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Abstract 
Background.   Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dis-
semination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recur-
rence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, 
ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy 
resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their 
role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 
in medulloblastoma LMD.
Methods.   ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 
and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA 
sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed.
Results.   ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kin-
ases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the 
extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model 
of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition 
of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling 
pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed be-
tween ABL1/2 knockdown and control medulloblastoma cells.
Conclusions.   ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.

ABL1 and ABL2 promote medulloblastoma 
leptomeningeal dissemination  
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Key Points

•	 ABL1 and ABL2 are highly expressed in all subgroups of medulloblastoma.

•	 Pharmacological and genetic knockdown of ABL1/2 results in decreased c-MYC 
expression.

•	 ABL1/2 genetic knockdown decreased leptomeningeal dissemination and 
increased survival in mice.

Brain cancer has now replaced leukemia as both the 
most common pediatric cancer and the leading cause 
of pediatric cancer-related deaths in the United States.1 
Medulloblastoma is the most common pediatric brain 
cancer and is characterized by 4 distinct molecular sub-
groups: WNT, SHH, group 3, and group 4.2 In certain sub-
groups such as group 3 and group 4, up to 40% of patients 
have leptomeningeal dissemination (LMD) at diagnosis. 
The presence of LMD at diagnosis is an independent risk 
factor for poor overall survival (OS).2 The drivers of LMD 
are poorly understood, and the lack of actionable targets is 
a major barrier to the development of effective therapies in 
treating this disease.

The Abelson (ABL) family of tyrosine kinases, including 
ABL1 and ABL2, are novel targets of interest in uncovering 
the biology of medulloblastoma LMD. In 1982, ABL1 was 
recognized as a key player in the oncogenic fusion protein, 
BCR-ABL1, which drives most cases of chronic myeloid leu-
kemia (CML).3 The broader family of ABL tyrosine kinases 
has since been implicated in a variety of cellular processes 
relevant to cancer (eg, proliferation, motility, adhesion, 
and polarity).3,4 The ABL kinase inhibitor imatinib (Gleevec) 
revolutionized treatment in CML, and newer generations of 
ABL kinase inhibitors have displayed activity against other 
forms of leukemia and solid tumors.5,6

To the best of our knowledge, the role of ABL tyrosine 
kinases in medulloblastoma and/or LMD prior to this study 
was unknown, outside of a few studies observing ABL1 ex-
pression in medulloblastoma.7,8 Through this work, we re-
port that ABL1 and ABL2 mRNA are highly expressed in 
medulloblastoma, that pharmacologic inhibition of ABL 
kinases decreases medulloblastoma cell viability, that 
ABL kinases help regulate protein expression of the onco-
genic transcription factor c-MYC, that ABL1/2 contribute 

to leptomeningeal tumor burden and survival in a mouse 
model of medulloblastoma and adhesion to the extracel-
lular matrix protein, vitronectin, and that expression of 
genes related to neurodevelopment and oncogenesis dif-
fers significantly between ABL1/2-depleted and control 
cells. Additionally, we describe RNA sequencing analysis 
of ABL1/2-genetically depleted cells demonstrating en-
richment in the epithelial-mesenchymal transition (EMT) 
pathway, further reinforcing the importance of ABL1 and 
ABL2 in the oncogenesis of medulloblastoma. Together, 
these data provide insight into the roles of ABL1 and ABL2 
as putative drivers of medulloblastoma LMD.

Materials and Methods

mRNA Analysis of Patient Specimens

mRNA expression of ABL1 and ABL2 was analyzed using 
publicly available datasets9 as previously described.10,11

Cell Culture

The human medulloblastoma cell lines D458 and D556 
were obtained from the laboratory of Dr. Darell Bigner at 
the Preston Robert Tisch Brain Tumor Center (Durham, NC), 
and D283 was purchased from the American Type Culture 
Collection (Manassas, VA). All of these cell lines have am-
plification of MYC.12 D283 was derived from peritoneal me-
tastases from a ventriculoperitoneal shunt and contains 
an extra copy of chromosome 11.13 D556 has a 1q gain and 
isochromosome 17q.14 All are P53 wild type.15 Together, all 
likely cluster within Group 3.10

Importance of the Study

We show for the first time that ABL1 and ABL2 
mRNA expression is associated with medulloblastoma 
dissemination and poor overall survival. We found 
that pharmacologic inhibition of ABL1 and ABL2 de-
creased medulloblastoma viability as well as expres-
sion of c-MYC in a time- and dose-dependent manner. 
Genetic knockdown of ABL1/2 resulted in decreased 
c-MYC expression, decreased adhesion to the extra-
cellular matrix protein vitronectin, and decreased tumor 
burden (resulting in increased survival) in a rodent 

model of medulloblastoma leptomeningeal dissemi-
nation. Furthermore, mRNA sequencing of ABL1/2 
knockdown medulloblastoma cells showed enrichment 
in the hallmark pathway EPITHELIAL_MESENCHYMAL_
TRANSITION, further evidence of the importance of 
ABL1 and ABL2 as putative drivers of medulloblastoma 
dissemination. ABL1 and ABL2 are putative thera-
peutic targets for the prevention and treatment of 
medulloblastoma dissemination.
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Assessment of Cell Viability/Proliferation

Cells were plated in 96-well plates at a seeding density of 
25 000 cells/well and incubated for 24 h at 37°C. ABL ki-
nase inhibitors or cisplatin were added at various concen-
trations to all wells and incubated for 18 hours. Dosing and 
treatment duration was selected from previous publica-
tions of asciminib, GNF5, and nilotinib in solid tumors.16,17 
CellTiter-Glo assays were performed according to the 
manufacturer’s protocol (Promega) and in at least dupli-
cate. All final concentrations of DMSO (the solvent for all 
ABL kinase inhibitors) were < 0.5%.

Western Blotting

Cells were seeded in 6-well plates at a density of 1.0 × 106 
cells/well in 4 mL appropriate culture medium approxi-
mately 24 hours prior to treatment and protein harvest. 
Drugs were added at the proper concentration either di-
rectly or by resuspension in a small amount of fresh culture 
medium (~200 μL) to appropriate wells. After 1, 6, 24, or 48 
hours, cell pellets were harvested and resuspended in 1 mL 
ice-cold PBS (pretreated with 1X sodium orthovanadate at 
1 mM). Cells were lysed in Cell Lysis Buffer (Cell Signaling 
Technology) with protease/phosphatase inhibitor cocktail, 
with 1X PMSF (1 mM), and frozen down overnight at −80° 
C. Cell debris were then removed by microcentrifugation, 
and protein supernatant was extracted and resuspended in 
a 3:4 ratio with NuPAGE LDS Sample Buffer.

Protein assays were performed using either the EZQ 
Protein Quantitation Kit (Invitrogen) or reagents for the 
Bradford protein assay. Alternatively, a REVERT Total 
Protein Stain was used to normalize loading volumes. 
Equal amounts of protein were loaded into NuPAGE gels 
and separated by SDS-PAGE electrophoresis, transferred 
onto nitrocellulose membranes and blocked in SuperBlock 
Blocking Buffer (Thermo Fisher), and probed with pri-
mary antibodies. Antibodies included c-ABL (ABL1) (BD 
Pharmingen #554148), ABL2 (Abcam #134134), c-MYC 
(Cell Signaling #5605), and GAPDH (Cell Signaling #2118). 
Membranes were then probed with the appropriate sec-
ondary antibody, saturated with SuperSignal West Femto 
Maximum Sensitivity Substrate (Thermo Fisher), and 
imaged on an Odyssey Fc imaging machine (LI-COR 
Biosciences). Membranes were washed with ~5 mL TBST 
3× for at least 10 min between all steps. Blot images were 
analyzed in Image Studio Lite software. Western blots were 
performed in at least duplicate.

Vitronectin Cell Binding Assay

A total of 15 000 cells in 100 uL were pipetted into each 
well of a Greiner CELLSTAR 96-well plate (655180). The 
plate was coated beforehand at a concentration of 0.5 µg/
cm2 using an appropriate dilution of vitronectin solution 
(Advanced Biomatrix #5051) in PBS that was left to set at 
room temperature for 1 hour before being rinsed off with 
distilled water. The cells were kept overnight on a rocker 
at room temperature until they were fixed and stained 
with the Richard-Allan Scientific Differential Quik Stain 
kit after 24 hours according to the kit’s protocol. FiJi (NIH) 

was used to count cells. Experiments were performed in 
quadruplicate.

In Vivo Experiments

Animal studies were approved by and in accordance 
with standards set by the Duke University Institutional 
Animal Care and Use Committee. Nude female mice were 
obtained from the Duke University Division of Laboratory 
Animal Resources. Mice were anesthetized by isoflurane 
(2.5% flow rate). Using the lambda point as a reference 
point (x = 0.2, z = 1.0), a burr hole was created by microdrill. 
The injecting needle (30 Gy) was inserted through the burr 
hole to a depth of y = 3.0. A 5 μL suspension of 200 000 
D283 AAn tdTomato or D283 SCn tdTomato tumor cells 
in 6% methylcellulose was infused at 2.5 μL/min. The cra-
nial opening was sealed by bone wax, and the wound was 
closed by surgical glue.

Formalin-fixed paraffin-embedded slides were used for 
immunohistochemistry (IHC) using the DISCOVERY ULTRA 
automated staining platform. The tissue sections were 
pretreated (epitope retrieval) with Roche cell conditioning 
solution CC1 (Roche catalog #: 950-124) for 56 minutes, 
incubated with rabbit monoclonal Ki67 (Abcam catalog 
#: ab16667), and diluted 1:200 with Discovery Ab Diluent 
(catalog #: 760-108) for 60 minutes at 36°C. ABL1 anti-
body (Abcam catalog # 15130) diluted 1:1,600 and ABL2 
(ThermoFisher catalog # 17693) diluted 1:200 were also 
used. Rabbit IgG, substituted for the primary antibody, was 
used as the negative control. After binding of the primary 
antibody, Roche anti-rabbit HQ (catalog #: 760-4815) was 
applied and incubated for 12 minutes, followed by 12 min-
utes of incubation with anti-HQ HRP (catalog #: 760-4820) 
for antigen detection. The IHC reaction was visualized with 
DAB chromogen and counterstained with hematoxylin.

Photos of each specimen were taken in triplicate. 
QuPath18 was used to automate cell counting and calculate 
percentile positive cells in a given region of interest.

Generating shRNA Knockdowns of ABL1/2

To generate double knockdowns of ABL1/2, we used 
methods as previously described.19 shRNA sequences 
targeting ABL1 were (GGTGTATGAGCTGCTAGAGAA), 
targeting ABL2 were (CCTTATCTCACCCACTCTGAA), and 
for scrambled shRNA were (GGTGTATGGGCTACTATAGAA); 
all were lentivirally packaged. Briefly, D283 cells were 
plated and transfected with packaging and corresponding 
DNAs using FuGENE6 reagent (Promega). Virus-containing 
culture supernatants were harvested and filtered 24 and 
48 hours following transfection and added to cell cultures 
in the presence of polybrene. Cells were then selected by 
FACS using their GFP reporter. These cells were then trans-
duced with a luciferase-Tomato reporter for biolumines-
cence studies.

RNA Sequencing and Analysis

The Sequencing and Genomic Technologies Core Facility 
at Duke University performed RNA sequencing. The 
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Sequencing and Genomic Technologies Core Facility ex-
tracted total RNA from cell pellets using the RNeasy Plus 
Mini Kit from Qiagen (catalog #: 74134). mRNA was en-
riched from total RNA and reverse-transcribed into cDNA 
to build sequencing libraries using the KAPA mRNA 
HyperPrep Kit from Roche (KK8581). Libraries were 
pooled to equimolar concentrations and sequenced on the 
NovaSeq 6000 S2 flow cell to produce 50 bp paired-end 
reads. Triplicates were run of both 283 AAn and 283 SCn, 
each in 2 lanes.

Sample fastq file quality metrics were assessed via 
FastQC v0.11.9 and MultiQC v1.11. Paired-end reads were 
aligned to the GRCh38.p14 human reference genome 
via STAR v2.7.2b with default parameter settings. Post-
alignment quality metrics were assessed via the log file 
output of STAR. Quantification and generation of the 
raw counts' matrix were performed by featureCounts 
v1.6.3. The raw counts' matrix was then normalized, and 

differential expression was calculated via DESeq2 R 
package v1.36.0. Differential expression calculation was 
performed within RStudio 2022.07.0 Build 548 running R 
version 4.2.1. Gene set enrichment analysis (GSEA) was 
performed with the fgsea R package v1.23.4. Three samples 
of D283 AAn and D283 SCn were analyzed, and the mean 
was used for differential expression and GSEA.

The volcano plot featured in Figure 5A was made 
using VolcaNoseR (https://huygens.science.uva.nl/
VolcaNoseR/),20 the GSEA figure was created using 
GSEA v4.3.2 (Broad), and the heatmap was created using 
Morpheus (https://software.broadinstitute.org/morpheus/).

Statistical Analysis

GraphPad Prism v6.05 (La Jolla, California) was used for 
all statistical analyses. P values ≤ .05 were considered 

11

10

9

2l
o

g
 o

f 
A

B
L

1

8

7

12

11

11

10

9

8

7

6

10

9

2l
o

g
 o

f 
A

B
L

1

2l
o

g
 o

f 
A

B
L

2

8

7

11

10

9

2l
o

g
 o

f 
A

B
L

2

8

7

W
NTα

Gro
up 3α

Gro
up 3β

Gro
up 3γ

Gro
up 4α

Gro
up 4β

Gro
up 4γ

W
NTβ

SHHα
SHHγ

SHHδ
SHHβ

W
NT M

0

Gro
up 3 

M0

Gro
up 3 

M+

Gro
up 4 

M0

Gro
up 4 

M+

W
NT M

+

SHH M
0

SHH M
+

W
NT M

0

Gro
up 3 

M0

Gro
up 3 

M+

Gro
up 4 

M0

Gro
up 4 

M+

W
NT M

+

SHH M
0

SHH M
+

W
NTα

Gro
up 3α

Gro
up 3β

Gro
up 3γ

Gro
up 4α

Gro
up 4β

Gro
up 4γ

W
NTβ

SHHα
SHHγ

SHHδ
SHHβ

Medulloblastoma Subtype Medulloblastoma Subtype

P = 0.0006

A

B

Figure 1.  ABL1/2 mRNA is expressed in medulloblastoma. (A) Box plot (mean and SD) of ABL1 and ABL2 mRNA expression by medulloblastoma 
subtype. (B) Box plot of ABL1 and ABL2 mRNA expression by medulloblastoma subgroup and metastatic status demonstrating generally in-
creased mean ABL1 and ABL2 expression in M + patients (with metastasis), with significant elevation in group 4 expression of ABL1.
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statistically significant. The Benjamini and Hochberg 
method was used to correct for multiple testing for the dif-
ferential expression and GSEA analyses and to generate 
an adjusted statistically significant cutoff of P ≤ .05. The 
Wilcoxon test was used to compare animal survival.

For analysis of the data in Figure 1, M0 versus M + com-
parisons were performed using a non-paired student’s 
t-test. For analysis of the data presented in Supplementary 
Figure 1, the Kaplan–Meier estimator was used as previ-
ously described.11 The R packages “survival” (v3.2-10) and 
“survminer” (v0.4.9) were used, and the log-rank (Mantel-
Cox) test was employed to compare subgroup survival. For 
analysis of the data presented in Figure 4, the mean values 
of each specimen were used in a non-paired student’s t-test 
of D283 AAn versus D283 SCn groups.

Results

Relationship Between ABL Kinase Expression 
and Presence of Metastasis or Survival Outcomes 
in Medulloblastoma

In a cohort of 763 patients with medulloblastoma,9 ABL1 
and ABL2 mRNA expression levels were highest in group 

3 and group 4 subtypes (Figure 1A). In particular, high 
levels of ABL1 corresponded to the subtypes with highest 
percentage of metastases at diagnosis including group 
3α, group 3γ, group 4α, group 4β, and group 4γ.9 Patients 
with metastatic disease at diagnosis (M+) generally had 
higher mRNA expression of ABL1 and ABL2 in their tu-
mors compared to patients without metastatic disease 
at diagnosis (M0), with ABL1 expression reaching signif-
icance for group 4 patients (Figure 1B). Dividing the co-
hort into high and low ABL1/2 expression groups, tumors 
with high ABL1 expression showed a nonsignificant trend 
for worse overall survival (OS) in the SHH molecular sub-
group (Supplementary Figure 1A), whereas tumors with 
high ABL2 expression showed a nonsignificant trend for 
worse overall survival in the SHH and group 3 molecular 
subgroups (Supplementary Figure1B).

Inhibition of ABL Kinases Results in 
Medulloblastoma Cytotoxicity and Decreases 
c-MYC Expression

Next, we assessed the in vitro effects of treatment with 
the allosteric, specific ABL kinase asciminib (ABL001) as 
well as the multi-tyrosine kinase inhibitor nilotinib,21 and 
cisplatin, a genotoxic chemotherapy agent that is part of 
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the backbone of standard of care adjuvant therapy for 
medulloblastoma. Two patient-derived medulloblastoma 
cell lines (D283 and D556) were explored. Using a standard 
viability assay (CellTiter-Glo, Promega), we found that ABL 
kinase inhibitors overall decreased cell viability more po-
tently than cisplatin at micromolar concentrations over the 
course of 18 hours (Figure 2A) and that the combination of 
asciminib plus nilotinib was more potent than either agent 
alone. Interestingly, asciminib and nilotinib have been 
shown to co-bind single molecules of the BCR-ABL1 fusion 
protein, and asciminib plus nilotinib cotreatment has been 
shown to inhibit CML colony growth in vitro, suppress 
emergence of resistance point mutations in vitro, and de-
crease CML xenograft tumor growth in vivo more mark-
edly than either agent alone.22,23

We next sought to investigate potential mechan-
isms behind the role of ABL kinases in medulloblastoma 
progression. c-MYC is an oncogene that promotes 
medulloblastoma cell proliferation, and elevated c-MYC 
expression is an independent risk factor for poor prog-
nosis in medulloblastoma.24 The molecular mechanisms 
that regulate c-MYC in medulloblastoma are largely un-
known. ABL kinases have been identified as key regulators 
of c-MYC expression in both fibroblasts involving PDGFR/
c-Src signaling cascades, and in lung cancer cells.25,26 
To explore the relationship of ABL kinases and c-MYC in 
medulloblastoma, we treated the medulloblastoma cell 
lines D458 and D556 with GNF5, a highly selective allo-
steric ABL kinase inhibitor similar to asciminib, for 1, 6, 24, 
or 48 hours. We found that GNF5 specifically decreased ex-
pression of c-MYC in a time- and concentration-dependent 

manner (Figure 2B). We then used an shRNA approach to 
genetically inactivate ABL1 and ABL2 in D283 cells and 
found a corresponding decrease in c-MYC expression 
in ABL1/2 knockdown cells compared to control (Figure 
2C). Furthermore, using mRNA data, we found a signifi-
cant positive correlation between ABL2 and MYC in SHH 
(r = 0.1513, P = .023), Group 3 (r = 0.3274, P < .001), and 
group 4 (r = 0.2305, P < .001) and a significant negative cor-
relation between ABL1 and MYC in group 3 (r = −0.3021, 
P = .0002) (Supplementary Figure 2). Given that both the 
pharmacologic inhibition of ABL kinases and genetic inac-
tivation of ABL1/2 resulted in decreased c-MYC expression, 
while mRNA levels of ABL2 correlated positively with MYC, 
we hypothesize that ABL2 and likely ABL1 are upstream 
mediators of c-MYC expression in medulloblastoma.

Genetic Inactivation of ABL1/2 Decreases 
Adhesion in Medulloblastoma

Following our exploration of ABL kinases’ roles in 
medulloblastoma cell viability and c-MYC signaling, we ex-
plored potential roles for ABL kinases in a process critical 
to LMD: tumor cell adhesion. ABL1 and ABL2 are critical 
in the regulation of cadherin-mediated cellular adhesion 
via Rho GTPases27 and E-cadherin is concentrated at the 
arachnoid cell surface,28 a key component of the leptome-
ningeal extracellular matrix (ECM). Engagement of tumor 
cell cadherins and leptomeningeal cadherins results in 
tight junctions and adhesion.4 Since medulloblastoma 
has been shown to express a protein related to E-cadherin 
called neural (N)-cadherin,29 we explored the role of ABL 
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kinases in binding to vitronectin, another key component 
of the leptomeningeal ECM and brain pericytes30,31 that 
mediates cell adhesion, in tandem with cadherins. High 
levels of vitronectin have been found to be expressed in 
the meninges of the brain and spinal cord31 and vitronectin 
is considered the ”master controller” of the ECM.32 We ob-
served significantly decreased binding to vitronectin in the 
ABL1/2 knockdown cells compared to control (Figure 3A, 
B). Notably, this decreased binding could not be explained 
by a difference in cell viability between control and knock-
down groups (Figure 5C).

Genetic Inactivation of ABL1/2 Decreases Tumor 
Burden and Increases Overall Survival in a Mouse 
Model of Medulloblastoma LMD

Our next aim was to investigate how our in vitro findings 
of ABL kinases’ roles in medulloblastoma cell viability 
and adhesion might translate to an improvement in sur-
vival. To do so, we assessed the effects of an ABL1/2 ge-
netic knockdown in a mouse model of medulloblastoma 

with LMD. Animals harboring ABL1/2 double knockdown 
medulloblastoma cells developed significantly less LMD 
and smaller tumor volumes compared to controls, as 
measured by whole-body bioluminescence (Figure 4A, 
B). This decrease in leptomeningeal tumor burden cor-
responded with significantly increased OS (Figure 5C). 
The decrease in tumor spread and resultant increased 
OS was associated with significantly decreased prolifera-
tive index (Ki67) in the ABL1/2 knockdown group (Figure 
4D,E). Histologically, tumor was confirmed on the surface 
of the brain in the leptomeningeal compartment and in the 
intraventricular space (Supplementary Figure 4). Staining 
of both ABL1 and ABL2 was found predominantly in the 
cytoplasm (Supplementary Figure 5), consistent with pre-
vious literature.4

Differential Gene Expression of ABL1/2-Depleted 
D283 Cells

Finally, given our data demonstrating ABL1/2-dependent 
differences in the capacity for cell adhesion and 
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presumably migration/invasion at the protein level, as well 
as medulloblastoma survival in vitro and in vivo at the cell 
and organism level, we asked whether ABL1/2 depend-
ency might also be observed in the expression of different 
genes at the transcriptomic level. We thus performed RNA 
sequencing and analyzed differential expression patterns 
between D283 SCn (scrambled) shRNA control cells and 
D283 AAn cells (harboring a double knockdown of ABL1/2, 
n = 3 for each group). Using an adjusted statistically sig-
nificant cutoff of P ≤ .05, there were 6,022 differentially 
expressed genes between the control and genetically ma-
nipulated groups including both ABL1 (log2FoldChange 
−1.32, adjusted P = 1.66 × 10−22) and ABL2 (log2FoldChange 
−0.42, adjusted P = 7.75 × 10−4) (Figure 5A). The most signif-
icantly upregulated genes among the ABL1/2 knockdown 
cells included LINC02463, ARMCX4, NR2F1, KRT8, MSRB3, 
and STX7, while the most significantly downregulated 
genes included DUSP4, HSPB8, INSYN2A, GALNT17, and 
FBXO32 (Figure 5A, Supplementary Table 1). In GSEA, 
the pathway HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION was significantly different between the two 
cell types (adjusted P = .03962, Supplementary Table 2, 
Figure 5B). Notably, unsupervised hierarchical clustering 
suggested a similar gene expression profile for the 3 repli-
cates for each respective condition (Figure 5C).

Discussion

Many patients with medulloblastoma experience LMD 
at recurrence and/or exhibit significant toxicities related 
to adjuvant therapy.33 Current standard of care is chemo-
therapy (cisplatin, vincristine, cyclophosphamide) plus 
craniospinal irradiation. There is a paramount need for 
more efficacious, less-toxic therapies for medulloblastoma 
LMD. Here, we present ABL family kinases as novel thera-
peutic targets of interest in leptomeningeal disseminated 
medulloblastoma. Targeted therapy against these proteins, 
which are highly implicated in cell proliferation, adhesion, 
and migration, could present a paradigm shift from cyto-
toxic alkylating chemotherapy and ionizing radiation.

Within cohorts containing hundreds of patients, we 
show that ABL1 and ABL2 mRNA is most highly expressed 
in group 3 and 4 medulloblastoma, and that this expres-
sion trends toward differentiating patients with metastatic 
disease compared to those without. We also show a trend 
that high ABL1/2 expression is associated with worse sur-
vival outcomes in select subgroups of medulloblastoma.

We corroborate these data with in vitro studies, showing 
that patient-derived medulloblastoma cell lines are sen-
sitive to pharmacologic inhibition of ABL kinases and 
that this ABL-dependent cell viability may also depend on 
c-MYC signaling. Although the doses of small molecules 
used in this work were relatively high, they were within 
doses previously used in solid tumors.17 Furthermore, 
because both asciminib and GNF5 are specific allosteric 
ABL1/2 inhibitors,21 it is very unlikely any results observed 
were due to off-target effects. To this point, double genetic 
knockdown of ABL1/2 decreases c-MYC expression by 
Western blot analysis. These results build off prior work 
that suggests possible direct interactions between ABL 

kinases and c-MYC in non-cancer25 and other solid tu-
mors.26 Data from Furstoss et al.25 suggest that inhibiting 
c-ABL with imatinib reduces transcriptional expression of 
c-MYC, and experiments with mutated c-ABL suggest that 
c-ABL lies downstream of c-Src, implying a more direct 
rather than indirect effect of ABL1/2 on c-MYC levels. Data 
from Gu et al. suggest that ABL-mediated activation of TAZ 
and β-catenin, which both target MYC, is required for me-
tastasis of NSCLC.26

Genetic knockdown of ABL1/2 also decreases the ad-
hesion capacity of medulloblastoma cells to vitronectin, 
possibly through reliance on the regulation of cadherins 
as well as other molecules such as integrins. In vivo, a 
mouse model of medulloblastoma demonstrated de-
creased tumor burden with less metastatic disease and 
increased overall survival upon knockdown of ABL1/2. 
It is likely that this decreased tumor burden was due to 
both decreased c-MYC-mediated cell proliferation and ad-
hesion to the ECM. Further studies will explore the exact 
mechanistic underpinnings of which proteins are involved 
in ABL-mediated regulation of adhesion and invasion/mi-
gration in medulloblastoma, working off other evidence 
that ABL2 gene silencing decreases migration/invasion 
in cancer cell lines34 and that higher vitronectin expres-
sion/binding correlates with metastasis and worse clin-
ical prognosis.35–37 Further work should also identify how 
ABL1/2 knockdown may mitigate LMD by decreasing cell 
proliferation (as evidenced by decreased Ki67 staining in 
our samples), given the crucial role of c-MYC in regulating 
this process as well. Given that ABL1/2 knockdown did 
not decrease cell viability in vitro, it is likely that ABL1/2 
knockdown primarily decreases LMD by first disrupting 
existing interactions of ABL1/2 with matrix proteins like 
vitronectin and integrins as suggested by our group and 
observed by others.38,39 Furthermore, given the known in-
dependent relationships of ABL1/2 and medulloblastoma 
metastasis to critical signal transducers like PDGF recep-
tors (specifically, PDGFRB), it is possible that the pheno-
typic effects may be explained by a signaling cascade that 
involves ABL1/2 acting downstream of PDGFRB in cancer 
cells.25,40

Finally, we show that ABL1/2 knockdown 
medulloblastoma cells display a significant number of 
differentially expressed genes compared to controls. 
The most significantly upregulated genes included: 
LINC0246, a lncRNA whose SNPs (single nucleotide 
polymorphisms) have been associated with lymphoma; 
ARMCX4, mutations of which have been associated with 
the malignant childhood brain tumor atypical teratoid 
rhabdoid tumor; KRT8, whose expression has been sug-
gested as a prognostic marker for many cancer types; 
MSRB3, whose expression may confer stress resistance 
in cancer; and STX7, which encodes a vesicle transport 
protein implicated in breast cancer cell invasion (see 
Supplementary Table 3 for references). Downregulated 
genes included: DUSP4, which encodes a phosphatase 
that targets the kinases ERK1, ERK2, and JNK (among 
others), which are often dys-/upregulated in tumors 
and play crucial roles in cell growth and survival41,42; 
HSPB8, which encodes a heat shock protein that likely 
regulates cell proliferation, apoptosis, and carcin-
ogenesis; GALNT17, mutations of which have been 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad095#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad095#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad095#supplementary-data
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associated with cerebellar dysfunction and astrocytoma 
growth; and FBXO32, an F-box protein that has been 
shown to target c-MYC for degradation and has, when 
dysregulated, been implicated in cancer stemness (see 
Supplementary Table 3 for references). Taken together, 
these results provide novel insight into genes lying at 
the intersection of neurodevelopment and oncogenesis, 
and whose dysregulation in the positive or negative di-
rection may couple with ABL1 and ABL2 expression to 
drive medulloblastoma tumorigenesis and LMD (see 
Supplementary Table 3). Interestingly, GSEA revealed 
enrichment in the hallmark pathway43 EPITHELIAL_
MESENCHYMAL_TRANSITION. This is striking as the 
EMT, whereby epithelial cells lose their polarity to ac-
quire mesenchymal cell features (eg, increased motility), 
is presumed to be a dynamic process critical for tumor 
progression and metastasis, and ABL kinases have been 
directly implicated in this plasticity.44,45

Future research will be directed at unraveling molec-
ular pathways downstream of ABL1 and ABL2 involved in 
tumor proliferation, adhesion, and invasion, and will deter-
mine how intra- and intertumoral heterogeneity may affect 
how these cascades present throughout different tumors. 
Given our data showing that ABL inhibition decreases 
c-MYC expression, further research should also determine 
if ABL kinase inhibitors are effective in all medulloblastoma 
subgroups or preferentially in the high-c-MYC subgroup 
Group 310 and the relative contribution of ABL1 and ABL2 
in MYC regulation.

In conclusion, we demonstrate the putative associa-
tion of ABL1 and ABL2 as upstream regulators of c-MYC 
in medulloblastoma. Inactivation of ABL1 and ABL2 re-
sulted in decreased LMD in mice and improved OS. Future 
research will uncover the more detailed biology of ABL 
kinases’ roles in medulloblastoma and hopefully lead 
to targeted therapies that have the potential to improve 
overall survival and quality of life for thousands of patients 
with this incurable disease.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances online.
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