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Hepatocellular carcinoma (HCC) is a deadly tumor with high heterogeneity. Aerobic

glycolysis is a common indicator of tumor growth and plays a key role in tumorigenesis.

Heterogeneity in distinct metabolic pathways can be used to stratify HCC into clinically

relevant subgroups, but these have not yet been well-established. In this study, we

constructed a model called aerobic glycolysis index (AGI) as a marker of aerobic

glycolysis using genomic data of hepatocellular carcinoma from The Cancer Genome

Atlas (TCGA) project. Our results showed that this parameter inferred enhanced aerobic

glycolysis activity in tumor tissues. Furthermore, high AGI is associated with poor tumor

differentiation and advanced stages and could predict poor prognosis including reduced

overall survival and disease-free survival. More importantly, the AGI could accurately

predict tumor sensitivity to Sorafenib therapy. Therefore, the AGI may be a promising

biomarker that can accurately stratify patients and improve their treatment efficacy.
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INTRODUCTION

Globally, hepatocellular carcinoma (HCC) is the sixth most commonly diagnosed cancer and the
fourth leading cause of cancer-related deaths (1). Despite advances in the treatment of HCC, its
prognosis remains unsatisfactory, with a 5-year overall survival (OS) rate of 25–55% (2–4). Local
recurrence, distal metastasis, and resistance to conventional therapy are the leading causes of HCC
progression into late-stage cancer with limited treatment options. Geneticmutations, chromosomal
instability, epigenetic changes, and molecular signaling pathway dysregulation are reported causes
of hepatocellular carcinogenesis (5). Therefore, advances in the field of molecular oncology are
urgently required to improve the prognosis of HCC.
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Sorafenib is an oral multitargeted drug that inhibits the
activity of several tyrosine kinases (6). Thus, Sorafenib can
effectively suppress angiogenesis and cancer proliferation and
induce tumor cell apoptosis. Since it was first approved by
the US Food and Drug Administration in 2007 as the first-
line treatment for advanced HCC, Sorafenib has shown favored
clinical benefits. In the Sorafenib Hepatocellular Carcinoma
Assessment Randomized Protocol (SHARP) trial, patients who
received Sorafenib therapy showed significantly higher median
OS compared with the control group (10.7 vs. 7.9 months,
respectively) and a 31% reduction in the risk of death (7).
In the Asia-Pacific trial, Sorafenib provided a clinical benefit,
extending themedian survival benefit by 2months (8). Currently,
Sorafenib is still applied as the first-line therapy for advanced
HCC patients; even several other tyrosine kinases inhibitors
have been evaluated by comparing them to Sorafenib, which
did not demonstrate an improvement of prognosis (9–11).
However, a large number of patients with HCC show poor
response to Sorafenib due to the heterogeneity of the disease and
the complex tumor-associated molecular signaling, which lacks
generally accepted predictive biomarkers. Furthermore, primary
and acquired resistance to Sorafenib are commonly reported and
limit the clinical advantages of the drug (12–15).

The Warburg phenotype is a common hallmark of cancer
cells, characterized by enhanced glycolysis, even under
physiological oxygen conditions (16, 17). By shifting glucose
metabolism from oxidative respiration to aerobic glycolysis,
tumor cells display enhanced glucose metabolism for producing
efficient energy and various metabolic intermediates, which
are indispensable for the synthesis of macromolecules and
new organelles. Several oncogenes, including Ras, Myc, and
HIF1, were reported to drive metabolic adaptations toward
aerobic glycolysis (18, 19). Enhanced aerobic glycolysis has
been demonstrated to exhibit consistent prognostic patterns
and is associated with Sorafenib resistance (20). Increased
expression of aerobic glycolysis-related genes, including solute
carrier family 2 member 1 (SLC2A1), solute carrier family
2 member 2 (SLC2A2), glucose-6-phosphate dehydrogenase
(G6PD), glypican 1 (GPC1), procollagen-lysine, 2-oxoglutarate
5-dioxygenase 2 (PLOD2), and lactate dehydrogenase A (LDHA),
has been reported to be associated with aggressive HCC (21–29).
Accelerated glucose uptake and lactate synthesis were observed
as responses to Sorafenib treatment (30–32). New therapeutic
approaches have been reported to attenuate Sorafenib resistance
by inhibiting key glycolytic enzymes including 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), hexokinase
2 (HK2), and pyruvate kinase M1/2 (PKM2) (33–36). Tumor
metabolic heterogeneity is reported to be relevant to tumor
subtypes and prognosis (37), but whether heterogeneity in
distinct metabolic pathways can be used to stratify HCC into
clinically relevant subgroups has not been well-established.

Aerobic glycolysis is a complex biological process involving
numerous genes. Thus, constructing a gene signature based on
multiple glycolysis-related genes is supposed to be more suitable
to represent the aerobic glycolysis pathway than single gene.
The development of genomic techniques has unveiled extensive
biological information that can be used to explore the underlying

mechanisms of tumorigenesis and progression. In this study, we
constructed a model named aerobic glycolysis index (AGI) to
evaluate the signal of aerobic glycolysis, by utilizing genomic
data of hepatocellular carcinoma from The Cancer Genome
Atlas (TCGA) project. The AGI was calculated based on the
expression of 14 glycolysis-related genes (SLC2A1, SLC2A2,
G6PD, LDHA, GPC1, HMMR, PLOD2, GOT2, STC2, CENPA,
RARS1, HOMER1, SRD5A3, and TKTL1). The abbreviations list
and their expansions for these glycolytic genes are summarized
in Supplementary Table 1. Then, we assessed whether the AGI
was a predictive marker for the prognosis of HCC and sensitivity
to Sorafenib. Finally, we used in vitro experiments to confirm
that AGI was associated with Sorafenib resistance. Significantly,
we established a methodology to quantify aerobic glycolysis
signaling. The AGI was found to be a robust prognostic
biomarker of HCC and a predictive factor of the response
to Sorafenib.

MATERIALS AND METHODS

Specimen Collection and RNA Sequencing
In total, 102 pairs of formalin-fixed paraffin-embedded HCC and
corresponding normal tissue specimens from the Sir Run Shaw
Hospital (SRRSH) were collected. This research was approved
by the Institutional Review Board of the SRRSH of Zhejiang
University. The patients provided informed consent for the use of
their specimens. For RNA sequencing, TRIzol (Invitrogen, USA)
was used to extract total RNA. After checking the RNA purity,
integrity, and concentration, RNA sequencing was performed on
an Illumina platform.

Data Acquisition and Processing
Fragments per kilobase of transcript per million mapped reads
(FPKM) RNA-seq data and the clinical characteristics of TCGA
samples were downloaded from the UCSC Cancer Browser
database. Gene mutation data and copy number information
of the TCGA samples were acquired from the cBioPortal
database. RNA-seq and clinical data of the LIRI-JP cohort
were downloaded from the HCCDB database. The GSE14520,
GSE25097, GSE36376, GSE64041, GSE76427, GSE109211, and
GSE73571 expression profile was obtained from the Gene
Expression Omnibus (GEO) database. The proteomics data of
TCGA samples were downloaded from the TCPA database.
Drug sensitivity data of HCC cell lines were obtained from the
Genomics of Drug Sensitivity in Cancer (GDSC) database and
Cancer Cell Line Encyclopedia (CCLE) database. The patient
characteristics of TCGA, LIRI-JP, GSE14520, and SRRSH datasets
are summarized in Supplementary Table 2.

Development of the AGI
Univariate Cox regression was applied to detect the aerobic
glycolysis genes related to prognosis. The least absolute shrinkage
and selection operator (LASSO) Cox regression model was
performed to determine the coefficients for model construction
with an optimal log λ (38). The AGI was established with the
following formula: Risk score = expression of Gene 1 × β1 +

expression of Gene 2 × β2+. . . expression of Gene n × βn (β
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was the weighted coefficient of each gene). For gene expression
measured by quantitative real-time PCR (qPCR), the AGI was
calculated as the method described by Zheng et al. (39). Total
RNAs from cells were extracted using TRIzol (Invitrogen, USA)
according to the manufacturer’s instructions. Complementary
DNA (cDNA) was synthesized using Hifair R© II 1st Strand
cDNA Synthesis SuperMix for qPCR (Yeasen, Shanghai, China).
qPCR was performed using Hieff UNICON R© qPCR SYBR Green
MasterMix (Yeasen, Shanghai, China). Measurement was carried
out by Roche LightCycler 480. Analysis was carried out using
the 11Ct method. All assays were performed in triplicates, and
results were plotted as the mean ± SD. Primer sequences are
listed in Supplementary Table 3.

Gene Set Enrichment Analysis and Gene
Set Variation Analysis
Datasets were divided into two groups according to tissue types
or AGI scores. Annotated gene sets were downloaded from the
MSigDB database. Gene Set Enrichment Analysis (GSEA) was
performed using the R package “GSEAbase.” Annotated drug sets
were downloaded from the DSigDB database. Gene Set Variation
Analysis (GSVA) was performed using the R package “GSVA.”

Cell Culture of Liver Cancer Cell Lines
Liver cancer cell lines (SK-Hep-1, Huh7, HepG2, HCCLM3)
were purchased from the American Tissue Culture Collection
(Manassas, VA, USA) and cultured in accordance with the
recommended guidelines. Sorafenib-resistant HCC cell lines
were cultured with Sorafenib as previously reported (40, 41).

Cell Viability Test
Cells were seeded in 96-well plates in replicates of three. After
incubation with Sorafenib for 48 h, cell viability analysis was
performed using the Cell Counting Kit-8 (CCK-8) (Yeasen,
Shanghai, China).

Apoptosis Assay
Cells were seeded in six-well plates and mock treated or
treated with drugs [Sorafenib, 2-deoxy-D-glucose (2-DG), or a
combination of Sorafenib and 2-DG] for 48 h before apoptosis
assays. Cell apoptosis was determined using the PI/annexin V-
FITC Apoptosis Kit (MULTI SCIENCES, Hangzhou, China).

Transwell Assay
Cells (1 × 105) in serum-free medium were seeded into the
upper chambers of Transwell (Corning, Corning, NY, USA), and
medium with 10% fetal bovine serum (FBS) was seeded into
the lower chambers for 24 h in a humidified incubator at 37◦C
in 5% CO2. The cells remaining in the upper chamber were
carefully removed using a cotton swab, and cells that migrated to
the lower membrane surface were fixed in 4% paraformaldehyde
and stained with crystal violet. The experiments were repeated
three times.

FIGURE 1 | Flowchart presenting the establishment and validation of the gene

signature.

Glucose Consumption and Lactic Acid
Assays
Cells were seeded into six-well plates at a density of 1 × 106

cells and cultured overnight. Glucose consumption and lactic
acid production were detected using glucose assay kit (Solarbio R©

BC2500) and LA assay kit (Solarbio R© BC2230) according to the
instruction of the manufacturers, respectively. The experiments
were repeated three times.

Statistical Analysis
The univariate Cox regression, LASSO Cox regression model,
and multivariate Cox regression model were performed. The
OS and disease-free survival (DFS) were compared using
the Kaplan–Meier method with the log-rank test. Non-
parametric tests or Student’s t-tests were used to determine
the significance of the differences between the subgroups
and clinicopathological characteristics. Spearman’s correlation
test was used to assess the relationship between the AGI
and biological pathways and clinicopathological parameters.
Statistical analyses were performed using R software (Version
3.6.0). A P < 0.05 was considered statistically significant, and all
P-values were two-tailed.

RESULTS

Establishment of the AGI
This study was conducted according to the flow chart shown in
Figure 1. Initially, several key genes of glycolysis were observed
to be commonly upregulated in tumor tissues compared with
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normal tissues in a series of datasets, including TCGA, LIRI-
JP, GSE14520, GSE25097, GSE36376, GSE64041, and GSE76427
(Figure 2A). The GSEA results revealed that the glycolysis
signaling pathway was significantly enriched in HCC tumor
tissues compared with normal tissues (Figure 2B). These results
suggested that the glycolysis signaling pathway may contribute
to malignant tumor phenotypes. Because aerobic glycolysis is a
complex biological process involving hundreds of genes, using
a gene signature comprising multiple genes can predict the
tumor characteristics and prognosis more accurately than a single
gene. The univariate Cox regression analysis was conducted to
determine the prognostically relevant genes related to the aerobic
glycolysis, and 80 relevant genes were identified (Figure 2C).
To further simplify the gene signature of aerobic glycolysis,
LASSO regression was performed based on these prognostically
relevant genes. Finally, 14 genes were selected to establish the
AGI according to the partial likelihood deviance method with
an optimal log λ (Supplementary Figures 1, 2). Additionally,
as shown in Figure 2D, the correlations between the AGI
and selected aerobic glycolysis-related genes were statistically
significant. Furthermore, the correlations between the AGI and
several important genes coding the rate-limiting enzymes of
glucose metabolism were examined. The results demonstrated
that the AGI correlated closely to these genes (HK2, r = 0.43,
P < 2.2e−16; PFKP, r = 0.39, P = 1.4e−14; PFKFB3, r =

0.27, P = 2e−7; PKM2, r = 0.66, P < 2e−16), as shown in
Supplementary Figure 3.

After the establishment of the AGI, we first tested the capacity
of AGI as an acceptable indicator of aerobic glycolysis. The AGI
could distinguish HCC tumor tissues from normal tissue samples
in the TCGA dataset that significantly higher AGI was observed
in tumor samples, indicating enhanced aerobic glycolysis activity
in these tumor samples (P = 8.1e−13, Figure 2E). To further
validate the power of the AGI, we examined this index in three
other HCC datasets. As shown in Figure 2E, a significantly higher
AGI was observed inHCC tumor samples compared with normal
tissue samples in all of three datasets (GSE64041, P = 8.1e−10;
GSE14520, P < 2e−16; LIRI-JP, P < 2e−16). Furthermore, RNA
sequencing data from our center (SRRSH) were applied and
confirmed the reliability of AGI in distinguishing HCC tumor
tissues from normal tissue samples (P < 2e−16) (Figure 2F).
Then, the receiver operating characteristic (ROC) curve and
area under the curve (AUC) scores were further evaluated to
quantify the accuracy of the AGI to classify tumor and normal
tissues. High prediction accuracies were achieved in all datasets,
ruling out the possibility of over fitting (TCGA, AUC = 0.916;
GSE64041, AUC= 0.825; GSE14520, AUC= 0.945; LIRI-JP, AUC
= 0.846, SRRSH set, AUC= 0.902, Figure 2G).

Association of the AGI With Genomic and
Proteomic Alterations
Using the optimal cutoff value based on prognostic effects, the
patients in the TCGA cohort were stratified into high and low
AGI groups. The distribution of gene expression in the high
and low AGI groups is represented in Figure 3A. In particular,
we compared the genes encoding key proteins and enzymes of

aerobic glycolysis, and most of them were highly expressed in the
highAGI group, supporting the close correlation between aerobic
glycolysis and the AGI (Figure 3B).

Previous reports demonstrated that aerobic glycolysis genes
could be regulated by transcription factors such as p53, c-
Myc, and HIF-1α. In our study, the high AGI group showed
an increased proportion of TP53 mutations and a decreased
proportion of CTNNB1 mutations (Figure 3C), which were the
most common mutations in HCC. Accordingly, patients with a
TP53mutation showed a higher AGI than patients with wild-type
TP53. Conversely, patients with a CTNNB1 mutation showed a
lower AGI than patients with wild-type CTNNB1 (Figure 3D).
Next, we investigated the distribution of copy number variations
between the high and low AGI groups. The high AGI group
showed an increased amplification frequency of Myc, AGO2,
EXT1, RAD21, EIF3E, RSPO2, RECQL4, RUNX1T1, NBN,
PAG1, and HEY1 (Figure 3E). These outcomes may provide
novel ideas for investigating the mechanism of tumor aerobic
glycolysis and copy number variation.

GSEA of the transcripts in the two groups revealed that
gene sets considered to be markers of high malignancy were
enriched in the high AGI group, including those E2F targets, Myc
targets, epithelial–mesenchymal transition (EMT) regulators,
and G2M checkpoints (Figure 3F and Supplementary Table 4).
Conversely, gene sets related to oxidative phosphorylation,
peroxisomes, xenobiotic metabolism, and other metabolic
processes were enriched in the low AGI group (Figure 3G and
Supplementary Table 4). As the EMT pathway enriched in the
high AGI group, we were interested in the relationship between
the AGI and tumor invasion capability. The AGI in four liver
cancer cell lines (SK-hep-1, Huh7, HepG2, and HCCLM3) was
calculated. The result demonstrated that cell lines with high AGI
(SK-hep-1, Huh7, and HCCLM3) had increased glucose intake
and lactic acid level as compared with the cell line with low AGI
(HepG2). More importantly, the Transwell assay revealed that
cell lines with high AGI exhibited the greater invasion capability
(Supplementary Figure 4). Previous studies also have reported
a close relationship between aerobic glycolysis and angiogenesis
(42–44). In the present study, we compared the expression of
several genes involved in angiogenesis between the high and low
AGI groups. The results demonstrated that the high AGI group
had increased expression of vascular endothelial growth factor
A (VEGFA) and VEGFB as compared with the low AGI group
(Supplementary Figure 5).

Further analysis of proteomic data revealed that the AGI
was strongly correlated with the expression of cell-cycle-
related proteins, including pChk1, pChk2, and CyclinB1,
and other tumor hallmark proteins, such as eIF4G, pPI3K,
Src, Smad1, and Smad3 (Figure 3H). Furthermore, the
AGI was negatively correlated with the expression of Rb,
phosphatase and tensin homolog (PTEN), cleaved poly(ADP-
ribose) polymerase (PARP) (Figure 3I). Collectively, the
analysis of gene mutations, copy number variations,
classical signaling pathway gene sets, and proteomic data
suggests that the AGI is associated with cell proliferation,
tumor progression, and the inhibition of apoptosis
in HCC.
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FIGURE 2 | Construction of the aerobic glycolysis index (AGI) model and validation of the AGI in tumor and normal tissues. (A) Heatmap of glycolysis-related gene

expression in different datasets. (B) Gene Set Enrichment Analysis (GSEA) of the glycolysis pathway in GSE14520. (C) Bar plot showing the hazard ratio of

glycolysis-related genes in The Cancer Genome Atlas (TCGA) cohort using the univariate Cox regression. The bars represent the 95% CI. (D) Correlation between the

AGI and the selected signature genes in the TCGA cohort. (E) Boxplots showing AGI differences in normal and tumor tissues in the TCGA, GSE64041, GSE14520

and LIRI JP datasets. (F) Boxplots showing AGI differences in normal and tumor tissues in the SRRSH set. (G) Receiver operating characteristic (ROC) curves for

tissue type prediction using the AGI as the predictor.
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FIGURE 3 | The landscape of biological processes and characteristics of the aerobic glycolysis index (AGI) subgroups. (A) Heatmap of common differentially

expressed genes based on the expression data in the high and low AGI groups. (B) Box plots showing the expression of the selected glycolysis-related genes in The

(Continued)
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FIGURE 3 | Cancer Genome Atlas (TCGA) cohort. (C) Proportion of TP53 and CTNNB1 mutations in the high and low AGI groups. (D) Box plots showing the AGI in

patients with TP53 mutations and wild-type TP53 (left) and CTNNB1 mutations and wild-type CTNNB1 (right). (E) The oncoPrint of copy number variations was

constructed in the high and low AGI subgroups. (F) Activated gene sets enriched in the high AGI subgroup. (G) Suppressed gene sets enriched in the high AGI group.

(H,I) Proteins positively (H) and negatively (I) correlated with the AGI (P < 0.05 for all proteins) based on reverse-phase protein arrays analysis of 181 samples from

the TCGA using Spearman’s rank correlation.

Correlation Between the AGI and Clinical
Characteristics
Our data showed that the AGI was closely associated with
TP53, Myc, cell cycle, and EMT pathways, and therefore, we
next examined whether the AGI is associated with tumor
progression and metastasis. We first analyzed the relationship
between the AGI and clinical characteristics of HCC patients.
A significantly increased AGI was observed in patients
with higher tumor grades (Figure 4A), advanced T stages,
and tumor–node–metastasis (TNM) stages (Figures 4B,C)
and vascular invasion (Figure 4D). Here, we defined early
tumor recurrence as a tumor recurring within 2 years
after primary treatment and late recurrence as cancer
recurring after 2 years. The AGI was significantly higher
in patients with early recurrence than in those with late
recurrence (Figure 4E).

Patients with a higher AGI were associated with a worse
prognosis in terms of OS [hazard ratio (HR), 3.43; P < 0.001;
Figure 4F] and DFS (HR, 2.07; P < 0.001; Figure 4G). The
univariate Cox regression analysis revealed that the AGI (HR,
4.132), T stage (HR, 1.675), and TNM stage (HR, 1.661)
were risk factors of a worse HCC prognosis (Figure 4H),
and the multivariate Cox regression analysis showed that the
AGI was an independent risk factor of poor prognosis (HR,
4.865; Figure 4I). The ROC curve showed that the AGI could
accurately predict the 1-year (AUC, 0.787), 3-year (AUC,
0.751), and 5-year OS (AUC, 0.714) of HCC (Figure 4J), which
was superior to conventional clinical parameters such as the
tumor grade, status of vascular invasion, and TNM stage
(Figure 4K).

Prognostic Value Validation of the AGI
A significantly increased AGI was observed in patients
with higher TNM stages in three independent datasets
(Figures 5A–C). The prognostic value of the AGI in HCC
was validated in three independent datasets, including GSE14520
from GEO, LIRC from ICGC, and the SRRSH set from our
center. By dividing the datasets into two groups according to
the AGI, the distribution of the gene expression profiles and
status of patients were consistent with the AGI (Figures 5D–F).
Similar to the TCGA dataset, the high AGI group showed worse
OS (GSE14520: HR, 2.13; Figure 5G; LIRC: HR, 2.85; Figure 5H;
SRRSH set: HR, 2.53; Figure 5I) and DFS (GSE14520: HR,
1.67; Figure 5K; SRRSH set: HR, 1.77; Figure 5L) compared
with the low AGI group. The ROC curve demonstrated
that the AUCs of the AGI in predicting the 5-year OS of
GSE14520, LIRC, and SRRSH sets were 0.676, 0.630, and 0.621,
respectively (Figure 5J), indicating a robust prognostic value of
the AGI.

AGI Predicts Sensitivity to Sorafenib in
Both HCC Cell Lines and Patients
Sorafenib is the first-line therapy for advanced HCC. The
increased expression of aerobic glycolysis-related genes has been
demonstrated to promote Sorafenib resistance (45). Our results
showed the AGI was closely related to advanced tumor stages
and poor tumor differentiation. Moreover, a high AGI was
strongly correlated with EMT, Myc, and cell cycle pathways
(Figure 3B), which had been reported to be associated with
impaired Sorafenib sensitivity and a worse prognosis (45).
We were interested in the relationship between the AGI and
Sorafenib sensitivity andwondered if the AGI could be a potential
biomarker to predict drug sensitivity. Thus, the GSVA was
performed, and the results revealed that the low AGI group
appeared to be more sensitive to Sorafenib (Figure 6A). Then,
we verified the relationship between Sorafenib sensitivity and
the AGI in vitro using the data from the GDSC database, which
showed that HCC cell lines with a lower AGI were more sensitive
to Sorafenib (Figure 6B). Furthermore, a positive correlation
between the AGI and the natural logarithm of the IC50 was
observed (r = 0.61, P = 0.02, Figure 6C). Similarly, using HCC
cell line data from the CCLE database, cell lines with a higher
AGI showed decreased Sorafenib sensitivity (Figure 6D), and a
positive correlation between the AGI and the natural logarithm
of the EC50 of Sorafenib was observed (Figure 6E). Although
not statistically significant due to a limited sample size, the
trends suggested a potential relationship between the AGI and
Sorafenib sensitivity in vitro. We next calculated the AGI in
patients who received Sorafenib therapy using the transcription
data from GSE109211 (the STORM trial). The patients who
did not respond to Sorafenib showed a higher AGI (Figure 6F)
and upregulated expression of AGI-related genes (Figure 6G).
The ROC curve of the AGI in predicting the sensitivity to
Sorafenib retrieved an AUC of 0.879 (Figure 6H), indicating that
the AGI is a reliable biomarker in selecting suitable patients for
Sorafenib treatment.

Increased AGI in Sorafenib-Resistant HCC
Cell Lines
To further study the relationship between the AGI and Sorafenib
resistance, the expression of AGI-related genes was evaluated
in different cell lines (SK-hep-1 and Huh-7) at 0, 24, 48,
and 72 h after Sorafenib treatment using qPCR. The levels of
AGI-related genes substantially elevated following the treatment
with Sorafenib, resulting in an increased AGI (Figure 7A).
These results suggested that the AGI and underlying metabolic
remodeling may be closely related to Sorafenib treatment. In
previous studies, we reported several HCC cell lines treated
with Sorafenib for long term, which could be considered
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FIGURE 4 | Clinicopathological significance and prognosis prediction value of the AGI. (A) Tumor differentiation grade. (B) T stage. (C) Tumor–node–metastasis (TNM)

stage. (D) Vascular invasion status. (E) Recurrence status. (F) Kaplan–Meier plot analysis of overall survival (OS) in the high and low AGI groups. (G) Kaplan–Meier plot

analysis of disease-free survival (DFS) in the high and low AGI groups. (H,I) Forest plot showing the prognostic value of the AGI and clinical characteristics using

univariate (H) and multivariate (I) analysis. (J) Time-dependent receiver operating characteristic (ROC) analysis comparing the AGI in predicting the 1-, 3-, and 5-year

OS. (K) Time-dependent ROC analysis comparing the AGI and clinical characteristics in 5-year OS. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 5 | Validating the prognostically predictive value of the aerobic glycolysis index (AGI) in validation datasets. (A–C) Value of the AGI in different tumor stages in

GSE14520 (A), LIRI-JP (B), and SRRSH set (C). (D–F) The heatmap and distribution of the 14 AGI-related gene expression profiles in GSE14520 (D), LIRI-JP (E), and

SRRSH set (F). (G–I) Kaplan–Meier plot analysis of overall survival (OS) in the high and low AGI subgroups in GSE14520 (G), LIRI-JP (H), and SRRSH set (I). (J)

Time-dependent ROC analysis comparing the predictive value of the AGI for 5-year OS in the three datasets. (K,L) Kaplan–Meier plot analysis of disease-free survival

(DFS) in the high and low AGI subgroups in GSE14520 (K) and SRRSH set (L). *P < 0.05, **P < 0.01, ***P < 0.001.

as models of Sorafenib-resistant (SR) cell lines (40, 41, 46,
47). The RNA-sequencing data revealed a high AGI in SR
cell lines (SK-hep-1 and Huh7) (Figure 7B). Transcript data
from GSE73571 also demonstrated an elevated AGI during
the acquisition of Sorafenib resistance (Figure 7C). Thus, we
proposed the following hypothesis. On the one hand, tumor
cells adapted to Sorafenib therapy by shifting to aerobic

glycolysis. On the other hand, cells predominantly using aerobic
glycolysis were also selected by Sorafenib. Both of these
processes resulted in cells with enhanced aerobic glycolysis
activity. Because the AGI is applied as a marker of aerobic
glycolysis signaling activity, we speculate that the inhibition
of aerobic glycolysis may enhance the sensitivity of Sorafenib.
A combination of Sorafenib and 2-deoxy-D-glucose (2-DG),
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FIGURE 6 | Association between the aerobic glycolysis index (AGI) and Sorafenib resistance. (A) The Gene Set Variation Analysis (GSVA) results showed that the

Sorafenib sensitivity signature was enriched in patients with a low AGI. (B) AGI positively was correlated with the IC50 of Sorafenib in hepatocellular carcinoma (HCC)

cell line data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. (C) The IC50 of Sorafenib in HCC cell line data from the GDSC database with high

and low AGIs. (D) AGI positively correlated with the EC50 of Sorafenib in HCC cell line data from the Cancer Cell Line Encyclopedia (CCLE) database. (E) EC50 of

Sorafenib in HCC cell line data from the CCLE database with high and low AGIs. (F) Patient sensitive to Sorafenib presented significantly low AGI. (G) The heatmap

and distribution of the 14 AGI-related gene expression profiles in GSE109211. (H) Receiver operating characteristic (ROC) analysis showed an area under the curve

(AUC) of 0.879 for the AGI in predicting the response to Sorafenib.
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a commonly used inhibitor of aerobic glycolysis in vitro,
was added to cell cultures, resulting in the inhibition of cell
proliferation (Figure 7D) and an increased fraction of apoptotic
cells (Figure 7E).

DISCUSSION

In the present study, we developed and validated an aerobic
glycolysis-related gene signature (named the AGI) to predict
the prognosis and Sorafenib sensitivity in patients with HCC.
This AGI showed high accuracy in detecting HCC tumors
and normal tissues. A low AGI score was significantly
associated with early tumor stages, good differentiation, and
better OS and DFS in a series of cohorts. Interestingly,
the AGI score was correlated with the sensitivity of HCC
cell lines to Sorafenib. More importantly, we demonstrated
that the AGI could predict the response of patients to
Sorafenib using data from clinical trials. Additionally, we
observed that the AGI was elevated during the acquisition
of Sorafenib resistance, which provides useful information
for the development of a potential strategy to enhance
Sorafenib sensitivity.

Aerobic glycolysis is a common biological process by which
cancer cells tend to produce ATP by decomposing glucose
or glycogen into lactic acid at a higher pace despite the
presence of abundant oxygen. As an indicator of tumors, aerobic
glycolysis activity is regulated by transcription factors, glucose
transporters, and key enzymes of glucose metabolism. More
importantly, aerobic glycolysis is related to multiple key cell
signaling pathways, including PI3K/Akt, mTOR, and AMPK,
and tightly associated with various cellular activities, including
cell proliferation and EMT. In our study, the AGI was derived
from a model consisting of genes encoding glucose transporters
(SLC2A1, SLC2A2), key enzymes of glucose metabolism (G6PD,
LDHA), and several other genes related to glycolysis (GPC1,
HMMR, PLOD2, GOT2, STC2) (48–54), thereby supporting
the use of the AGI as a marker of aerobic glycolysis activity.
Several important genes related to glucose metabolism including
HK2, PFK, and PKM2 are missed in the model of AGI, which
had been reported to be associated with poor prognosis of
HCC (55–57). The AGI was constructed using a bioinformatics
method called LASSO regression. All the genes related to
glycolysis were included as factors, and the LASSO regression
selected factors to construct a model with minimal bias and
acceptable reliability. Although HK2, PFK, and PKM2 were not
in the model of AGI, we have calculated and found significant
correlation between AGI and these genes. Elevated aerobic
glycolysis activity was reported to result in a poor prognosis of
multiple solid tumors including HCC (45, 58–60). Furthermore,
several microRNAs, such as miR-383, miR-142-3p, and miR-
100-5p, were reported to target LDHA, which subsequently
inhibited cell proliferation, invasion, and glycolysis (61–63).
Shang et al. reported that the transcription factor FOXM1
promoted glycolysis by transactivating SLC2A1 expression (64).
In a respective cohort of 192 patients, the glucose transporter
GLUT1 was significantly upregulated in HCC tumor tissues

and was an independent risk factor of poor OS and relapse-
free survival (24). Lu et al. reported that elevated G6PD
expression contributed to the enhanced migration and invasion
of HCC cells by inducing EMT (65), which was consistent with
the correlation between the AGI and EMT signaling in the
present study.

A positive correlation between aerobic glycolysis activity and
Sorafenib resistance in both HCC cell lines and patients was
observed in this study. Patients with a high pretreatment AGI
tended to develop resistance to Sorafenib. Previously, Ma et al.
and Li et al. found that increased aerobic glycolysis enhanced
Sorafenib resistance in both HCC cell lines and xenografts
(36, 66, 67). Key enzymes and transcription factors involved in
aerobic glycolysis contributed to Sorafenib resistance, through
reprogramming and redox adaptation (68), interacting with
voltage-dependent anion channel (VDAC) and subsequently
inhibiting mitochondrial apoptosis (69, 70) and increasing the
expression of HIF-1α and c-Myc, thereby activating various
cellular signals related to drug resistance (71, 72). In our
previous review, we believed that Sorafenib resistance was
associated with complex mechanisms, including metabolic
remodeling, microenvironmental interplay, cellular signaling
changes, genomic instability, and cancer stem cells (20). In
our study, the levels of AGI-related genes substantially elevated
following the treatment with Sorafenib, suggesting metabolic
switch of glucose metabolism. Tesori et al. also reported
metabolic shift toward glycolysis in HCC cells treated with
Sorafenib in 48 h (31). Another study by Fiume et al. found
that Sorafenib could hinder oxidative phosphorylation and
stimulate aerobic glycolysis (32). Enhanced aerobic glycolysis
activity was observed during the acquisition of Sorafenib
resistance and reflected as an increased AGI. Thus, we
speculate that the inhibition of aerobic glycolysis may enhance
the sensitivity of Sorafenib. By inhibiting aerobic glycolysis
activity, 2-DG resensitized HCC cells to Sorafenib therapy.
Furthermore, several drugs targeting glycolysis-related factors
such as Metformin, Aspirin, Genistein, Simvastatin, and
Proanthocyanidin B2 have been shown to be effective in
reversing Sorafenib resistance (33, 34, 36, 55, 70), indicating the
aerobic glycolysis pathway as a promising target for exploring
new therapies.

Notably, the present study highlighted that the AGI is
a reliable biomarker in predicting the response to Sorafenib
therapy. To date, several clinical and biological biomarkers
have been proposed to evaluate responses to Sorafenib. The
GIDEON trial revealed that patients with preserved liver
function exhibited better OS after treatment with Sorafenib
(73). Similarly, clinical characteristics such as Barcelona Clinic
Liver Cancer (BCLC) stage, viral status, and Sorafenib-related
adverse events were predictive of better survival (74, 75).
As for biological biomarkers, Miyahara et al. reported that
high levels of serum cytokines at baseline predicted poor
outcomes in HCC patients treated with Sorafenib therapy (76).
Arao et al. demonstrated that FGF3/FGF4 amplification was
observed in 30% of HCC patients responding to Sorafenib (77).
Recently, several exploratory studies investigated the roles of
microRNAs in Sorafenib resistance and reported that several
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FIGURE 7 | Aerobic glycolysis index (AGI) is increased in Sorafenib-resistant hepatocellular carcinoma (HCC) cells. (A) Relative expression of AGI-related genes in

HCC cell lines (left, SK-hep-1; right, Huh7) incubated with Sorafenib (5µM) for 24, 36, and 72 h. (B) Distribution of the 14 AGI-related gene expression profiles in

parental and Sorafenib-resistant HCC cell lines (SK-hep-1, Huh7). (C) AGI of Sorafenib-sensitive and Sorafenib-resistant xenografts from the GSE73571 dataset. (D)

Combination of 2-DG and Sorafenib resulted in significantly decreased cell viability. (E) Combination of 2-DG and Sorafenib enhanced the apoptosis of

Sorafenib-resistant cell lines (SK-hep-1SR and Huh7SR). *P < 0.05, **P < 0.01, ***P < 0.001.
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upregulated/downregulated microRNAs, long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs) were predictive
biomarkers of survival outcomes following Sorafenib therapy
(46, 47, 78–80). Different from previous studies, the present
study directly evaluated the performance of the AGI in predicting
Sorafenib responses using the ROC curve and observed an
optimistic AUC of 0.88, which may be more accurate and suitable
in clinical practice.

The present study has several limitations. First, although
the available datasets with requisite gene transcript data and
clinical and treatment outcome information were all included,
the predictive effectiveness of the AGI was evaluated in only a
few datasets. A more careful examination is required to further
confirm the accuracy of the AGI using larger and multicenter
clinical cohorts in the future. Second, the AGI was derived
from a model of 14 gene transcripts including several genes
with very low weight or minimal detectability. A simplified AGI
with fewer key genes is required to improve the robustness and
clinical utility of this model. Third, the AGI was demonstrated
to be essential in Sorafenib resistance and associated with various
tumor hallmarks. However, several genes used to construct the
AGI have not yet been reported as prognostic factors of HCC
and biomarker of Sorafenib, and their underlying mechanism
remains unknown.

In conclusion, we developed a gene signature based on aerobic
glycolysis-related genes by integrating several transcriptomic
profiles, which showed great promise for predicting prognosis
and the response of HCC to Sorafenib. The AGI described
in our study can be developed as a predictive biomarker for
Sorafenib therapy.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: FPKM RNA-Seq data and clinical
information of TCGA LIHC was downloaded from the
UCSC Cancer Browser (https://xenabrowser.net/datapages).
Gene mutation data and GISTIC 2.0 segmentation scores
as well as threshold copy number calls for the TCGA LIHC
samples were acquired from the cBioPortal (http://www.
cbioportal.org). RNA-seq and clinical data of the LIRI-JP
cohort was downloaded from the HCCDB (http://lifeome.net/
database/hccdb/download.html). The GSE14520, GSE25097,
GSE36376, GSE64041, GSE76427, GSE109211, and GSE73571
expression profile was obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The proteomics data
of TCGA LIHC was downloaded from the TCPA database
(https://www.tcpaportal.org/tcpa/index.html). Drug sensitivity
data of HCC cell lines was obtained from the Genomics of
Drug Sensitivity in Cancer (GDSC) database (https://www.

cancerrxgene.org) and Cancer Cell Line Encyclopedia (CCLE)
database (https://portals.broadinstitute.org/ccle/data).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of the Sir Run Run
Shaw Hospital of Zhejiang University. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

YP and G-yH: conceptualization. YP and SJ: data curation. YP,
G-yH, SJ, and S-jX: formal analysis. X-jC, J-jX, Y-hX, and L-xC:
funding acquisition. Z-jL and Q-jM: investigation. YP, Q-jM,
and J-jX: methodology. X-jC and J-jX: project administration.
YP, G-yH, and S-jX: software. X-jC, J-jX, and Y-hX: supervision,
writing review and editing. YP, JZ, L-xC, and Z-jL: validation.
YP: visualization. YP and HM: writing original draft. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China under Grant No. 81827804 (to X-jC),
No. 81772546 (to X-jC), and No. 81902367 (to X-jC); Key
Research and Development Project of Zhejiang Province under
Grand No. 2018C03083 (to X-jC); Zhejiang Provincial Natural
Science Foundation of China under Grant No. LQ19H160026
(to J-jX), No. LQ18H160010 (to JZ), and No. Y15H160052 (to
L-xC); China Post-doctoral Science Foundation under Grant
No. 2020M671755 (to J-jX); Zhejiang Clinical Research Center
of Minimally Invasive Diagnosis and Treatment of Abdominal
Diseases Grant No. 2018E50003 (to J-jX); and Hepatobiliary and
Pancreatic Cancer Research of Hubei Chen Xiaoping Science
and Technology Development Foundation under Grant No.
CXPJJH11900001-2019308 (to J-jX).

ACKNOWLEDGMENTS

We thank Melissa Crawford, PhD, from Liwen Bianji, Edanz
Editing China (www.liwenbianji.cn/ac), for editing the English
text of a draft of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2021.637971/full#supplementary-material

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424.
doi: 10.3322/caac.21492

2. Roayaie S, Obeidat K, Sposito C, Mariani L, Bhoori S, Pellegrinelli
A, et al. Resection of hepatocellular cancer ≤2 cm: results from

Frontiers in Oncology | www.frontiersin.org 13 May 2021 | Volume 11 | Article 637971

https://xenabrowser.net/datapages
http://www.cbioportal.org
http://www.cbioportal.org
http://lifeome.net/database/hccdb/download.html
http://lifeome.net/database/hccdb/download.html
https://www.ncbi.nlm.nih.gov/geo/
https://www.tcpaportal.org/tcpa/index.html
https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://portals.broadinstitute.org/ccle/data
http://www.liwenbianji.cn/ac
https://www.frontiersin.org/articles/10.3389/fonc.2021.637971/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pan et al. AGI for Predicting Sorafenib Resistance

two Western centers. Hepatology. (2013) 57:1426–35. doi: 10.1002/hep.2
5832

3. Sapisochin G, Castells L, Dopazo C, Bilbao I, Minguez B, Lázaro
JL, et al. Single HCC in cirrhotic patients: liver resection or liver
transplantation? Long-term outcome according to an intention-to-
treat basis. Ann Surg Oncol. (2013) 20:1194–202. doi: 10.1245/s10434-01
2-2655-1

4. Vitale A, Peck-Radosavljevic M, Giannini EG, Vibert E, Sieghart
W, Van Poucke S, et al. Personalized treatment of patients with
very early hepatocellular carcinoma. J Hepatol. (2017) 66:412–23.
doi: 10.1016/j.jhep.2016.09.012

5. Villanueva A. Hepatocellular carcinoma. N Engl J Med. (2019) 380:1450–62.
doi: 10.1056/NEJMra1713263

6. Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J, Mauriz
JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors.
Exp Mol Med. (2018) 50:1–9. doi: 10.1038/s12276-018-0159-1

7. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib
in advanced hepatocellular carcinoma. N Engl J Med. (2008) 359:378–90.
doi: 10.1056/NEJMoa0708857

8. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety
of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular
carcinoma: a phase III randomised, double-blind, placebo-controlled trial.
Lancet Oncol. (2009) 10:25–34. doi: 10.1016/S1470-2045(08)70285-7

9. KudoM, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus
sorafenib in first-line treatment of patients with unresectable hepatocellular
carcinoma: a randomised phase 3 non-inferiority trial. Lancet. (2018)
391:1163–73. doi: 10.1016/S0140-6736(18)30207-1

10. Faivre S, Raymond E, Boucher E, Douillard J, Lim HY, Kim JS, et al. Safety
and efficacy of sunitinib in patients with advanced hepatocellular carcinoma:
an open-label, multicentre, phase II study. Lancet Oncol. (2009) 10:794–800.
doi: 10.1016/S1470-2045(09)70171-8

11. Cainap C, Qin S, Huang WT, Chung IJ, Pan H, Cheng Y, et al. Linifanib
versus Sorafenib in patients with advanced hepatocellular carcinoma:
results of a randomized phase III trial. J Clin Oncol. (2015) 33:172–9.
doi: 10.1200/JCO.2013.54.3298

12. Xu J, Zheng L, Chen J, Sun Y, Lin H, Jin RA, et al. Increasing AR by HIF-
2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing
hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK
signals. Cell Death Dis. (2017) 8:e3095. doi: 10.1038/cddis.2017.411

13. Xu J, Lin H, Li G, Sun Y, Shi L, Ma WL, et al. Sorafenib with ASC-J9( R©)
synergistically suppresses the HCC progression via altering the pSTAT3-
CCL2/Bcl2 signals. Int J Cancer. (2017) 140:705–17. doi: 10.1002/ijc.30446

14. Xu J, Lin H, Li G, Sun Y, Chen J, Shi L, et al. The miR-367-3p increases
sorafenib chemotherapy efficacy to suppress hepatocellular carcinoma
metastasis through altering the androgen receptor signals. EBioMedicine.
(2016) 12:55–67. doi: 10.1016/j.ebiom.2016.07.013

15. Zheng L, Xu M, Xu J, Wu K, Fang Q, Liang Y, et al. ELF3 promotes
epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-
mediated silencing in hepatocellular carcinoma. Cell Death Dis. (2018) 9:387.
doi: 10.1038/s41419-018-0399-y

16. Warburg O,Wind F, Negelein E. The metabolism of tumors in the body. J Gen
Physiol. (1927) 8:519–30. doi: 10.1085/jgp.8.6.519

17. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S,
et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine
metabolism that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci USA. (2007) 104:19345–50. doi: 10.1073/pnas.0709747104

18. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for
control of cancer cell metabolism and proliferation. Cancer Cell. (2007)
12:108–13. doi: 10.1016/j.ccr.2007.07.006

19. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s achilles’ heel.
Cancer Cell. (2008) 13:472–82. doi: 10.1016/j.ccr.2008.05.005

20. Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic
aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine.
(2020) 51:102610. doi: 10.1016/j.ebiom.2019.102610

21. Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, et al. Emerging roles and the regulation of
aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. (2020)
39:126. doi: 10.1186/s13046-020-01629-4

22. Alves AP, Mamede AC, Alves MG, Oliveira PF, Rocha SM, Botelho
MF, et al. Glycolysis inhibition as a strategy for hepatocellular
carcinoma treatment? Curr Cancer Drug Targets. (2019) 19:26–40.
doi: 10.2174/1568009618666180430144441

23. Li X, Zhang Y, Ma W, Fu Q, Liu J, Yin G, et al. Enhanced glucose
metabolism mediated by CD147 contributes to immunosuppression in
hepatocellular carcinoma. Cancer Immunol Immunother. (2020) 69:535–48.
doi: 10.1007/s00262-019-02457-y

24. Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng L, et al. GLUT1 and ASCT2
as predictors for prognosis of hepatocellular carcinoma. PLoS ONE. (2016)
11:e0168907. doi: 10.1371/journal.pone.0168907

25. Kim YH, Jeong DC, Pak K, Han ME, Kim JY, Liangwen L, et al.
SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma.
Oncotarget. (2017) 8:68381–92. doi: 10.18632/oncotarget.20266

26. Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, et al. ID1 promotes
hepatocellular carcinoma proliferation and confers chemoresistance to
oxaliplatin by activating pentose phosphate pathway. J Exp Clin Cancer Res.
(2017) 36:166. doi: 10.1186/s13046-017-0637-7

27. Guo Y, Li X, Sun X, Wang J, Yang X, Zhou X, et al. Combined
aberrant expression of NDRG2 and LDHA predicts hepatocellular carcinoma
prognosis and mediates the anti-tumor effect of gemcitabine. Int J Biol Sci.
(2019) 15:1771–86. doi: 10.7150/ijbs.35094

28. Noda T, Yamamoto H, Takemasa I, Yamada D, Uemura M, Wada H,
et al. PLOD2 induced under hypoxia is a novel prognostic factor for
hepatocellular carcinoma after curative resection. Liver Int. (2012) 32:110–8.
doi: 10.1111/j.1478-3231.2011.02619.x

29. Chen G, Wu H, Zhang L, Wei S. High glypican-1 expression is a prognostic
factor for predicting a poor clinical prognosis in patients with hepatocellular
carcinoma. Oncol Lett. (2020) 20:197. doi: 10.3892/ol.2020.12058

30. Huang Q, Li J, Xing J, Li W, Li H, Ke X, et al. CD147 promotes
reprogramming of glucose metabolism and cell proliferation in HCC cells by
inhibiting the p53-dependent signaling pathway. J Hepatol. (2014) 61:859–66.
doi: 10.1016/j.jhep.2014.04.035

31. Tesori V, Piscaglia AC, Samengo D, Barba M, Bernardini C, Scatena R,
et al. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes
with glycolysis blockade for cancer cell killing. Sci Rep. (2015) 5:9149.
doi: 10.1038/srep09149

32. Fiume L, Manerba M, Vettraino M, Di Stefano G. Effect of sorafenib on the
energy metabolism of hepatocellular carcinoma cells. Eur J Pharmacol. (2011)
670:39–43. doi: 10.1016/j.ejphar.2011.08.038

33. Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, et al. PKM2 is the target of
proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp
Clin Cancer Res. (2019) 38:204. doi: 10.1186/s13046-019-1194-z

34. Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, et al. Simvastatin re-
sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-
1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. (2020) 39:24.
doi: 10.1186/s13046-020-1528-x

35. Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, et al. Hexokinase-II inhibition
synergistically augments the anti-tumor efficacy of sorafenib in hepatocellular
carcinoma. Int J Mol Sci. (2019) 20:1292. doi: 10.3390/ijms20061292

36. Li S, Dai W, Mo W, Li J, Feng J, Wu L, et al. By inhibiting PFKFB3, aspirin
overcomes sorafenib resistance in hepatocellular carcinoma. Int. J Cancer.
(2017) 141:2571–84. doi: 10.1002/ijc.31022

37. Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, Wang Y, et al.
Molecular characterization and clinical relevance of metabolic
expression subtypes in human cancers. Cell Rep. (2018) 23:255–69.e4.
doi: 10.1016/j.celrep.2018.03.077

38. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. J Stat Softw. (2010) 33:1–22.
doi: 10.18637/jss.v033.i01

39. Zheng S, Zou Y, Liang JY, Xiao W, Yang A, Meng T, et al. Identification
and validation of a combined hypoxia and immune index for triple-negative
breast cancer. Molecular Oncol. (2020) 14:2814–33. doi: 10.1002/1878-0261.1
2747

40. Ji L, Lin Z, Wan Z, Xia S, Jiang S, Cen D, et al. miR-486-3p mediates
hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR.
Cell Death Dis. (2020) 11:250. doi: 10.1038/s41419-020-2413-4

Frontiers in Oncology | www.frontiersin.org 14 May 2021 | Volume 11 | Article 637971

https://doi.org/10.1002/hep.25832
https://doi.org/10.1245/s10434-012-2655-1
https://doi.org/10.1016/j.jhep.2016.09.012
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.1038/s12276-018-0159-1
https://doi.org/10.1056/NEJMoa0708857
https://doi.org/10.1016/S1470-2045(08)70285-7
https://doi.org/10.1016/S0140-6736(18)30207-1
https://doi.org/10.1016/S1470-2045(09)70171-8
https://doi.org/10.1200/JCO.2013.54.3298
https://doi.org/10.1038/cddis.2017.411
https://doi.org/10.1002/ijc.30446
https://doi.org/10.1016/j.ebiom.2016.07.013
https://doi.org/10.1038/s41419-018-0399-y
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.1073/pnas.0709747104
https://doi.org/10.1016/j.ccr.2007.07.006
https://doi.org/10.1016/j.ccr.2008.05.005
https://doi.org/10.1016/j.ebiom.2019.102610
https://doi.org/10.1186/s13046-020-01629-4
https://doi.org/10.2174/1568009618666180430144441
https://doi.org/10.1007/s00262-019-02457-y
https://doi.org/10.1371/journal.pone.0168907
https://doi.org/10.18632/oncotarget.20266
https://doi.org/10.1186/s13046-017-0637-7
https://doi.org/10.7150/ijbs.35094
https://doi.org/10.1111/j.1478-3231.2011.02619.x
https://doi.org/10.3892/ol.2020.12058
https://doi.org/10.1016/j.jhep.2014.04.035
https://doi.org/10.1038/srep09149
https://doi.org/10.1016/j.ejphar.2011.08.038
https://doi.org/10.1186/s13046-019-1194-z
https://doi.org/10.1186/s13046-020-1528-x
https://doi.org/10.3390/ijms20061292
https://doi.org/10.1002/ijc.31022
https://doi.org/10.1016/j.celrep.2018.03.077
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1002/1878-0261.12747
https://doi.org/10.1038/s41419-020-2413-4
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pan et al. AGI for Predicting Sorafenib Resistance

41. Lin Z, Xia S, Liang Y, Ji L, Pan Y, Jiang S, et al. LXR activation potentiates
sorafenib sensitivity in HCC by activating microRNA-378a transcription.
Theranostics. (2020) 10:8834–50. doi: 10.7150/thno.45158

42. Ren R, Guo J, Shi J, Tian Y, Li M, Kang H. PKM2 regulates angiogenesis of
VR-EPCs through modulating glycolysis, mitochondrial fission, and fusion. J
Cell Physiol. (2020) 235:6204–17. doi: 10.1002/jcp.29549

43. Yetkin-Arik B, Vogels IMC, Nowak-Sliwinska P, Weiss A, Houtkooper RH,
Van Noorden CJF, et al. The role of glycolysis and mitochondrial respiration
in the formation and functioning of endothelial tip cells during angiogenesis.
Sci Rep. (2019) 9:12608. doi: 10.1038/s41598-019-48676-2

44. Zhang W, Zhang X, Huang S, Chen J, Ding P, Wang Q, et al. FOXM1D
potentiates PKM2-mediated tumor glycolysis and angiogenesis. Mol Oncol.

(2020). doi: 10.21203/rs.3.rs-40077/v1. [Epub ahead of print].
45. Wang ZH, Zhang YZ, Wang YS, Ma XX. Identification of novel cell glycolysis

related gene signature predicting survival in patients with endometrial cancer.
Cancer Cell Int. (2019) 19:296. doi: 10.1186/s12935-019-1001-0

46. Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, et al. N(6)-methyladenosine-
modified CircRNA-SORE sustains sorafenib resistance in hepatocellular
carcinoma by regulating β-catenin signaling. Mol Cancer. (2020) 19:163.
doi: 10.1186/s12943-020-01281-8

47. Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates
sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal
Transduct Targeted Ther. (2020) 5:298. doi: 10.1038/s41392-020-00375-5

48. Yao G, Yin J, Wang Q, Dong R, Lu J. Glypican-3 enhances
reprogramming of glucose metabolism in liver cancer cells.
Biomed Res Int. (2019) 2019:2560650. doi: 10.1155/2019/25
60650

49. Zhou H, Wang L, Huang J, Jiang M, Zhang X, Zhang L, et al.
High EGFR_1 inside-out activated inflammation-induced motility through
SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C. J Cancer. (2015)
6:519–24. doi: 10.7150/jca.11404

50. Du W, Liu N, Zhang Y, Liu X, Yang Y, Chen W, et al. PLOD2 promotes
aerobic glycolysis and cell progression in colorectal cancer by upregulating
HK2. Biochem Cell Biol. (2020) 98:386–95. doi: 10.1139/bcb-2019-0256

51. Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M, et al. SIRT3-
dependent GOT2 acetylation status affects the malate-aspartate NADH
shuttle activity and pancreatic tumor growth. EMBO J. (2015) 34:1110–25.
doi: 10.15252/embj.201591041

52. Wang T, YaoW, Li J, He Q, Shao Y, Huang F. Acetyl-CoA from inflammation-
induced fatty acids oxidation promotes hepatic malate-aspartate shuttle
activity and glycolysis. Am J Physiol Endocrinol Metab. (2018) 315:E496–510.
doi: 10.1152/ajpendo.00061.2018

53. Sarapio E, De Souza SK, Model JFA, Trapp M, Da Silva RSM. Stanniocalcin-
1 and−2 effects on glucose and lipid metabolism in white adipose tissue
from fed and fasted rats. Can J Physiol Pharmacol. (2019) 97:916–23.
doi: 10.1139/cjpp-2019-0023

54. López JJ, Jardín I, Cantonero Chamorro C, Duran ML, Tarancón Rubio MJ,
Reyes Panadero M, et al. Involvement of stanniocalcins in the deregulation of
glycaemia in obese mice and type 2 diabetic patients. J Cell Mol Med. (2018)
22:684–94. doi: 10.1111/jcmm.13355

55. DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G,
et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative
phosphorylation in hepatocellular carcinoma and sensitizes tometformin.Nat
Commun. (2018) 9:446. doi: 10.1038/s41467-018-04182-z

56. Martin SP, Fako V, Dang H, Dominguez DA, Khatib S, Ma L, et al.
PKM2 inhibition may reverse therapeutic resistance to transarterial
chemoembolization in hepatocellular carcinoma. J Exp Clin Cancer Res.
(2020) 39:99. doi: 10.1186/s13046-020-01605-y

57. Feng Y, Zhang Y, Cai Y, Liu R, LuM, Li T, et al. A20 targets PFKL and glycolysis
to inhibit the progression of hepatocellular carcinoma. Cell Death Dis. (2020)
11:89. doi: 10.1038/s41419-020-2278-6

58. Zhang L, Zhang Z, Yu Z. Identification of a novel glycolysis-
related gene signature for predicting metastasis and survival in
patients with lung adenocarcinoma. J Transl Med. (2019) 17:423.
doi: 10.1186/s12967-019-02173-2

59. Zhou Z, Huang R, Chai R, Zhou X, Hu Z, Wang W, et al. Identification of
an energy metabolism-related signature associated with clinical prognosis in
diffuse glioma. Aging. (2018) 10:3185–209. doi: 10.18632/aging.101625

60. Liu J, Li S, Feng G, Meng H, Nie S, Sun R, et al. Nine glycolysis-
related gene signature predicting the survival of patients with
endometrial adenocarcinoma. Cancer Cell Int. (2020) 20:183.
doi: 10.1186/s12935-020-01264-1

61. Fang Z, He L, Jia H, Huang Q, Chen D, Zhang Z. The miR-383-LDHA axis
regulates cell proliferation, invasion and glycolysis in hepatocellular cancer.
Iran J Basic Med Sci. (2017) 20:187–92. doi: 10.22038/ijbms.2017.8246

62. Hua S, Liu C, Liu L, Wu D. miR-142-3p inhibits aerobic glycolysis
and cell proliferation in hepatocellular carcinoma via targeting LDHA.
Biochem Biophys Res Commun. (2018) 496:947–54. doi: 10.1016/j.bbrc.201
8.01.112

63. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the
transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in
hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. (2020) 11:176.
doi: 10.1038/s41419-020-2366-7

64. Shang R, Pu M, Li Y, Wang D. FOXM1 regulates glycolysis in hepatocellular
carcinoma by transactivating glucose transporter 1 expression. Oncol Rep.
(2017) 37:2261–9. doi: 10.3892/or.2017.5472

65. Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, et al. Elevated G6PD expression
contributes to migration and invasion of hepatocellular carcinoma cells by
inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin. (2018)
50:370–80. doi: 10.1093/abbs/gmy009

66. Ma L, Liu W, Xu A, Ji Q, Ma Y, Tai Y, et al. Activator of thyroid
and retinoid receptor increases sorafenib resistance in hepatocellular
carcinoma by facilitating the Warburg effect. Cancer Sci. (2020) 111:2028–40.
doi: 10.1111/cas.14412

67. Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, et al. Activating oxidative
phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes
sorafenib resistance of hepatocellular carcinoma. Br J Cancer. (2013) 108:72–
81. doi: 10.1038/bjc.2012.559

68. You X, Jiang W, Lu W, Zhang H, Yu T, Tian J, et al. Metabolic
reprogramming and redox adaptation in sorafenib-resistant leukemia cells:
detected by untargeted metabolomics and stable isotope tracing analysis.
Cancer Commun. (2019) 39:17. doi: 10.1186/s40880-019-0362-z

69. Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of
hexokinase II inhibits Bax-induced cytochrome c release and
apoptosis. J Biol Chem. (2002) 277:7610–8. doi: 10.1074/jbc.M1099
50200

70. Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, et al. Genistein suppresses aerobic
glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. (2017)
117:1518–28. doi: 10.1038/bjc.2017.323

71. Comerford KM,Wallace TJ, Karhausen J, Louis NA,MontaltoMC, Colgan SP.
Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance
(MDR1) gene. Cancer Res. (2002) 62:3387–94.

72. Liu R, Li Y, Tian L, Shi H, Wang J, Liang Y, et al. Gankyrin drives metabolic
reprogramming to promote tumorigenesis, metastasis and drug resistance
through activating β-catenin/c-Myc signaling in human hepatocellular
carcinoma. Cancer Lett. (2019) 443:34–46. doi: 10.1016/j.canlet.2018.11.030

73. Marrero JA, Kudo M, Venook AP, Ye SL, Bronowicki JP, Chen XP,
et al. Observational registry of sorafenib use in clinical practice across
child-pugh subgroups: the GIDEON study. J Hepatol. (2016) 65:1140–7.
doi: 10.1016/j.jhep.2016.07.020

74. Bruix J, Cheng AL, Meinhardt G, Nakajima K, De Sanctis Y, Llovet J.
Prognostic factors and predictors of sorafenib benefit in patients with
hepatocellular carcinoma: analysis of two phase III studies. J Hepatol. (2017)
67:999–1008. doi: 10.1016/j.jhep.2017.06.026

75. Casadei Gardini A, Marisi G, Scarpi E, Scartozzi M, Faloppi L, Silvestris
N, et al. Effects of metformin on clinical outcome in diabetic patients
with advanced HCC receiving sorafenib. Expert Opin Pharmacother. (2015)
16:2719–25. doi: 10.1517/14656566.2015.1102887

76. Miyahara K, Nouso K, Tomoda T, Kobayashi S, Hagihara H, Kuwaki K, et al.
Predicting the treatment effect of sorafenib using serum angiogenesis markers
in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. (2011)
26:1604–11. doi: 10.1111/j.1440-1746.2011.06887.x

77. Arao T, Ueshima K, Matsumoto K, Nagai T, Kimura H, Hagiwara S,
et al. FGF3/FGF4 amplification and multiple lung metastases in responders
to sorafenib in hepatocellular carcinoma. Hepatology. (2013) 57:1407–15.
doi: 10.1002/hep.25956

Frontiers in Oncology | www.frontiersin.org 15 May 2021 | Volume 11 | Article 637971

https://doi.org/10.7150/thno.45158
https://doi.org/10.1002/jcp.29549
https://doi.org/10.1038/s41598-019-48676-2
https://doi.org/10.21203/rs.3.rs-40077/v1
https://doi.org/10.1186/s12935-019-1001-0
https://doi.org/10.1186/s12943-020-01281-8
https://doi.org/10.1038/s41392-020-00375-5
https://doi.org/10.1155/2019/2560650
https://doi.org/10.7150/jca.11404
https://doi.org/10.1139/bcb-2019-0256
https://doi.org/10.15252/embj.201591041
https://doi.org/10.1152/ajpendo.00061.2018
https://doi.org/10.1139/cjpp-2019-0023
https://doi.org/10.1111/jcmm.13355
https://doi.org/10.1038/s41467-018-04182-z
https://doi.org/10.1186/s13046-020-01605-y
https://doi.org/10.1038/s41419-020-2278-6
https://doi.org/10.1186/s12967-019-02173-2
https://doi.org/10.18632/aging.101625
https://doi.org/10.1186/s12935-020-01264-1
https://doi.org/10.22038/ijbms.2017.8246
https://doi.org/10.1016/j.bbrc.2018.01.112
https://doi.org/10.1038/s41419-020-2366-7
https://doi.org/10.3892/or.2017.5472
https://doi.org/10.1093/abbs/gmy009
https://doi.org/10.1111/cas.14412
https://doi.org/10.1038/bjc.2012.559
https://doi.org/10.1186/s40880-019-0362-z
https://doi.org/10.1074/jbc.M109950200
https://doi.org/10.1038/bjc.2017.323
https://doi.org/10.1016/j.canlet.2018.11.030
https://doi.org/10.1016/j.jhep.2016.07.020
https://doi.org/10.1016/j.jhep.2017.06.026
https://doi.org/10.1517/14656566.2015.1102887
https://doi.org/10.1111/j.1440-1746.2011.06887.x
https://doi.org/10.1002/hep.25956
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pan et al. AGI for Predicting Sorafenib Resistance

78. Vaira V, Roncalli M, Carnaghi C, Faversani A, Maggioni M, Augello C, et al.
MicroRNA-425-3p predicts response to sorafenib therapy in patients with
hepatocellular carcinoma. Liver Int. (2015) 35:1077–86. doi: 10.1111/liv.12636

79. Gyöngyösi B, Végh É, Járay B, Székely E, Fassan M, Bodoky G,
et al. Pretreatment MicroRNA level and outcome in sorafenib-treated
hepatocellular carcinoma. J Histochem Cytochem. (2014) 62:547–55.
doi: 10.1369/0022155414537277

80. Yoon EL, Yeon JE, Ko E, Lee HJ, Je JH, Yoo YJ, et al. An explorative analysis
for the role of serum miR-10b-3p levels in predicting response to sorafenib
in patients with advanced hepatocellular carcinoma. J Korean Med Sci. (2017)
32:212–20. doi: 10.3346/jkms.2017.32.2.212

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Pan, Hu, Jiang, Xia, Maher, Lin, Mao, Zhao, Cai, Xu, Xu and Cai.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Oncology | www.frontiersin.org 16 May 2021 | Volume 11 | Article 637971

https://doi.org/10.1111/liv.12636
https://doi.org/10.1369/0022155414537277
https://doi.org/10.3346/jkms.2017.32.2.212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma
	Introduction
	Materials and Methods
	Specimen Collection and RNA Sequencing
	Data Acquisition and Processing
	Development of the AGI
	Gene Set Enrichment Analysis and Gene Set Variation Analysis
	Cell Culture of Liver Cancer Cell Lines
	Cell Viability Test
	Apoptosis Assay
	Transwell Assay
	Glucose Consumption and Lactic Acid Assays
	Statistical Analysis

	Results
	Establishment of the AGI
	Association of the AGI With Genomic and Proteomic Alterations
	Correlation Between the AGI and Clinical Characteristics
	Prognostic Value Validation of the AGI
	AGI Predicts Sensitivity to Sorafenib in Both HCC Cell Lines and Patients
	Increased AGI in Sorafenib-Resistant HCC Cell Lines

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


