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Abstract: The study of the evolution process of our visual system indicates the existence of variational
spatial arrangement; from densely hexagonal in the fovea to a sparse circular structure in the
peripheral retina. Today’s sensor spatial arrangement is inspired by our visual system. However,
we have not come further than rigid rectangular and, on a minor scale, hexagonal sensor arrangements.
Even in this situation, there is a need for directly assessing differences between the rectangular and
hexagonal sensor arrangements, i.e., without the conversion of one arrangement to another. In this
paper, we propose a method to create a common space for addressing any spatial arrangements and
assessing the differences among them, e.g., between the rectangular and hexagonal. Such a space is
created by implementing a continuous extension of discrete Weyl Group orbit function transform
which extends a discrete arrangement to a continuous one. The implementation of the space is
demonstrated by comparing two types of generated hexagonal images from each rectangular image
with two different methods of the half-pixel shifting method and virtual hexagonal method. In the
experiment, a group of ten texture images were generated with variational curviness content using
ten different Perlin noise patterns, adding to an initial 2D Gaussian distribution pattern image.
Then, the common space was obtained from each of the discrete images to assess the differences
between the original rectangular image and its corresponding hexagonal image. The results show
that the space facilitates a usage friendly tool to address an arrangement and assess the changes
between different spatial arrangements by which, in the experiment, the hexagonal images show
richer intensity variation, nonlinear behavior, and larger dynamic range in comparison to the
rectangular images.

Keywords: software-based; common space; hexagonal image; pixel arrangement; pixel form;
continuous extension; resampling

1. Introduction

The visual sensory of some of biological species can easily outperform our conventional vision
technology. Inspired by such efficient machines, we have built our electronic systems which aim
to capture a scenery with the same efficient style of performance by emulating the structure and
function of biological counterparts. The sensor structure, sensor form, and surface shape of eye
show a wide range of adaptations to meet the requirements of the organisms which bear them. Eye
performance of different species vary in their visual acuity—the range of wavelengths they can detect,
their sensitivity in low light, their ability to detect motion or to resolve objects, and whether they can
discriminate colors [1]. The spatial sensor arrangement of the eyes plays a significant role in such
variational performances [2]. The study of the evolution process of our visual system indicates how
our spatial sensor arrangement is evolved and differentiated from other species and especially from
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the closest ones, the primates, which has resulted in the existence of variational spatial arrangement;
from densely hexagonal in the fovea to a sparse circular structure in the peripheral retina. The high
contrast and optimal sampling properties of our visual system are directly related to the densely
hexagonal spatial arrangement.

Today’s sensor spatial arrangement is inspired by our visual system. However, we have not
come further than rigid rectangular and, on a minor scale, hexagonal sensor arrangements. Some of
the obstacles in developing new sensor arrangements are the difficulty in manufacturing, the cost,
and rigidity of hardware components. The virtual deformation of the sensor arrangement [3] provides
new possibilities for overcoming such obstacles. We need strong arguments to convince the involved
partners in sensor development to implement the virtual deformation ideas. It is not enough to only
show that the virtual deformation sensor arrangement is feasible, but also, that the addressing of new
arrangements can be achieved easily and smoothly, without need of defining new grid structures
which generally results in heavy computation. Thus, we propose a new method in the paper which
eliminates the need for defining new grid structures for addressing different sensor arrangements.
One direct application of the proposed method is its implementation as an assessment tool where
different sensor arrangements are compared with each other; i.e., without the need for conversion of
one arrangement to another one.

In this paper, we propose a method to create a common space which facilitates addressing and
assessing different spatial arrangements of sensors, e.g., between the rectangular and hexagonal
arrangements. Such a space is created by implementing a continuous extension of discrete
Weyl Group orbit function transform which extends a discrete arrangement to a continuous one.
The implementation of the space is demonstrated by comparing two types of generated hexagonal
images from each rectangular image with two different methods of the half-pixel shifting and virtual
hexagonal method. In the experiment, a group of ten texture images are generated with variational
curviness content using ten different Perlin noise patterns, adding to an initial 2D Gaussian distribution
pattern image. Then, the common space is obtained from each of the discrete images to address and
assess the differences between the original rectangular image and its corresponding hexagonal image.

This paper is organized as follows. In Section 2, the addressing of arrangement is explained.
Then the two types of image generation are explained in Section 3. Sections 4 and 5 present the
methodology of the common space and the experiment setup, respectively. Then the results are shown
and discussed in Section 6. Finally, we summarize our work in Section 7.

2. Arrangement Addressing

In relation to the assessment of two images having two different arrangements; e.g., one having
square and another hexagonal arrangement, the addressing of arrangement is the most important
issue by which it becomes possible to access each arrangement unit (the pixel). Such access property
for any arrangement should be easy and fast in implementation, in comparison to the popular square
arrangement. The problem of any arrangement, beside the square one, is manifested in finding new
definitions for grid structures. Here, we elaborate on the problem for the hexagonal arrangement,
which has been studied for more than four decades, and different addressing methods are suggested.
A hexagonal arrangement is addressed using two oblique axes [4], also referred to as skewed coordinate
system in [5], and h2 system in [6], where two basis vectors are not orthogonal. With such an oblique
coordinate system, each hexagonal pixel is addressed by an ordered pair of unit vectors. A symmetrical
hexagonal coordinate frame which uses three coordinates instead of two is used to represent each
pixel on a grid plane [7,8]. The major advantage of this coordinate system is that there is a one-to-one
mapping between hexagonal and square arrangements. Moreover, in [9], this symmetrical hexagonal
coordinate frame is used to derive various affine transformations. The geometric transformations
on the hexagonal grid are conveniently simplified and the symmetry property of the hexagonal grid
is successfully preserved. The three-axis coordinate system is also used in [10] for mathematically
handling the hexagonal arrangement. Spiral Architecture, inspired from anatomical consideration
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of the primate’s vision system, is proposed by [11] which is a 1D addressing system. This address
grows from the center of image in powers of seven along a spiral-like curve. This addressing scheme
combined with two later proposed mathematic operations, spiral addition and spiral multiplication,
is the basic Spiral Architecture [11,12]. A similar single-index system for pixel addressing is proposed
by modifying the Generalized Balanced Ternary system [13,14]. A virtual hexagonal structure is
proposed by the authors of [15] where the hexagonal pixels do not physically exist but are recorded
during image processing in the memory space. The approach demands high computation for image
conversion (from one arrangement to another) for determining the locations (or the areas) of each pixel.
A reduced computational complexity method is derived from the virtual hexagonal structure proposal
by the authors of [16].

3. Image Generation

In this section, we explain generation of two types of images which have hexagonal arrangements.
The images are generated from an original image with square arrangement. An example of such
images is demonstrated in Figure 1.
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Figure 1. The images on three types of sensory arrangements. (a) The original square image (SQ);
(b) hexagonal image (Hex_E); (c) half-pixel shift image (HS_E).

3.1. Generation of the Virtual Hexagonal Enriched Image (Hex_E)

The virtual hexagonal enriched image has a hexagonal pixel form on a hexagonal arrangement.
The generation process is similar to the resampling process in [17,18], which has three steps: projecting
the original image pixel intensities onto a grid of sub-pixels; estimating the values of subpixels at the
resampling positions; estimating each new hexagonal pixel intensity in a new hexagonal arrangement
where the subpixels are projected back to a hexagonal grid, which are shown as red grids in Figure 2.
In this arrangement the distance between each two hexagonal pixels is the same and the resolution of
the generated Hex_E image is the same as the original image.

3.2. Generation of the Virtual Half-Pixel Shift Enriched Image (HS_E)

The hexagonal grid in previous work [19,20] is mimicked by a half-pixel shift which is derived
from delaying sampling by a half pixel on the horizontal direction. The red grid, which is presented in
the middle of Figure 2, is the new pseudo hexagonal sampling structure whose pixel form is still square.
The new pseudo hexagonal grid is derived from a usual 2D grid by shifting each even row a half
pixel to the right and leaving odd rows unattached, or of course any similar translation. The virtual
Half-pixel Shift Enriched image (HS_E) is generated from the original enriched image [3] which has a
square arrangement.
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Figure 2. Three types of sensory arrangements. (a) The sensor rearrangement onto the subpixel; (b) the
projection of the square pixels onto the hexagonal arrangement by half-pixel shifting method (i.e., HS_E
image generation); (c) the projection of the square pixels onto the hexagonal grid in generation of
hexagonal image (Hex_E).

4. Common Space Based on Continuous Extension

To elaborate the common space, let us start with a simple 1D example. Assuming we have
a continuous 1D signal, it is not difficult to imagine that we can sample the signal with different
time intervals. However, the opposite way is not so easy; i.e., to obtain the continuous signal from
different time intervals. Further, this becomes even extremely difficult when we have sampled our
data by a certain time interval and try to use the data to resample according to another time interval.
Here, for the common space we have the last-mentioned condition where the sampled data is 2D
and from the image sensor. In this relation, the choice of spatial sensor arrangement affects the
sampling results as the choice of time interval in the 1D signal example. In the 2D sampling the data is
sampled from a continuous surface; i.e., each spatial sensor arrangement results in certain sampling
data from certain points on the continuous surface. By common space, we mean such continuous
surface which is created by continuous extension of spatial data; i.e., from sampling data from certain
spatial sensor arrangement a common space (a continuous surface) is generated. The common space is
used to estimate the sampling data according to another spatial sensor arrangement; i.e., a common
space is created by sampling data from hexagonal spatial arrangement and then the sampling data
of a rectangular spatial arrangement is estimated. In this way, on the common space, we have
correspondent points of each sampling point related to different spatial arrangements, which facilitates
the addressing and assessing of different spatial arrangements of sensors.

The common space is created by implementing a continuous extension of discrete Weyl Group
orbit function transform. Orbit functions on the Euclidean space are symmetrized exponential
functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin
diagram. The values of orbit functions are repeated on copies of a fundamental domain of the affine
Weyl group (determined by the initial Weyl group) in the entire Euclidean space. Recalling that
the exponential functions determine the Fourier transform on Euclidean space. Correspondingly,
orbit functions determine a symmetrized version of the Fourier transform which is also called an orbit
function transform. One of the key properties of orbit transform is that sequence of orbit transform,
and inverse orbit transform preserve the processed data. This property is preserved even when discrete
orbit function in the inverse orbit transform is replaced with a continuous orbit function of the same
family. In other words, for any symmetrical grid such as rectangular or hexagonal grid, in frequency
domain a continuous spectrum surface can be generated from the discrete information of the grid.
We call this continuous spectrum surface a common space. The creation and proof of such common
space is explicated in detail in Appendix A for interested readers.
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The creation of continuous extension of the original data is independent of the data arrangement;
i.e., it is possible to create common space from any spatial arrangement, such as square or hexagonal
ones. We refer to these common spaces in relation to their original data arrangements, such as CSE_sq
or CSE_hex for the created common spaces from square and hexagonal arrangement, respectively.

On the common space, any grid structure is applied virtually; i.e., the corresponding addressing
of each pixel position from different arrangements are done on the common space. Thus, by knowing
the pixel form of each arrangement, the intensity value of each corresponding pixel is determined at
the pixel position on the common space.

5. Experimental Setup

Evaluating the proposed common space method in assessing different sensor structures is based
on using different generated images. In Section 3, the generated procedures of those types of image,
which are used in the evaluation, are all types of image that are originated from a rectangular
arrangement. Thus, generating images based on rectangular arrangement is essential for experimental
evaluation. On the other hand, to evaluate the addressing accuracy of the common space usage,
we need to generate such images which also have a content with random spatial variation in each
pixel. This is because by using the common space only one coordinate system is used to address each
pixel position and obtain its intensity value in two different arrangements; i.e., each pixel position and
intensity value of the originate arrangement to the common space is known, but the correspondent
position and intensity value on the other arrangement is estimated using the common space surface.
In relation to this, the evaluation of addressing accuracy can be achieved by measuring the estimations
error. The statistical validation of the estimations error requires the random spatial variation in each
pixel; i.e., as spatial variation in natural images. The estimations error can be measured for all pixels
of each two experimental images, using the common space addressing, or selected amount of their
correspondent pixels. In the experiments we used the latter option. To ensure that the selected pixels
represent different intensity levels it requires to generate the experimental images with a certain
intensity model; e.g., a Gaussian model.

An image dataset is created which consists of 10 high resolution (4096 by 2160) original images
(SQs) and their converted ones, of type of HS_E and Hex_E images with the same resolution;
i.e., the dataset has a total of 30 images, where the interval of subpixel is 30. The conversion process is
elaborated on in Section 3. Each of the ten original images is generated by adding a Gaussian image
(GI) to a random Perlin noise image (PI). The GI contributes to obtain all possible tonal levels in range
of 0–255 gray levels in each original image. Each GI is generated by

GI = 255 ∗ e
−( x2

2σ2
1
+

y2

2σ2
2
)

(1)

where σ1 and σ2 are 1920 and 1280 respectively and the original images SQs is obtained by:

SQj = GI + PIj (2)

where j is the image index number. The values of σ1 and σ2 are approximately half of the image
resolution in each direction. Based on the rule of thumb, GI represents fully a Gaussian intensity model
where the values of σ1 and σ2 are one third of image resolution in each direction. In this relation GI
is not fully a representative of a Gaussian intensity model. This is to prevent obtaining significantly
lower level intensity values which can affect evaluation of addressing accuracy. By generating the
PI image, a pseudo-random spatial variation in each pixel is obtained which simulates variational
curviness content; i.e., we imitate the appearance of textures in natural images by a controlled random
process. In this way, using GI and PI, each original image of the dataset is generated to have natural
images properties and with wider range of variation than exists in a captured natural image. Each PI is
generated by implementing the Perlin noise algorithm [21,22] where each pixel of the image; PI(x, y),
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is computed by two major steps: (a) projection of pixel vector position on pseudorandom gradients of
→
g 00 = [x00, y00],

→
g 01 = [x01, y01],

→
g 10 = [x10, y10], and

→
g 11 = [x11, y11] at integer points [0,0], [0,1], [1,0],

and [1,1], respectively, (b) interpolation and smoothing between points ‘value at the integer points by
a cubic spline function S(x) = x2(3− 2x) and a linear interpolation function L(ε, x, y) = x + ε(y− x)
as shown in Figure 3 and explained by algorithm steps in Table 1. The PI contributes to obtain all
possible tonal levels in range of 0–255 gray levels. The range of SQj images; a combination of GI and
PI images where each has a range of 0–255 tonal levels, are normalized to obtain images with range of
0–255 tonal levels. The generation of SQ images is demonstrated in Figure 4.
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Table 1. The algorithm of implemented 2D Perlin noise.

0. Input
→
P = [x, y]

1. Sx = S(x)

2. Sy = S(y)

3. ua =
→
P ·→g 00

4. va =
→
P ·→g 10

5. a = L(Sx, ua, va)

6. ub =
→
P ·→g 01

7. vb =
→
P ·→g 11

8. b = L(Sx, ub, vb)

9. Output L(Sy, a, b)
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6. Results and Analysis

In this section, we show the addressing and assessment feasibility of three types of images of SQ,
HS_E, and Hex_E (i.e., having different pixel arrangements) using the common space. There are ten of
such triple types of images in the dataset and for each triple image type the results were obtained in three
stages of general preparation, case of CSE_sq and case of CSE_hex as it is shown in the flowchart of Figure 5.
The blue, green and red dash-line squares represent the image dataset generation, case of CSE_sq and case
of CSE_hex respectively. The dot arrow shows the pixels are selected in the Hex_E, HS_E and SQ images.
The thick and thin arrows represent the process of image generation and applying the selected pixels on the
images respectively. Table 2 lists the symbols in Figure 5 with their meanings. We explain the three stages
and then discuss and analyze the obtained results which indicate the feasibility and accuracy of addressing
and assessment of random pixels from one arrangement to another one.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 20 

 

generation, case of CSE_sq and case of CSE_hex respectively. The dot arrow shows the pixels are 
selected in the Hex_E, HS_E and SQ images. The thick and thin arrows represent the process of image 
generation and applying the selected pixels on the images respectively. Table 2 lists the symbols in 
Figure 5 with their meanings. We explain the three stages and then discuss and analyze the obtained 
results which indicate the feasibility and accuracy of addressing and assessment of random pixels 
from one arrangement to another one.  
 

Hex_E SQHS_E

Hex_Ep

24 × 200 random 
positions

HS_Ep

SQCEhexHS_ECEhexHex_ECEorg SQCEorgHS_ECEsqHex_ECEsq

Conversion

Conversion

CSE_hex CSE_sq

SQp24 sub-
range

Image dataset

Case of 
CSE_sq 

Case of 
CSE_hex 

 
Figure 5. The flowchart to discuss and analyze the obtained results. 

Table 2. Description of used symbols. 

Symbol Full name and size Sensor 
arrangement 

Originated 
from 

Method 

SQ Square image  
4096 × 2160 

square - - 

Hex_E 
Hexagonal enriched 

image  
4096 × 2160 

hexagonal SQ  Conversion 

HS_E Half-pixel shift image  
4096 × 2160 

square SQ  Conversion 𝑺𝑸𝒑 Square matrix image  
200 × 24 

square SQ  Pixel selection 
on SQ 𝑯𝒆𝒙_𝑬𝒑 

Hexagonal enriched 
matrix image  

200 × 24 
hexagonal Hex_E  

Pixel selection 
on Hex_E 

𝑯𝑺_𝑬𝒑 
Half-pixel shift matrix 

image 
200 × 24 

square HS_E image 
Pixel selection 

on HS_E 

CSE_sq Common Space surface  continuous 
extension SQ image  New method, 

see Section 4 

Figure 5. The flowchart to discuss and analyze the obtained results.

Table 2. Description of used symbols.

Symbol Full Name and Size Sensor
Arrangement Originated from Method

SQ Square image
4096 × 2160 square - -

Hex_E Hexagonal enriched image
4096 × 2160 hexagonal SQ Conversion

HS_E Half-pixel shift image
4096 × 2160 square SQ Conversion

SQp
Square matrix image

200 × 24 square SQ Pixel selection
on SQ

Hex_Ep

Hexagonal enriched
matrix image

200 × 24
hexagonal Hex_E Pixel selection on

Hex_E
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Table 2. Cont.

Symbol Full Name and Size Sensor
Arrangement Originated from Method

HS_Ep

Half-pixel shift
matrix image

200 × 24
square HS_E image Pixel selection

on HS_E

CSE_sq Common Space surface continuous
extension SQ image New method,

see Section 4

CSE_hex Common Space surface continuous
extension Hex_E image New method,

see Section 4

SQCEorg

Estimated Square
matrix image

200 × 24
square CSE_sq Pixel selection on

the CSE_sq

Hex_ECEsq

Estimated Hexagonal
matrix image

200 × 24
hexagonal CSE_sq Pixel selection on

the CSE_sq

HS_ECEsq

Estimated Half-pixel shift
matrix image

200 × 24
square CSE_sq Pixel selection on

the CSE_sq

SQCEhex

Estimated Square
matrix image

200 × 24
square CSE_hex Pixel selection on

the CSE_hex

HexCEorg

Estimated Hexagonal
matrix image

200 × 24
hexagonal CSE_hex Pixel selection on

the CSE_hex

HSCEhex

Estimated Half-pixel shift
matrix image

200 × 24
square CSE_hex Pixel selection on

the CSE_hex

6.1. General Preparation

Each SQ image in the data set is an eight bits image; i.e., the range of intensity values is between
0 and 255. The pixels of each SQ image are partitioned by having 24 intensity sub-ranges (e.g., 10–19,
. . . , 190–199, 240–250) to investigate in more detail the tonal variation. In each sub-range, 200-pixel
positions are selected randomly in each SQ image; i.e., 24 by 200 pixels are chosen randomly meanwhile
assuring to have different tonal levels and representative of the whole intensity range. The 24 intensity
sub-ranges are related to the statistical requirement of having a pixel population in which we can
select 200 pixels positions. According to our observation from the generated images, a binning
of 10 tonal levels could fulfill the requirement where each intensity sub-range has at least a pixel
population of 1%. Figure 6 shows a typical pixel population for 25 intensity sub-ranges. The first
intensity sub-range; with tonal levels between 0–9. And the last sub-range with tonal levels between
251–255 have less than the pixel population of 1% which accordingly will be discard in the pixel
selection process. The 200 random pixels in each intensity sub-range is because they contain sufficient
spatial intensity variation information in a certain sub-range of tonal variations to underpin statistical
analysis. Using the pixel positions, the relative intensity values from SQ, HS_E and Hex_E images
are organized in new images of SQp, HS_Ep, and Hex_Ep respectively; each with size of 200 by 24.
The pixels of each column of such an image are ordered by sorting the linear indexing of the 200
random selected pixels in each intensity-subrange.
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6.2. In Case of CSE_sq

The common space of each SQ image, CSE_sq, is created according to Section 4. Using the
common space of CSE_sq and the pixel positions of a SQ image the corresponding pixel positions
and the related intensity values are estimated for SQ, HS_E, and Hex_E image types. Accordingly,
in correspondent to a SQp, three images of SQCEorg, HS_ECEsq, and Hex_ECEsq are generated.

6.3. In Case of CSE_hex

The common space of each Hex_E image, CSE_hex, is created according to Section 4. As with
Case 6.1, by using the pixel positions of SQ image and the common space of CSE_hex, the corresponding
pixel positions and the related intensity values are estimated for SQ, HS_E, and Hex_E image types.
Accordingly, corresponding to a Hex_Ep three images of SQCEhex, HSCEhex and HexCEorg are generated.

6.4. Analysis of the Two Cases

In cases of CSE_sq or CE_hex, the images with a square or a hexagonal arrangement originate the
respective common spaces. Generally, in the process of obtaining the results by using a common space
and a pixel position in the originated image to the common space, the corresponding pixel position
and its intensity value are estimated for another type of image which has another arrangement in
comparison to the originated image. Here, we address the three questions of (a) How different
are any two generated common spaces which are originated from two different arrangements;
e.g., the comparison of generated SQCEorg (representative of CSE_sq common space) and Hex_ECEorg
(representative of CSE_hex common space)? (b) How similar are any generated common space and its
originated image; e.g., the comparison of SQp to SQCEorg or Hex_Ep to Hex_ECEorg? (c) What is the
accuracy of implementing any common space in addressing and assessment between two types of
arrangements; e.g., from SQ to Hex_E?

We generated ten CSE_sq and ten CSE_hex common spaces from the related images in the dataset;
i.e., each SQ image and its converted Hex_E image were used to create each related CSE_sq and
CSE_hex (a pair of common spaces). For each pair of the common spaces a pixel set of 200 chosen
pixels (see Sections 6.1 and 6.2) of the originated images were chosen and organized as images. In this
way, ten SQCEorg and ten Hex_ECEorg images are obtained where each has size of 200 by 24 and
represent the relative common space. Question (a) is answered by comparison of the SQCEorg and
Hex_ECEorg images. Figure 7 shows the results of such comparisons where the absolute intensity value
difference of ten SQCEorg and Hex_ECEorg are measured. In the figure the colors from blue to yellow
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indicate that the difference value increases from 0 to 0.2. The total mean square error (MSE) between
images shown in Figure 7 is 0.002 and multiple correlation among the images is 99.39%. The low MSE
and high correlation indicate that it is feasible to create almost the same common space for the two
arrangements of square and hexagonal. The created common spaces are close, but as expected, is not
exactly the same; e.g., a hexagonal arrangement has richer frequency spectrum than the square one
which contributes to obtain richer frequency spectrum on respective common space [23].
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and Hex_ECEorg are shown.

Question (b) is answered by the comparison of SQp to SQCEorg and Hex_Ep to Hex_ECEorg images.
The results of such comparisons where the absolute intensity value difference of ten of SQp to SQCEorg
and Hex_Ep to Hex_ECEorg images are shown in Figures 8 and 9 respectively. The total MSE between
and multiple correlation among the images in Figure 8 is 0.0005 and 99.93% respectively. In Figure 9,
the total MSE between images is 0.00019 and multiple correlation among them is 99.85%. The low MSE
and high correlation in the results of the figures indicate that the generated common spaces are very
alike to their respective originated images but they are not strictly the same.

Question (c) is answered by examining each case of CSE_sq and CSE_hex in addressing and
assessment between different types of arrangements. In case of CSE_sq ten of each Hex_ECEsq,
HS_ECEsq, and SQCEorg images are obtained, and they are compared to Hex_Ep, HS_Ep, and SQp

(i.e., the representatives of the images of Hex_E, Hs_E, and SQ). In case of CSE_hex ten of each
Hex_ECEorg, HS_ECEhex, and SQCEhex images are obtained, and they are compared to Hex_Ep, HS_Ep,
and SQp. Figures 10 and 11 show two examples of such comparison between SQCEhex to SQp and
HexCEsq to Hex_Ep respectively.

In Figure 10, the total MSE between the ten SQCEhex and SQp is 0.0059 and multiple correlation
between them is 99.03%. In Figure 10 the total MSE between the ten of HexCEsq and Hex_Ep is
0.0099 and correlation between the pixel sets is 98.26%. The results in the Figures 7–10 show that by
implementing the common space, it is feasible to address different arrangements where the intensity
difference between any random pixel which is addressed via common space or via conversion is
very small.
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Figure 11. Comparison of HexCEsq and Hex_Ep.

In each case of CSE_sq or CSE_hex, the intensity average and variance in the 24 tonal sub-ranges
of ten corresponding pixel sets of each Hex_ECEsq, HS_ECEsq, SQCEorg or Hex_ECEorg, HS_ECEhex,
SQCEhex are shown in Figures 12 and 13 respectively. The figures show that it is feasible to assess pixels
on different arrangements due to the estimation of pixel position and the intensity value in different
arrangement by using common space and without the need for any conversion means (see Section 4).
The pixel sets from hexagonal arrangement show the highest average intensity value and variance in
each type of common space indicating richer intensity variation and larger dynamic range compared
to SQ the other pixel sets. Figure 14 shows the mean (a) and variance (b) of ratio values of ten
corresponding pixel sets between each SQ and SQCEhex to Hex_E image. The mean (a) shows the
nonlinear relation between SQ to Hex_E which was previously shown in [3,18]. The mean (a) also
shows that the relation between SQCEhex to Hex_E is similar to the relation between SQ to Hex_E and
behaves in a nonlinear manner. The variance (b) shows that the relation between SQ and SQCEhex to
Hex_E are similar and nonlinear.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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Figure 14. The mean (a) and variance (b) of ratio values of ten corresponding pixel sets between each
SQ and SQCEhex to Hex_E.

The pixel sets on corresponding arrangements via two types of common spaces are compared
and shown in Table 3. The comparison shows the correlation and MSE relation between each pair
of pixel sets. The results in the table indicate the feasibility of addressing each type of common
space to the same type of arrangement due to small MSE and high correlation values. The similar
results of correlation and MSE in Table 4 shows the assessment feasibility of different arrangements by
comparison of the pixel sets on different arrangement and via two types of common spaces.

Table 3. Comparison of pixel sets on corresponding arrangements via two types of common spaces.

Image Index

Pair of
Pixel Sets No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

Corre-lation

SQCEorg
SQCEhex

99.63% 99.63% 99.62% 99.61% 99.66% 99.64% 99.63% 99.63% 99.61% 99.63%

HS_ECEsq
HS_ECEhex

98.25% 98.45% 98.28% 98.39% 98.79% 98.32% 98.41% 97.76% 98.49% 99.79%

Hex_ECEsq
Hex_ECEorg

98.23% 98.44% 98.26% 98.39% 98.78% 98.32% 98.41% 97.77% 98.49% 99.78%
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Table 3. Cont.

Image Index

Pair of
Pixel Sets No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

MSE

SQCEorg
SQCEhex

0.0024 0.0021 0.0038 0.0046 0.0040 0.0038 0.0038 0.0044 0.0039 0.0005

HS_ECEsq
HS_ECEhex

0.0070 0.0054 0.0092 0.0085 0.0080 0.0091 0.0055 0.0065 0.0060 0.0080

Hex_ECEsq
Hex_ECEorg

0.0104 0.0080 0.0136 0.0125 0.0119 0.0135 0.0081 0.0095 0.0088 0.01193

Table 4. Assessment by comparison of the pixel sets on different arrangements via two types of
common spaces.

Image Index

Pair of
Pixel Sets No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

Corre-lation

SQCEorg
HS_ECEhex

98.19% 98.17% 98.00% 98.00% 97.96% 97.89% 98.02% 97.96% 97.99% 98.07%

SQCEorg
Hex_ECEhex

98.23% 98.16% 98.01% 97.94% 97.95% 97.88% 98.04% 97.98% 97.97% 98.07%

HS_ECEsq
SQCEhex

95.99% 96.19% 96.12% 96.20% 96.67% 96.16% 96.03% 95.49% 96.08% 97.76%

HS_ECEsq
Hex_ECEorg

98.22% 98.42% 98.22% 98.37% 98.77% 98.28% 98.39% 97.72% 98.47% 99.75%

Hex_ECEsq
SQCEhex

95.98% 96.19% 96.13% 96.20% 96.66% 96.18% 96.02% 95.52% 96.07% 97.76%

Hex_ECEsq
HS_ECEhex

98.24% 98.46% 98.30% 98.40% 98.79% 98.35% 98.41% 97.79% 98.49% 99.79%

SQCEorg
HS_ECEsq

96.43% 96.78% 96.55% 96.51% 96.93% 96.59% 96.55% 96.20% 96.51% 98.05%

SQCEorg
Hex_ECEsq

96.42% 96.78% 96.56% 96.51% 96.91% 96.59% 96.54% 96.22% 96.50% 98.04%

SQCEhex
HS_ECEhex

97.93% 97.84% 97.88% 97.86% 97.87% 97.77% 97.68% 97.70% 97.70% 97.99%

SQCEhex
Hex_ECEorg

97.98% 97.84% 97.90% 97.80% 97.86% 97.76% 97.72% 97.72% 97.68% 97.99%

HS_ECEsq
Hex_ECEorg

99.98% 99.98% 99.98% 99.98% 99.98% 99.98% 99.98% 99.98% 99.98% 99.98%

HS_ECEhex
Hex_ECEorg

99.90% 99.90% 99.89% 99.90% 99.90% 99.89% 99.90% 99.90% 99.89% 99.91%

MSE

SQCEorg
HS_ECEhex

0.0044 0.0037 0.0072 0.0071 0.0075 0.0068 0.0039 0.0047 0.0043 0.0069

SQCEorg
Hex_ECEorg

0.9823 0.9816 0.9801 0.9794 0.9795 0.9788 0.9804 0.9798 0.9797 0.9807

HS_ECEsq
SQCEhex

0.0089 0.0080 0.0096 0.0100 0.0086 0.0100 0.0100 0.0107 0.0099 0.0032

HS_ECEsq
Hex_ECEorg

0.0031 0.0027 0.0032 0.0029 0.0022 0.0031 0.0034 0.0036 0.0034 0.0012

Hex_ECEsq
SQCEhex

0.0255 0.0236 0.0274 0.0283 0.0259 0.0283 0.0278 0.0288 0.0274 0.0120

Hex_ECEsq
HS_ECEhex

0.0238 0.0204 0.0288 0.0274 0.0270 0.0287 0.0201 0.0220 0.0212 0.0279

SQCEorg
HS_ECEsq

0.0051 0.0048 0.0049 0.0050 0.0043 0.0049 0.0048 0.0052 0.0050 0.0030

SQCEorg
Hex_ECEsq

0.0148 0.0148 0.0136 0.0131 0.0123 0.0141 0.0138 0.0137 0.0135 0.01257

SQCEhex
HS_ECEhex

0.0018 0.0020 0.0021 0.0019 0.0022 0.0021 0.0023 0.0023 0.0021 0.0078

SQCEhex
Hex_ECEhex

0.0053 0.0064 0.0042 0.0051 0.0044 0.0046 0.0089 0.0083 0.0079 0.0029

HS_ECEsq
Hex_ECEsq

0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061

HS_ECEhex
Hex_ECEorg

0.0039 0.0040 0.0036 0.0036 0.0036 0.0036 0.0041 0.0040 0.0041 0.0035
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7. Conclusions

In the paper we proposed a method to create a common space, which eliminates the need for
defining new grid structures for addressing different sensor arrangements. We showed the feasibility of
addressing and assessing different spatial arrangements of sensors, specifically between the rectangular
and hexagonal arrangements. We explained how the common space is created by implementing
a continuous extension of discrete Weyl Group orbit function transform, which extends a discrete
arrangement to a continuous one. The results indicate that the common space facilitates an easy tool
for addressing any pixel position on any arrangement and specifically we showed such facilitation
on square and hexagonal arrangements. It was also shown that the tool has significant property to
assess the changes between different spatial arrangements by which, in the experiment, the pixel sets
on hexagonal images show richer intensity variation, nonlinear behavior, and larger dynamic range in
comparison to the pixel sets on rectangular images.
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Appendix A

A.1. Root System

A root system is a configuration of vectors in a Euclidean space satisfying certain geometrical
properties. Let us define a root system as a finite set of non-trivial vectors ∆ = {αi ∈ Rn} that fulfil
three conditions:

• Roots αi ∈ ∆spanRn

• If αi ∈ ∆, then λα ∈ ∆ ⇔ λ ∈ {−1, 1}: every root system contains only two scalar
multiples of each root: the root itself and its reflection,

• α,β ∈ ∆⇒ γαβ ∈ ∆ : root system is closed under reflection with respect to
hyperplanes orthogonal to roots. γαβ denotes reflection of root β with respect
to hyperplane orthogonal to root α.

So-called crystallographic root systems also fulfil the fourth condition: ∀α,β ∈ ∆ : 2(α,β)
(α,α) ∈ Z

We can unambiguously choose a set of simple roots Σ ⊂ ∆. Simple roots fulfil two extra conditions:

• all simple roots are linearly independent,
• every root αi ∈ ∆, can be expressed as a linear combination of simple roots, such

that all coefficients of this linear combinations are either all non-negative (such root is
called positive root), or are all non-positive (negative root).

When each root is expressed as a linear combination of simple roots, we can introduce ordering of
roots. So-called highest of roots is denoted ξ and is expressed as ξ = m1α1 + m2α2, where α1, α2 are
simple roots. Coefficients m1, m2 are called marks. There are several significant sets of vectors that
are related to each root system: set of co-roots (a∨i ), weights (ωi) and co-weights (ω∨j ). Co-roots and
co-weights are normalized variants of roots and weights, respectively:

a∨i =
2αi

〈αi,αi〉
(A1)

ω∨j =
2ωi

〈ωi,ωi〉
(A2)
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Roots and weights are dual to each other, in the following sense:

〈αj,ω∨j 〉 = 〈a∨i ,ωi〉 = δij (A3)

These four sets of vectors are used to form four lattices (root lattice Q, co-root lattice Q∨ weight
lattice P and co-weight lattice P∨) which will be used in the definition of discrete orbit function. All four
lattices are defined in the following manner:

Q = Zα1 + Zα2 Q∨ = Zα∨1 + Zα∨2
P = Zω1 + Zω2 P∨ = Zω∨1 + Zω∨2

Each of these lattices can have its non-negative part (denoted with superscript +) and positive
part (denoted with superscript ++).

A.2. Weyl Groups

When having root system ∆ composed of roots αi, we define ri, as a reflection with respect to
root αi. Set of reflections ri will generate so-called Weyl group W. Affine Weyl group is an extension
of Weyl group, it is generated by reflections ri plus reflection r0, which is a reflection with respect to
highest root ξWeyl group orbit of point x is a finite set of points generated by all actions of Weyl group
W. Similarly, the affine orbit of point x is generated by all actions of Waff on point x, however, affine
orbit is an infinite set, due to the reflection r0. Fundamental region of Waff is a closed subset of Rn such
that it contains exactly one point of each affine Weyl group orbit. The fundamental region for affine

Weyl groups in R2 space can be chosen a convex hull of points
{

0, ω
∨
1

m1
, ω

∨
2

m2

}
.

The dual root system ∆∨ is obtained as system of co-roots. Reflections related to dual root system
∆∨ generate dual Weyl group Ŵ. Dual Weyl group Ŵ has its fundamental region F∨ and can be

extended to affine dual Weyl group Ŵaff. Since roots and co-roots differ only with their lengths, both
W and Ŵ generated by the same sets of reflections. However, highest co-root η = m∨1 α

∨
1 + m∨2 α

∨
2

differs from highest root ξ in both length and direction, and thus the dual affine Weyl group Ŵaff is not
the same as Waff. As a consequence, F 6= F∨. Root systems are not the only way how to generate Weyl
groups. Roots of simple Lie algebras coincide with simple roots-designation of Lie algebras are often
used to designate Weyl groups generated by reflections with respect to roots of given Lie algebra.

A.3. Orbit Functions and Orbit Transforms

Weyl group orbit functions were defined for all simple Lie algebras (An, Bn, Cn,
Dn, G2, F4, E6, E7, and E8) and they can be used for generalized Fourier analysis of data on the
fundamental region F of the corresponding Weyl groups. This theory allows for similar discretization
as in the case of common Fourier discrete analysis studies, and can be used for the analysis of digitized
data on the fundamental region.

Sine, cosine functions, plus eix are generalized to systems with nonorthonormal basis through
orbit functions. Moreover, certain Weyl groups provide more types of functions, e.g., C2 and G2 Weyl
groups allow us to define Cs, Cl, Sl and Ss functions, as described in [23]. A_2 Weyl group provide
only straightforward generalization of cosine, sine and complex exponential functions. These orbit
functions are generally, i.e., regardless of underlying Weyl group, defined as:

Φλ(x) = ∑
ω∈W

ei2π〈ωλ,x〉 (A4)

ϕλ(x) = ∑
ω∈W

det(ω)ei2π〈ωλ,x〉 (A5)

Ξλ(x) = ∑
ω∈W

ei2π〈ωλ,x〉 (A6)
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where parameter x ∈ Rn and label λ ∈ Q Since the orbit functions are invariant to operations of
W or We, respectively, we can restrict the parameter x to the fundamental region F or even fundamental
region Fe, respectively. Since S-orbit function ϕ is anti-symmetric, it vanishes for x on boundary of F
and for λ on reflection hyperplane. Through these two facts, the restriction of x and λ looks as follows:

Φλ(x) : x ∈ F, λ ∈ P+,
ϕλ(x) : x ∈ F̃, λ ∈ P++,
Ξλ(x) : x ∈ Fe, λ ∈ P+ ∪ r1P++,

the F̃ denotes the interior of fundamental region F.
For the discretization of orbit functions, we choose arbitrary fixed positive integer M that defines

the density of the lattice. The discrete fundamental region FM is constructed as an intersection of
fundamental region F and stretched subset of lattice P∨:

FM =
1
M

P∨/Q∨ ∩ F =

{
s1

M
ω∨1 + · · ·+ sn

M
ω∨n

∣∣∣∣∣s0 +
n

∑
i=1

s1mi = M, s0, s1, . . . , sn ∈ Z≥0

}
(A7)

For discrete orbit functions we use set ΛM, which is a set of discrete labels λ. The parameter M
has the same meaning as for discrete fundamental region. The set ΛM is expressed as follows:

FM = P/MQ∩MF∨ =

{
s1ω1 + · · ·+ snωn

∣∣∣∣∣s0 +
n

∑
i=1

s1m∨i = M, s0, s1, . . . , sn ∈ Z≥0

}
(A8)

Due to the invariance of functions to the actions of Weyl group W, and the (anti-)symmetry of
functions, discrete orbit functions can be restricted in the following way:

Φλ(x) : x ∈ FM, λ ∈ ΛM,
ϕλ(x) : x ∈ F̃M, λ ∈ Λ̃M,
Ξλ(x) : x ∈ Fe

M, λ ∈ Λe
M,

For further relations, scalar product over discrete fundamental region is crucial. Having two
discrete functions f(x) and g(x), defined over discrete fundamental region with density M, we define
their scalar product as

〈f, g〉FM
= ∑

x∈FM

ε(x)f(x)g(x) (A9)

Note that the region of FM, may change depending on the used orbit function. E.g.,
when computing 〈f,ϕλ〉FM , we can omit boundary of FM since ϕλ = 0 on the boundary of FM,
thus 〈f,ϕλ〉FM = 〈f,ϕλ〉F̃M

.
For λ, λ′ ∈ ΛM, the orbit functions hold the orthogonality relation:

〈Φλ, Φλ′〉FM = cM2|W||stabW(λ)|δλλ′
〈ϕλ,ϕλ′〉F̃M

= cM2|W||stabW(λ)|δλλ′
〈Ξλ, Ξλ′〉Fe

M′
= cM2|We||stabWe(λ)|δλλ′

(A10)

M is the density of the discrete fundamental region, c denotes the determinant of Cartan matrix
for the underlying group W, Cartan matrix C =

(
cij
)n

i,j=1, cij = 〈αi,αj〉. |W| is the order of group W,
stabW(λ) is the stabilizer of the point λ under W. Generally speaking, the stabG(x) is a maximum
subgroup of G, such that it holds g(zx) = x∀g ∈ stabG(x).
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Since orbit functions are pairwise orthogonal over the finite region, we can expand the discrete
functions f(x), g(x) and h(x) into a finite series of orbit functions:

f(x) = ∑
λ∈ΛM

F(Φ)
λ Φλ(x)x ∈ FM, Φ− orbit transform

g(x) = ∑
λ∈F̃M

G(ϕ)
λ ϕλ(x)x ∈ F̃M, ϕ− orbit transform

h(x) = ∑
λ∈Fe

M

H(Ξ)
λ Ξλ(x)x ∈ Fe

M, Ξ− orbit transform

(A11)

Function f(x) needs to be defined on FM, g(x) must be defined on F̃M and h(x) is defined on Fe
M.

The F denotes the spectrum of discrete function f. The superscripts Φ, ϕ and Ξ are used for distinction
between different kinds of spectra and are not commonly used.

The spectra points are given by

F(Φ)
λ =

〈f,Φλ〉FM
〈Φλ,Φλ〉FM

, λ ∈ ΛM

G(ϕ)
λ =

〈g,ϕλ〉F̃M
〈ϕλ,ϕλ〉F̃M

, λ ∈ Λ̃M

H(Ξ)
λ =

〈h,Ξλ〉Fe
M

〈Ξλ,Ξλ〉Fe
M

, λ ∈ Λe
M

(A12)

A.4. Continuous Extension

One of the key properties of orbit transform is that sequence of orbit transform and inverse orbit

transform preserve the processed data, e.g., f = ∑λ∈ΛM

〈f,Φλ〉FM
〈Φλ,Φ〉FM

Φλ. This property is preserved even

when discrete orbit function in the inverse orbit transform Equation (A11) is replaced with continuous
orbit function of the same family:

f(x) = ∑
λ∈ΛM

F(Φ)
λ Φλ(z)x ∈ Rn

g(x) = ∑
λ∈Λ̃M

G(ϕ)
λ ϕλ(z)x ∈ Rn

h(x) = ∑
λ∈Λe

M

H(Ξ)
λ Ξλ(z)x ∈ Rn

(A13)

In this case, we obtain a continuous extension of the original data. As proven, see [2], certain
families of orbit functions can provide high-quality approximation with quick convergence to the
original continuous data.
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