinoma. Golgi resident protein GCP60 (GOCAP1)

was detected in the protein profile of stage 3 breast cancer samples. Fan et al. [81] reported

that GOCAP1 protein can interact with golgin-160 fragments to regulate cell apoptosis.

We also detected Nucleoside diphosphate kinase 3(NDKA) in stage 3 breast cancer sample,

aligning with the finding of Otero-Estévez and collaborators that a decrease in NDKA protein

and mRNA has been associated with an increase in metastatic potential and poor prognosis in
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breast cancer. According to Yokdang et al. [82], a high level of NDKA may constitute both a

biomarker and a therapeutic target in the management of breast cancer.

The current study detected Rho GTPase-activating protein 1 in stage 3 breast cancer tissues,

in agreement with Wang et al. [72] and Burbelo et al. [83]. The Rho GTPase-activating protein

1 regulates both cytokinesis and cell differentiation. Wang et al. [72] revealed that previous

studies had not fully considered the oncogenic role of Rho GTPase-activating protein 1 in gas-

tric cancer, colorectal cancer, and breast cancer. Furthermore, previous studies have shown

that both the growth and metastasis of breast cancer cells are affected by Rho GTPase signaling

pathways. Rho GTPase protein levels, activation states, and effector protein abundances

undergo alterations in breast cancer, and in some patients, these alterations ultimately pro-

mote cell growth, invasion, and metastasis [83].

This study detected LEM domain-containing protein 2 in stage 3 breast cancer tissues. This

finding is consistent with Sasahira et al. [84], however, they evaluated LEM domain-containing

protein 2 in the context of oral squamous cell carcinoma tumorigenesis and found that it may

be important molecular marker of that cancer [84].

TAR DNA-binding protein 43 (TDP43) was detected in stage 3 breast cancer samples. This

was a somewhat novel finding because previous studies have been less conclusive on the up-

regulation, or lack thereof, of TDP43 in malignant tumors. For example, it has been found to

be up-regulated in melanoma [85] and hepatocellular carcinoma [58]. Surprisingly, one study

found that the presence of TDP43 actually indicated a good prognosis in neuroblastoma and

breast cancer [86]. Another study found that in breast cancer specifically, a knockdown of

TDP43 slowed tumor progression by interfering with cellular proliferation and metastatic

potential, while overexpression promoted the proliferation of mammary epithelial cells [87].

The latter finding aligns with the results of the present study.

This study detected V-type proton ATPase subunit E 1 protein in stage 3 breast cancer tis-

sues. This protein has a well-established role in metastasis [59]. Coiled-coil domain-containing

protein 58 was detected in stage 3 breast cancer tissues. Gong et al. [88] found a direct link

between the elevated expression of the coiled-coil domain family of proteins and the outcomes

of tumor cell migration, invasion, and metastasis. Remarkably, this link was demonstrated in

many cancers including those of the nasopharynx, stomach, prostate, pancreas, breast, and

colon. The MTOR signaling pathway is very relevant in breast cancer [89] due to its control of

cell growth and metabolic state. Robo is another pathway directly implicated in breast cancer

[90].

Stage 3 breast cancer samples contained the inhibitor of nuclear factor kappa-B (NF-kB)

kinase-interacting protein (AKIP1). This protein has been identified in breast cancer tissues

previously by Kitching, Li [91], and the particular expression level of AKIP1 seems to affect

the NF-kB cascade by regulating the mode of PKA signaling. In addition, these results lend

credence to the mediating role of AKIP1 in cancer progression [92].

DNA-dependent protein kinase catalytic subunit (DNA-PK) was detected in stage 3 breast

cancer tissues. The down-regulation of DNA-PK seems to confer an increased risk of certain

cancers [93], so prior studies have suggested that DNA-PK may suppress carcinogenesis [94].

Lee et al. [94] demonstrated the link between suppressed DNA-PKcs expression and the for-

mation of stage 1 gastric cancer in humans.

Prefoldin (PFDN) subunit 1 was detected in stage 3 breast cancer tissue, in agreement

with [46]. Previous studies have illustrated that PFDN is a co-chaperone protein that is

widely accepted to have important roles in the folding of actin and tubulin monomers dur-

ing cytoskeletal assembly. Wang et al. [46], revealed that for lung cancer specifically, the

transforming growth factor/PFDN subunit 1/cyclin A axis is important for induction and

metastasis.
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Transmembrane glycoprotein NMB (GPNMB) was detected in stage 3 breast cancer tissues.

This finding supports Tajima et al. [95], Maric et al. [96], and Rose et al. [97], among other

studies with similar findings in malignancies including melanoma, glioma, breast cancer, and

gastric cancer. On a physiological level, GPNMB improves cell invasion and motility, enabling

metastasis. It is therefore logical that, according to Tajima et al. [95], a high level of GPNMB

expression indicates a worse prognosis. This means that GPNMB should be recognized as an

important candidate for targeted therapy of malignancies [96]. Rose et al. [97] showed that the

expression of GPNMB is considerably elevated in the aggressive bone-metastatic subpopula-

tions of 4T1 breast cancer cells. It is worth noting that the current study suggests that the up-

regulation of GPNMB is associated with a less favorable prognosis, so GPNMB could be used

as a prognostic marker for epithelial ovarian cancer (EOC) patients.

Efficient protein folding and degradation are critical processes in cancer cells, so it is unsur-

prisingly that several tumors have been observed to over-express protein chaperones [98]. In

the case of breast cancer, BiP is an overexpressed chaperone that has become the main target

for new drugs [98]. These results are consistent with other enriched gene ontology terms (GO)

that are to ER secretion and are similarly related to precise protein folding and degradation.

Interestingly, the control of protein acetylation by ACC1 was found recently to be linked to

breast cancer progression [99]. Our result strongly supported these preliminary findings by

confirming that these proteins appeared in stage 3 breast cancer tissue. In addition, these pro-

teins are known to be concentrated in the platelets, and platelet counts have also been linked

to breast cancer prognosis [100], showing again that the data obtained in Stage 3 is directly

related to progression or invasiveness of the malignancy. Rho GTPases like CDC42 are crucial

effectors in cancer proliferation, as reviewed in Tang et al. [101]. EGFR is one of the main mol-

ecules altered in cancer [102], and a specific antibody-based drug, Gefitinib, has been approved

for its use in breast cancer [103].

Gelsolin, Protein Daple, Heat shock protein HSP 90-beta, Alpha-1-antitrypsin, and Cathep-

sin D constitute serum biomarker signature for diagnosing early grade breast cancer. The

panel of proteins also provides crucial information for a better understanding of molecular

mechanisms underlying the inceptive stage of breast cancer [104]. Recently, Gomig et al. [105]

showed a high similarity in the proteomic profile between contralateral and adjacent non-

tumor breast tissues. Differences between the proteome of the malignant and non-tumor tissue

groups of the same patients were identified, providing crucial insights into signaling pathways

of the biological functions including the comprehensive protein networks of breast cancer

progression. These proteins can be considered as potential therapeutic targets against tumor

development and metastatic progression in breast cancer disease. In addition, Fang et al. [106]

have also shown that the levels of exosomal HER2 expression were similar to those detected in

tumor tissues. The microfluidic chip could constitute a new platform for breast cancer diagno-

sis and molecular classification.

In this study, we have analyzed the pathways with potential involvement in the proteomic

alterations that were evident in our breast cancer samples. Molecular experiments should be

conducted to check the computational predictions, but our preliminary results still are inter-

esting to discuss. Stage 2 and stage 3 proteins contained significant exosome components, sug-

gesting the relevance of these extracellular vesicles in breast cancer tissue. Future studies can

clarify the functional overlap between these sets. Is there a common upstream pathway that

controls the different sets of molecules, or are there independent mechanisms converging on

exosomes?

Finally, the network structure suggests an important role for proteins, like PGK1, that

are central pathway nodes (“hubs”) in which signaling may converge. Given its relevance in

several types of metastatic cancer [34, 107], PGK1 was confirmed as a potential target by our
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proteomic experiments. Integrin signaling and focal adhesions are important cellular mecha-

nisms that are prevalent in our biological networks with linker nodes. Furthermore, the Hippo

signaling pathway clearly performs important mechanisms in cancer [108], though the nature

of these mechanisms are not yet clear. Finally, some transcription factors (present mainly in

protein lists) have such high relevance that they may regulate the gene expression of several of

the proteins at the same time, indicating an upstream mechanism controlling the pathway.

Conclusion

In this study, we have successfully identified protein profiles of breast cancer tissue in stages 2

and 3 breast cancer patients, with a high percentage of coverage, using high-resolution and

high mass accuracy MS analysis. Some proteins were common in both stages and some were

unique to either stage. Beyond protein identification, this study proposed interactions, func-

tions, networks, protein signaling, and protein pathways for each profiled protein, in stage 2

and stage 3. This study is foundational for establishing a baseline understanding of these paths,

which now can be clarified with further differential proteomics profiling of breast cancer and

other cancer for carcinogenesis, and biomarker discovery for breast cancer.

Taken together, these results suggest that alterations in protein expression in breast cancer

offer clues that can help researchers develop novel proteins, design strategies for screening and

prevention, and target therapy more effectively. The insights that this study has contributed

toward proteomics identification will advances efforts, across many types of cancers, to estab-

lish differential protein profiles in carcinogenesis. We hope that the results of this study will

be validated for early breast cancer diagnoses and therapeutic targeting in the future. Future

research should attempt to verify the presence and roles of these proteins and validate them as

early biomarkers that may be useful in breast cancer diagnosis. Data of the present study pro-

vides an improved understanding of the signalling pathways that are implicated in breast can-

cer. Furthermore, we found sufficient involvement of the Hippo signaling pathway that we

recommend additional analysis of its mechanism in carcinogenesis. Therefore, it can be con-

cluded that the dysregulated proteins or the dysregulated pathways can be exploited as bio-

markers or targets, respectively, to invent novel and effective therapeutic systems.
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