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ABSTRACT

Advancements in next-generation sequencing  have greatly enhanced the 
development of biomarker-driven cancer therapies. The affordability and availability 
of next-generation sequencers have allowed for the commercialization of next-
generation sequencing platforms that have found widespread use for clinical-decision 
making and research purposes. Despite the greater availability of tumor molecular 
profiling by next-generation sequencing at our doorsteps, the achievement of value-
based care, or improving patient outcomes while reducing overall costs or risks, in the 
era of precision oncology remains a looming challenge. In this review, we highlight 
available data through a pre-established and conceptualized framework for evaluating 
value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), 
and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives 
on future directions of next-generation sequencing from targeted panels to whole-
exome or whole-genome sequencing and describe potential strategies needed to 
attain value-based genomics. 
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INTRODUCTION

Although often interchanged with personalized 
medicine, the term precision medicine was first given 
prominence by the National Research Council with the 
intention to convey a broader concept that although 
treatments were rarely developed for individuals, subgroups 
of patients could be defined and targeted by genomics [1]. 
The concept of precision medicine in oncology further rose 
to popularity with the launching of the Precision Medicine 
Initiative aimed to accelerate development of therapeutic 
strategies that are biomarker-driven [2].

Over the past several decades, many major advances 
in cancer treatment have already been attributed, in part, 
to precision medicine or biomarker-driven treatment. 
Perhaps one of the earliest examples of biomarker-driven 
therapy was the development of tamoxifen in the adjuvant 
treatment of hormone-receptor positive breast cancer [3–5].  
The approval of the break point cluster (BCR)-Abelson 
(ABL) tyrosine-kinase inhibitor (TKI) imatinib for chronic 
myelogenous leukemia (CML) in 2001 heralded the era 

of targeted therapy [6–8]. More recently, several clinical 
trials in oncology have launched to match targeted therapy 
to genomic profiling including the Signature, I-SPY, 
National Cancer Institute (NCI)-sponsored NCI-MATCH, 
NCI-MPACT, ALCHEMIST, Lung-MAP, Pediatric 
MATCH, and Exceptional Responders, Lung Cancer 
Mutation Consortium (LCMC)-sponsored, and American 
Society of Clinical Oncology (ASCO)-sponsored TAPUR 
trials [9–17]. In the United Kingdom, Innovate UK has 
recently launched an initiative to support €6 million in the 
development of precision medicine technologies that can 
lead to the improvement in targeted therapies [18]. 

Paramount to the advancement of precision oncology, 
the development of next-generation sequencing (NGS) 
techniques with high-throughput functionality has enabled 
the massive parallel sequencing of genomes at unprecedented 
rates [19]. With the ability to rapidly and efficiently perform 
genomic sequencing, many Clinical Laboratory Improvement 
Amendments (CLIA)-certified commercial and academic 
laboratories have developed validated NGS platforms with 
targeted panels that are increasingly being incorporated into 
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clinical-decision making and cancer research [20]. However, 
total costs of cancer care are rapidly increasing, of which only 
5–20% are accounted by cancer drugs, and are projected to 
increase in the U.S. from 125 billion dollars in 2010 to 158 
billion dollars in 2020 [21]. Furthermore, costs of cancer care 
including copayments, out-of-pocket expenses, and insurance 
premiums often exceed patients’ expectations and impose 
significant financial stress and burden that can adversely 
affect quality of life (QOL) and outcomes [21, 22].

In the era of precision oncology, improving patient 
outcomes while reducing overall costs or risks with the 
incorporation of NGS is paramount to achieving value-
based care [23, 24]. In this review, we provide a brief 
historical context on the evolution of NGS platforms to its 
current most widely-used commercial panels and compare 
specifications, mutation coverage, and costs of the more 
popular commercial platforms. In particular, we review 
our necessary and sufficient biomarkers that have come 
to clinical fruition. Through pre-established frameworks 
for evaluating value-based medicine, we highlight 
available data to assess the cost (efficiency), clinical 
benefit (effectiveness), and toxicity (safety) of genomic 
profiling in cancer care. We also provide perspectives on 
future directions of NGS from targeted panels to exomes/
genomes and illustrate potential important strategies 
needed to attain value-based genomics.

Historical perspective on next-generation 
sequencers

The completion of the human genome sequencing 
project in 2003 paved way for investigations focused 
on deciphering the human cancer genome [25]. The 
technology that sequenced the human genome was based 
on traditional Sanger sequencing and required about a 
decade of multicenter collaboration, automated analysis, 
and hundreds of millions of dollars [26, 27]. In the ensuing 
years, a paradigm shift occurred with the development of 
NGS techniques that accelerated the capability to analyze 
the cancer genome at speeds far superior than first-
generation Sanger sequencing platforms [26, 28–30].

The commercialization and availability of these 
next-generation sequencers including those from Roche, 
Life Technologies SOLiD, Illumina, Pacific Biosciences, 
and Ion Torrent have since established the foundation 
for which most commercial NGS platforms operate 
from in tumor molecular profiling [27, 29, 31, 32]. The 
evolution of next-generation sequencers and comparisons 
of the technical specifications and costs across individual 
sequencers have been extensively reviewed [27, 29–32].

Currently, NGS technology can be broadly employed 
for 2 types of sequencing: targeted sequencing of a panel 
of recognized or putative cancer-associated genes and 
whole-exome or whole-genome sequencing (WES/WGS) 
for clinical-decision making, research purposes, and/or 
discovery of disease-causing genomic alterations [33]. 

The preference for targeted gene panels or WES or WGS 
remains a controversial topic of discussion in precision 
oncology. Large targeted panels were initially lauded 
for their improved efficiency, sensitivity, and ability to 
detect rare and potentially actionable genomic variants 
across tumor types compared to traditional smaller or 
multiple single-analyte gene panels [34]. Targeted panels 
have also been proposed as cost-effective and more 
readily interpretable than WES, while WES provides 
comprehensive profiling of all protein-encoding genes of 
the genome that can provide more information and long-
term cost-effectiveness, over the life of the individual [35].

Nevertheless, gene panels are currently recommended 
by national guidelines such as the National Comprehensive 
Cancer Network (NCCN) in the diagnostic evaluation and 
management for several cancers and are recognized as a 
more pragmatic NGS-approach in universal healthcare 
systems [36, 37]. In the current state, targeted panels are 
more regularly used in cancer diagnostics while WES 
and WGS are not yet as incorporated into routine clinical 
practice in cancer care [38]. Cancer treatment pathways 
represent an increasingly important and popular mechanism 
to consolidate the massive amount of molecular data offered 
by NGS and patient care. Here, clinical pathways have been 
shown to facilitate the delivery of high-value cancer care 
by helping oncologists identify evidence-based treatments 
of greatest clinical benefit while reducing costs and likely 
represent a viable strategy for cost-effective precision 
oncology in the present and foreseeable future [23, 39, 40].

Defining and measuring value in precision 
oncology

In its purest sense, value in oncology is defined 
as a measure of outcome per monetary expenditure 
where cancer therapies of high value lead to significant 
improvements in patient health outcomes at relatively low 
overall cost or risk [24, 41]. The Institute of Medicine 
(IOM) identified 6 elements of value in cancer care: 
effectiveness, safety, patient-centeredness, efficiency, 
timeliness of therapy, and equity [42]. Along similar 
lines, many oncology professional societies, government-
sanctioned entities, and institutions across the globe have 
developed assessment tools and measures to evaluate the 
value of new therapies and health technologies in cancer 
care [41, 43–45]. In 2015, the ASCO Value in Cancer 
Task Force established their own framework and defined 
value in cancer care by clinical benefit (effectiveness), 
toxicity (safety), and cost (efficiency) with an update in 
2016 [41, 45]. Although the ASCO task force recognized 
all 6 elements from the IOM’s definition of value-based 
medicine, their framework in defining value in cancer care 
emphasizes the 3 elements that are believed to be more 
readily measured and reported as outcomes in clinical 
trials and therefore ascertainable from high-quality 
medical evidence.
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A framework for discussion of value-based 
genomics

To the best of our knowledge, discussions on 
value-based genomics, for which we define as the value 
of genomic profiling in cancer care through the current 
availability of NGS platforms, are relatively novel and 
limited compared to the growing discussions on value-
based medicine focused on cancer drugs themselves. 
A similar conceptualized approach to assessing value 
in cancer genomics based on the ASCO framework is 
worthwhile to pursue and will be presented.

Cost and comparison of commercial targeted 
gene panels

Next-generation sequencers became substantially more 
cost-effective with the authorization of the first sequencer by 
the U.S. Food and Drug Administration (FDA) in 2013 [46]. 
As a reference, to completely sequence the human genome 
and generate the first reference human genome sequence 
(about 3 billion bases of DNA), an extensive and global 
collaborative effort to produce a finished sequence of high 
fidelity was required with costs approximating hundreds of 
millions of dollars [47]. The Human Genome Project, in its 
entirety, took more than a decade to complete and produced 
a total cost of approximately 2.7 billion dollars [47]. With 
the reference human genome in hand and development of 
NGS technologies, sequencing an individual’s “personal” 
genome was a more readily attainable endeavor though with 
costs ranging from about 14–25 million dollars by 2006 [47]. 
At the time of the FDA approval of the first next-generation 
sequencer in 2013, sequencing a human genome could be 
performed in about less than 24 hours and under $5,000 
[46]. Based on data collected by National Human Genome 
Research Institute (NHGRI)-funded genome-sequencing 
groups, the current cost to generate a whole-genome sequence 
is around $1,500 (less for whole-exome) with variation above 
and below this number based on commercial pricing [47].

The affordability and availability of these 
next-generation sequencers have allowed for the 
commercialization of a growing number of CLIA-certified 
laboratories offering tumor genomic profiling by NGS. 
Excluding targeted gene panels derived by individual 
academic institutions, there are several commercial 
targeted panels that have found widespread use for clinical-
decision making and research purposes. To enhance 
cost-effectiveness and time-efficiency, commercial NGS 
platforms have developed targeted enrichment methods 
to capture and sequence only genomic regions of interest 
including amplification- and probe-based enrichment 
methods or hybridization [48, 49]. Multiple targeted NGS 
platforms are commercially available (Table 1) with several 
having undergone validation or evaluation in the clinical 
setting [50–57]. All platforms aimed at detecting somatic 
mutations utilize formalin-fixed, paraffin-embedded (FFPE) 

tumor tissue [58–65]. Companies such as Caris Molecular 
Intelligence perform analyses on fresh tissue or malignant 
fluid as well [59]. In general, the minimum required size of 
the sample is 5 mm2 (25 mm2 preferred) and the required 
ratio of tumor nuclei to benign nuclei is 20% [58]. Paradigm 
Cancer Diagnostic requires a minimum sample of 10 
× 2 × 1 mm (20 mm3) with minimum 5% tumor content 
[62]. In addition to FFPE tumor samples, a few platforms 
analyze DNA from matched blood and/or saliva. Examples 
include OncoDNA and OncoSTRAT&GO [66] which 
performs genomic profiling on the tumor sample as well 
as on circulating tumor DNA, and Tempus xT and xO [61], 
which utilize blood or saliva samples to examine normal 
reference DNA. Ambry Genetics TumorNext uses paired 
blood-tumor samples to identify germline and somatic 
mutations in homologous recombination repair genes that 
predict response to PARP inhibitors [67].

The vast majority of panels utilize either Illumina 
or Ion Torrent sequencing (Table 1). With the exception of 
Quest OncoVantage [64, 65], most contemporary panels 
identify not only point mutations and insertions/deletions 
but also fusions/translocations and copy number variations. 
Many report microsatellite instability and tumor mutation 
burden to assist in identifying patients who may benefit 
from immunotherapy [58–61, 66]. In addition, many 
platforms incorporate results of immunohistochemistry 
(IHC) testing [59, 60, 62, 66]. The current movement is to 
not only look at the genomics but also proteomics. In terms 
of proteomics, IHC for PD-L1 has become standard in non-
small cell lung cancer.

Turnaround time ranges from 4 days for Oncomine 
Dx, a 23-gene panel of lung-cancer related genes [63], 
to 21 to 28 days for Ambry Genetics TumorNext, which 
examines hereditary and somatic mutations in ovarian 
cancer patients [67]. Costs for testing are in the $3000 to 
6000 range where pricing information is available. Head-
to-head comparisons of the various platforms are sparse. 
Weiss et al. compared Foundation One and Paradigm 
Cancer Diagnostic (PCDx) using tumor samples from 21 
patients and reported a faster turnaround time for PCDx 
and significant discrepancies in detection of actionable 
targets between the two platforms [57].

ASCO has deemed both the Foundation Medicine 
and Caris Life Sciences platforms “optimized” for 
reporting for the Targeted Agent and Profiling Utilization 
Registry (TAPUR) study [68]. This non-randomized 
clinical trial aims to examine the use of targeted 
therapy for patients with advanced, progressive cancer 
who are found to have actionable variants on genomic 
testing. Currently, the Oncomine Dx Target Test and 
the FoundationFocus CDxBRCA Assay are the only 
commercial NGS platforms that are approved by the FDA 
for use as companion diagnostic devices [69]. 

Although early in its infancy, there is a growing body 
of research focused on total costs and cost-effectiveness 
analyses of cancer-related genome sequencing in the era 
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Table 1: Selected commercially available targeted next-generation sequencing platforms and specifications

Sample reqs Sequencer
Genes covered and 
mutation types (if 
specified*)

Additional 
analyses Cost+ Time Year 

released Ref.^

FoundationOne 
(Foundation 
Medicine

-FFPE
-Prefer no 
decalcification, but 
may use EDTA

Illumina 315 genes (+28 introns)

fusions, copy number 
variations

MSI
TMB

5800 
USD

14 days 2011 [50, 57]

Caris Molecular 
Intelligence
(Caris Life 
Sciences

-FFPE
-Fresh specimen 
in 10% neutral 
buffered formalin
-Malignant fluid up 
to 120 cc 
-No decalcified 
specimens

Ilumina >600 genes

fusions, copy number 
variations

IHC
MSI 
TMB
ISH

6500 
USD 

10–14 
days

2014 [51, 56]

OncoDEEP 
(OncoDNA)

-FFPE
-Prefer no 
decalcification, but 
may use EDTA

Ion Torrent 75 genes

fusions, methylation, 
splice variants

IHC
MSI
TMB

~3500 
USD 
(2990 
Euros)

7 days 2014 [52]

OncoSTRAT& 
GO (OncoDNA)

-FFPE and 2 
10 mL blood 
samples (for ct 
DNA)

Ion Torrent > 500 genes (solid 
portion) + 40 genes 
(liquid portion)

fusions, methylation, 
splice variants

IHC
MSI
TMB

~5800 
USD
(4990 
Euros) 

10 days 2016

Tempus xT/xO 
(Tempus Labs

-FFPE and 
matched blood 
(solid tumors) or 
saliva (lymphoma) 
sample for normal 
DNA
-Prefer no 
decalcification, but 
may use EDTA

Illumina 595 genes (xT);
1711 genes (xO)

fusions, copy number 
variations, splice 
variants

MSI
TMB

4800 
USD 
(Tempus 
xO)

14–21 
days

2017 [54, 55]

Paradigm Cancer 
Diagnostic –
PCDx (Paradigm

-FFPE Ion Torrent 186 genes

fusions, copy number 
variations, splice 
variants

IHC
MSI

4800 
USD

5 days 2014 [53, 57]

Oncomine Dx 
Target Test 
(Thermo Fisher 
Scientific

-FFPE Ion Torrent 23 genes (NSCLC only) - - 4 days 2017

OncoVantage 
Solid Tumor 
Mutation 
Analysis (Quest 
Diagnostics)

-FFPE Ion Torrent 34 genes

point mutations and 
indels only; no large 
rearrangements or copy 
number changes

- 1800–
3000 
USD [73] 

14 days 2014

Hereditary Cancer Panels

OncoGeneDx 
Comprehensive 
Cancer Panel 
(GeneDx)

-2–5 mL blood
-oral rinse or buccal 
swab as alternative

Illumina 32 genes

(tumor-specific panels 
also available)

- - 21 days 2013

TumorNext-HRD 
(Ambry Genetics

-3–5 cc blood and 
FFPE

Illumina 11 genes 
(mutations in 
homologous 
recombination repair 
genes, in ovarian cancer 
only)

- - 21–28 
days

2017



Oncotarget15796www.oncotarget.com

of NGS (Table 2). An early cost analysis of WGS through 
the Illumina HiSeq 2000 platform considered total 
expenses through a 4-step process: sample collection and 
experimental design, sample sequencing, data reduction 
and management, and downstream analyses [70]. In 2011, 
the estimated cost to perform WGS considering only the 
first 3 steps was $6,500 per assay over an approximate 
timeframe of 15 days. However, the authors forewarned 
that the rapid decreases in costs seen in data generation 
offered by advancing NGS technologies has not been 
matched by decreases in costs of the computational 
infrastructure needed to mine and manage the huge 
volume of data. Here, costs of downstream analyses were 
estimated to be onwards of an additional $100,000 per 
assay and requiring months to process generated data. A 
systematic review of 5 fully-published studies at the time 
provided a cost analysis on cost per megabase (Mb) for 
using various NGS platforms but concluded that the results 
were very heterogeneous and questionable regarding their 
reliability and validity given the unclear methodology 
and  numerous costs that may have been unaccounted for 
across studies [71]. In short, health economic evidence for 
genome sequencing was limited at the time of the review, 
and a comprehensive calculation of genomic sequencing 
considering multiple aspects of cost is needed.  Similarly, 
a systematic review of included studies from 2009–
2014 highlighted that NGS platforms were less costly 
than Sanger sequencing but concluded that the lack of 
randomized control trials (RCTs) investigating the cost-
effectiveness of NGS limited the ability to conduct an 
informed cost-effectiveness analysis [72]. 

A later study incorporated a prediction model over 
a 2-year time horizon and performed a cost-effectiveness 
analysis of a 34-gene NGS panel vs. single-site BRAFV600 
mutation testing in metastatic melanoma patients 
(Table 2). The NGS panel was shown to be less costly 
(saving $8,943 per patient) and was more effective than 
the single-site test [73]. Furthermore, sensitivity analyses 
showed that the NGS panel had a 90.9 % chance of having 
reduced costs and increased quality-adjusted life-years 
(QALYs) than single-site testing, and these findings would 
equate to an annual savings of $79.6 million and a gain 
of 155 QALYs if applied to 8,900 metastatic melanoma 
patients. One study applied a decision model for patients 
referred to the medical genetics clinic for hereditary 

colorectal cancer and polyposis (CRCP) syndromes to 
compare the cost-effectiveness of a NGS panel including 
Lynch syndrome genes and other genes associated with 
CRCP syndromes of high penetrance to standard of care 
(SOC) or sequential evaluation of Lynch syndrome genes 
recommended by current guidelines [74]. The NGS panel 
strategy was highly cost-effective below the contemporary 
$100,000 per QALY threshold, when compared to SOC, 
and this was among the first studies to model NGS panels 
as a cost-effective strategy in the evaluation of a relatively 
common inherited cancer syndrome (Table 2).

A decision model of returning incidental findings 
(IFs) detected by a 56-gene NGS panel for patients with 
cardiomyopathy, colorectal cancer (CRC) or polyposis, 
and in healthy individuals referred for testing given family 
history and risk factors showed that returning IFs may be 
cost-effective for certain populations with incremental 
cost-effectiveness ratios (ICERs) of $44,800, $115,020, 
and $58,600, respectively [75]. Notably, primary screening 
of healthy individuals (assuming NGS costs of $500 per 
test) was not cost-effective with an ICER of $133,400 
(<$100,000/QALY gained in only 10% of simulations). A 
recent study provided a microcosting analysis for targeted 
NGS panels and WES as well as a cost-impact analysis 
for patients diagnosed with advanced non-small cell lung 
cancer (NSCLC) employing NGS for optimization of first-
line treatment (Table 2). A before and after comparison (time 
horizon of 6 months from diagnosis) showed that adopting 
NGS into management increased use of targeted therapy (6% 
to 13%), decreased use of nontargeted therapy (83% to 20%), 
decreased adverse events (AEs) from 207 to 138 (for a plan 
size of 1 million members), increased enrollment in clinical 
trials (4% to 54%), and increased referral to hospice care 
(7% to 13%) [76]. A Netherlands study provided a budget-
impact analysis for implementation of NGS (48- and 178-
gene panels) in stage IV NSCLC and melanoma patients 
within the Dutch health care system and demonstrated that 
the more samples that are run, the less costly NGS will 
become [77]. The budget analyses were comparable to a 
case study of 172 stage IV NSCLC and melanoma patients 
within the Netherlands Cancer Institute, and in a before 
and after NGS implementation comparison, there were no 
significant difference in treatment characteristics and clinical 
trial enrollment though an increased number of observed 
mutations in both cohorts was not surprisingly observed.

CancerNext 
(Ambry Genetics

-6–10 cc blood 
-1 cc saliva

Illumina 34 genes

(tumor-specific panels 
also available; expanded 
67 gene panel also 
available)

- ~5830 
USD 

14–21 
days

2012

*Point mutations, insertions/deletions (indels) are covered unless otherwise stated.
+Prices are obtained from company websites or personal communication unless otherwise specified.
^References provided for clinical validation studies, when available, for specific platform.
FFPE, formalin-fixed, paraffin-embedded; EDTA, ethylenediaminetetraacetic acid; IHC, immunohistochemistry; MSI, microsatellite instability; TMB, 
tumor mutation burden; ISH, in-site hybridization; USD, United States dollars; NSCLC, non-small cell lung cancer.
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Table 2: Summary of studies investigating the costs and cost-effectiveness of next-generation sequencing in cancer
Objective Platform Findings Ref
Microcosting analysis WGS, Illumina HiSeq 

2000
Estimated $6,500 per case over a period 15 days for sample collection 
and experimental design, sample sequencing, and data reduction 
and management; for downstream analyses, an estimated additional 
>$100,000 per case requiring months

[70]

Systematic review of 
cost analyses

WGS/WES, various 
platforms

Variable cost per Mb ranging from <$0.07-$84.39/Mb and cost 
per sequencer ranging from $155,000-$1,350,000 per instrument 
depending on study

[71]

Systematic review of 
cost-effectiveness

WGS/WES/TGS, 
various platforms

Compared to Sanger sequencing (approximately $500/Mb), cost was 
less for NGS platforms (as low as $0.10/Mb) but unable to perform 
informed analysis of the cost-effectiveness of NGS given insufficient 
high-quality evidence 

[72]

Cost-effectiveness 
analysis

34-gene NGS panel vs. 
single-site BRAFV600 test

Cost: $128,965 vs. $120,022 per patient (over 2-year time horizon)
QALYs: 0.721 vs. 0.704 per patient (incremental 0.0174 QALYs with 
NGS over single-site testing over a 2-year time horizon)

[73]

Cost-effectiveness 
analysis

NGS panel vs. 
sequential evaluation 
for Lynch syndrome 
(SOC)

Compared to SOC, NGS panel resulted in an average increase of 0.151 
year of life, 0.128 QALY, and $4,650 per patient (ICER of $36,500 per 
QALY with 99% probability of being cost-effective at $100,000 per 
QALY threshold)

[74]

Cost-effectiveness 
analysis of returning IFs

Receiving IFs vs. not 
receiving IFs from 56-
gene NGS panel 

For CRC patients, receiving IFs would increase costs by $2.9 
million and increase QALYs by 25.4 years (ICER of $115,020) with 
<$100,000/QALY gained 28%

[75]

Microcosting and cost-
impact analysis

5–50-gene and >50-
gene NGS panel, WES

Estimated total costs: $577.99-$907.82 (5–50 genes), $1948 (>50 
genes), $1499.32-$3388.18 (WES per case
Cost-impact analysis for NGS implementation: Costs of targeted 
therapy increased from $1.1 million to $2.3 million, nontargeted 
therapy decreased from $8.8 million to $2.2 million, clinical trials 
increased by $2.7 million, and hospice care increased by $60,000; total 
cost of treatment decreased from $10.2 million to $7.5 million over a 
6-month time horizon from diagnosis of advanced NSCLC and cost of 
genetic testing increases by $0.13 million (assuming $700 for 5–50-
gene panel)

[76]

Microcosting and 
budget-impact analysis

48- and 178-gene NGS 
panel, Illumina Miseq 
or Hiseq

Estimated total costs per sample: €606–956 (48 genes), €1,137–2,668 
(178 genes)
Budget-impact analysis for incorporation of NGS in Netherlands: 
Annual increase of €1,321,243 (2012–2015) and annual decrease of 
€120,473 (2020, projected due to more efficient use of WGS) for stage 
IV NSCLC,  annual increase of €108,526 (2012–2015) and €351,799 
(2020, projected due to more widespread use of NGS in hospitals) for 
stage IV melanoma

[77]

Retrospective cost 
analysis

96-gene NGS panel vs. 
SOC genomic testing 
only

Total costs (includes patient treatment, toxicity, sequencing, and 
targeted drug therapy): $91,790 vs. $40,782 per patient (p = 0.002)
Drug costs: $59,259 vs. $20,189 per patient (p < 0.001)
Patient charges per week: $4,665 vs. $5,000 per week (p = 0.126) given 
that PFS 22.9 weeks (NGS group) vs. 12.0 weeks (SOC group, p = 
0.002) with a HR of 0.47 (95% CI 0.29–0.75)

[78]

Time-and-motion 
microcosting analysis

Digital GEP vs. FISH 
vs. 32-gene targeted 
NGS

Mean per-case cost (assumes 180 cases annually, in Canadian dollars): 
$898.35 vs. $596.60 vs. $1,029.16 (NGS includes bioinformatics 
analysis)
Labor-intensiveness: 258.2 minutes/case (FISH), 124.1 minutes/case 
(NGS, and 14.9 minutes/case (GEP)

[79]

Cost-effectiveness 
analysis

48-gene NGS panel 
and targeted therapy 
(off-label or clinical 
trial), no NGS and 
chemotherapy, no NGS 
and BSC

Life-years: Additional 0.009 LYs gained with NGS than chemotherapy 
or BSC (1.458 LYs) resulting in ICER of AUD 485,199/QALY
Chemotherapy produced gain of  0.001 QALYs when compared to 
BSC (ICER of AUD 361,580/QALY)
NGS produced gain of  0.008 QALYs when compared to chemotherapy 
(ICER of AUD 489,338/QALY)

[80]
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A retrospective study of 72 patients with treatment-
refractory advanced solid tumors demonstrated increased 
total patient care costs (mainly contributed by costs of 
drug therapy) using a management strategy guided by 
a 96-gene NGS panel compared to standard of care 
genomic testing only approach (Table 2). However, 
the significantly improved progression-free survival 
(PFS) seen in the precision medicine group over the 
control group (22.9 weeks vs. 12.0 weeks, p = 0.002) 
translated to patient charges per week that were similar 
between both groups, suggesting that precision oncology 
potentially improves survival without increasing health 
care costs [78]. A time-and-motion microcosting analysis 
of 3 genomic assays (digital gene expression profiling 
(GEP), fluorescence in situ hybridization (FISH), and 
32-gene targeted NGS panel) in the management of 
patients with non-Hodgkin lymphoma illustrated that 
FISH was found to be most labor-intensive followed 
by NGS and digital GEP, while targeted NGS with 
bioinformatics analysis had the highest mean per-case 
cost (in Canadian dollars) followed by digital GEP and 
FISH [79]. In an Australian cost-effectiveness analysis, 
the implementation of a 48-gene NGS panel leading 
to targeted therapy (off-trial or clinical trial setting) 
in the fourth-line treatment of metastatic NSCLC was 
found to have unfavorable ICERs (Table 2). The authors 
commented that reduction in off-label costs, lower 
mortality rates for true positive patients and during 
testing, lower health utility costs for progressive disease, 
and reductions in inpatient visits due to targeted therapy 
were all potential factors contributing to more favorable 
cost-effectiveness of a targeted NGS approach [80].

From 2014–2015, a Norwegian study prospectively 
enrolled 24 patients with refractory advanced solid 
tumors to 3 treatment strategies: best supportive care 
(BSC), targeted therapy without knowledge of a tumor 
biomarker (biomarker-agnostic), or targeted therapy 
guided by a 50-gene NGS panel (biomarker-based) and 
analyzed total cost-per-patient for each approach over 3 
months [81]. Here, the biomarker-agnostic approach was 
approximately 2.5-fold more costly than the biomarker-
based approach with the main drivers being drug costs 
and AE management. The biomarker-based approach 
was approximately 2.5-fold more costly than BSC and 
was mainly driven by costs of diagnostic procedures. A 
German study provided an overall cost analysis for WGS 
via Illumina platforms and showed that the latest HiSeq 
Xten was approximately 63% cheaper than the HiSeq 
2500 platform (Table 2). Notably, the difficulty in the cost 
analysis for WGS was highlighted given the multitude of 
cost-influencing factors that were included and excluded 
in this study [82]. Furthermore, overhead costs should be 
considered to truly obtain a comprehensive cost analysis 
of WGS in the healthcare system. A separate British 
microcosting analysis of WGS over the 2012–2015 time 
period revealed higher median costs per patient likely due 
to apply both WGS and RNA sequencing over multiple 
samples to achieve a higher coverage rate of >80-fold 
than conventional 30-fold coverage [83]. Of note, 10-
year forecasting scenarios did not produce expected WGS 
costs to reach $1000 per patient in the next 10 years. A 
Dutch comparison of 3 leading Illumina NGS platforms: 
NextSeq500 90-gene targeted panel, HiSeq4000 WES, and 
HiSeqX5 WGS similarly showed that per-sample costs for 

Prospective 
microcosting analysis

50-gene NGS panel 
guiding targeted therapy 
(biomarker-based) vs. 
targeted therapy without 
NGS (biomarker-
agnostic) vs. BSC

Estimated total cost-per-patient for months (includes drug costs, 
outpatient visits, costs from management of AEs and/or procedure 
complications, and sequencing): €9,654–16,798 vs. €29,870–37,707 vs. 
€4,147–13,889

[81]

Microcosting analysis WGS, Illumina 
HiSeq 2500 and HiSeq 
Xten

Estimated overall costs per case (includes direct medical costs and 
site-specific costs for sequencing devices): €3858.06 (HiSeq 2500) and 
€1411.20 (HiSeq Xten)

[82]

Microcosting and 
forecast analysis

WGS, Illumina HiSeq 
2500 (including RNA 
sequencing)

Estimated total costs per patient (2012–2015): $34,886 (95% CI 
$34,051–$35,721).
10-year forecast: WGS and RNA sequencing costs will reach $5000/
patient by December 2019, $3000 by November 2020, and $1000 by 
September 2021.

[83]

Microcosting analysis 90-gene NGS panel 
(NextSeq500), WES 
(HiSeq4000) vs. WGS 
(HiSeqX5), all Illumina 

Estimated total costs per sample (includes capital costs, maintenance 
costs, and operational costs over 5 year life cycle): €332.90 vs. €791.75 
vs. €1669.02

[84]

WGS, whole-genome sequencing; WES, whole-exome sequencing; Mb, megabase; TGS, targeted gene sequencing; NGS, next-
generation sequencing; QALYs, quality-adjusted life-years; SOC, standard of care; ICER, incremental cost-effectiveness ratio; IFs, 
incidental findings; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; PFS, progression-free survival; HR, hazard ratio; CI, 
confidence interval; GEP, gene expression profiling; FISH, fluorescence in situ hybridization; BSC, best supportive care; LYs, life-years; 
AUD, Australian dollar; AEs, adverse events.
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WGS did not reach the $1000 threshold [84]. Although 
the targeted panel and WES were considerably cheaper 
alternatives than WGS, the decision to apply a specific 
platform to clinical practice should consider potential 
tradeoffs between costs and expected clinical utility of the 
selected approach.

Clinical benefit or effectiveness

The topic of whether precision oncology improves 
clinical outcomes has been hotly debated [85, 86]. Often 
cited in these discussions, is the prospective phase II 
SHIVA trial that did not show superior outcomes in those 
with treatment-refractory advanced solid tumors matched 
to molecular targeted therapy based on molecular profiling, 
when compared to control, though this study has often been 
criticized for serious issues in methodologic design [87–89]. 
Conversely, preliminary results from the prospective phase 
I MOSCATO 01 and MD Anderson trials demonstrated 
feasibility and promising antitumor activity of targeted 
therapy matched according to NGS of tumors in previously-
treated patients with advanced solid tumors [90–92]. To 
highlight the potential clinical benefit of NGS-directed or 
biomarker-driven therapy in cancer, we limited our review 
to data from the largest series and meta-analyses (Table 3) 
and defer discussion of smaller published studies elsewhere 
[13, 56, 93–97]. Studies in lung cancer have often served as 
the prototype for assessing the clinical benefit of molecular 
profiling in cancer management, and a large retrospective 
analysis of 143 single-agent phase II trials from 2000–
2009 in >7,000 advanced NSLCL patients demonstrated 
superior median overall response rate (ORR), PFS, and 
overall survival (OS) in trials enriched for the presence 
of molecular targets compared to studies with unselected 
patients [98]. On multivariate analysis, enrichment for 
putative molecular targets was an independent predictor for 
greater ORR, PFS, and OS.

A meta-analysis of 112 registration trials (57 
randomized and 55 nonrandomized) from 1998–2013 
leading to FDA drug approvals in cancer therapy 
compared efficacy outcomes between therapies employing 
a personalized treatment approach (matched targeted 
therapy) vs. those that did not [99]. In randomized 
registration trials and experimental arms of all registration 
trials, personalized therapy was associated with higher 
response rates, longer PFS, and longer OS compared to 
nonpersonalized therapy arms (Table 3). Furthermore, 
a personalized treatment strategy was an independent 
predictor of improved response rate, PFS, and OS on 
multilinear regression analysis.

A subsequent meta-analysis of 570 single-agent 
phase II trials from 2010–2012 similarly investigated 
efficacy outcomes in 32,149 patients with various cancers 
treated with a personalized and nonpersonalized treatment 
strategy [100]. Compared to a nonpersonalized approach, 
a personalized approach consistently and independently 

was associated with improved response rates, PFS, and 
OS (Table 3). Furthermore, nonpersonalized treatment 
arms had significantly poorer outcomes compared to 
either personalized or cytotoxic arms. Personalized arms 
employing a genomic biomarker had improved response 
rates, PFS, and OS (all p ≤ 0.05) compared to personalized 
arms using a protein marker.

A recent meta-analysis of 346 phase I trials from 
2011–2013 evaluated the efficacy of biomarker-guided 
treatment selection (personalized) vs. treatment selection 
that was not biomarker-based (nonpersonalized) in 13,203 
patients with solid tumors and hematologic malignancies 
[101]. Again, patients selected for treatment via a 
personalized approach had significantly improved median 
RR and PFS than those under a nonpersonalized approach 
(Table 3). Biomarker-based targeted therapy arms (n = 57 
trials) correlated with significantly improved RR compared 
with targeted therapy arms (n = 177 arms) that were not 
biomarker-driven (31.1%, 95% CI 25.4%–37.4% vs. 5.1%, 
95% CI 4.3%–6.0%, p < 0.001). Nonpersonalized targeted 
therapy arms had outcomes comparable to cytotoxic arms, 
and personalized arms using a genomic biomarker had 
improved median RR than those employing a protein 
biomarker (42.0%, 95% CI 33.7%–50.9% vs. 22.4%, 95% 
CI 15.6%–30.9%, p = 0.001). 

Not surprisingly, genome sequencing is undergoing 
widespread implementation into routine cancer patient 
care (Supplementary Table 1). Molecular profiling is 
now incorporated into standard practice guidelines 
recommended by the NCCN while offering research 
value through facilitating the investigation of potential 
biomarkers of interest in breast [102–110], colorectal 
[111–115], gastroesophageal [116–122], hepatobiliary 
[123–127], pancreatic [128–130], gynecologic [131–143], 
prostate [144–152], other genitourinary (kidney, germ cell, 
and bladder) [153–166], lung [167–179], head and neck 
[180–187], melanoma [188–194], soft tissue sarcomas 
[195–204], and central nervous system cancers [205–212]. 

Toxicity (including financial) and safety

In an early study assessing outcomes in 66 
treatment-refractory metastatic cancer patients selected 
for therapy based on molecular profiling, safety analyses 
demonstrated no treatment-related deaths and 1 treatment 
discontinuation (1.5%) due to grade 2 fatigue using the 
molecular profiling treatment approach [56]. In a cost-
impact analysis of advanced NSCLC patients employing 
NGS for optimization of first-line treatment,  adaptation 
of NGS into management was shown to decrease the 
frequency of adverse events compared to the period prior 
to NGS incorporation [76].

In a meta-analysis of 112 registration trials leading 
to FDA-approved cancer therapies, the treatment-
related mortality rate was 1.6% (95% CI 1%–2.4%) 
for trials employing a personalized strategy (matched 
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targeted therapy) and similar to the 1.4% (95% CI 1%–
2%, p = 0.74) for nonpersonalized trials [99]. That a 
personalized treatment approach was not more toxic than 
nonpersonalized treatment strategies was also shown 
in a meta-analysis of 346 phase I cancer trials where the 
median treatment-related mortality rate was 1.89% (95% 
CI 1.36%–2.61%) for arms using a personalized strategy 

and 2.27% (95% CI 1.97%–2.62%, p = 0.31) for arms 
without a personalized strategy [101]. A large meta-analysis 
of 570 single-agent phase II trials even demonstrated a 
lower median treatment-related mortality rate of 1.52% 
(95% CI 1.23%–1.87%) in personalized treatment arms 
compared to 2.26% (95% CI 2.04%–2.49%, p < 0.001) in 
nonpersonalized arms [100]. Further analysis confirmed that 

Table 3: Summary of large series and meta-analyses evaluating the clinical benefit or effectiveness of molecular 
profiling in cancer

Design, n n Findings Ref
Retrospective, 143 
phase II trials

7, 701 advanced 
NSCLC patients

12 studies enriched for the presence of molecular targets 
had improved median ORR 48.8% (IQR 71, p = 0.005), PFS 
6 months (IQR 6.8, p = 0,005), and OS  11.3 months (IQR 
11.2, p = 0.05) compared to 9.7% (IQR 13.6), 2.8 months 
(IQR 1.9), and 7.5 months (IQR 3.2), respectively, in studies 
with unselected patients; enrichment for putative molecular 
targets was independent predictors of ORR, PFS, and OS on 
multivariate analysis (all p ≤ 0.005)

[98]

Meta-analysis, 112 
FDA registration 
trials 

38, 104 patients with 
various solid tumors 
and hematologic 
malignancies

In randomized trials (n = 57): Improved RRR 3.82 (95% CI 
2.51–5.82, adjusted p = 0.03), longer PFS (HR 0.41, 95% CI 
0.33–0.51, p < 0.001), and longer OS (HR 0.71, 95% CI 0.61–
0.83, p = 0.07) with personalized therapy compared to RRR 
2.08 (95% CI 1.76–2.47), PFS (HR 0.59, 95% CI 0.53–0.65), 
and OS (HR 0.81, 95% CI 0.77–0.85) with nonpersonalized 
therapy arms
In experimental arms in all 112 trials: Personalized therapy had 
higher response rate (48%, 95% CI 42%–55% vs. 23%, 95% CI 
20%–27%, p < 0.001), longer median PFS (8.3 months, IQR 5 
vs. 5.5 months, IQR 5, adjusted p = 0.002), and longer median 
OS (19.3 months, IQR 17 vs. 13.5 months, IQR 8, adjusted p = 
0.04)

[99]

Meta-analysis, 570 
phase II trials

32, 149 patients with 
various solid tumors 
and hematologic 
malignancies

On multivariable analysis, personalized treatment approach (vs. 
nonpersonalized approach), had higher median RR (31% vs. 
10.5%, p <  0.001), longer median PFS (5.9 vs. 2.7 months, p < 0 
.001), and longer median OS (13.7 vs. 8.9 months, p < 0 .001)
Nonpersonalized arms had poorer outcomes compared with 
personalized or cytotoxic arms with median RR of 4%, 30%, 
and 11.9%, respectively, median PFS of 2.6, 6.9, and 3.3 
months, respectively (all p < 0.001), and median OS of 8.7, 
15.9, and 9.4 months, respectively (all p < 0.05)

[100]

Meta-analysis, 346 
phase I trials

13, 203 patients with 
various solid tumors 
and hematologic 
malignancies

Compared to a nonpersonalized approach, a personalized 
approach had higher median RR (30.6%, 95% CI 25.0%–
36.9% vs. 4.9%, 95% CI 4.2%–5.7%, p < 0.001) and longer 
median PFS (5.7 months, 95% CI 2.6–13.8 vs. 2.95 months, 
95% CI 2.3–3.7, p < 0.001)
Nonpersonalized targeted arms had comparable outcomes to 
cytotoxic arms: Median RR 5.1% (95% CI 4.3%–6.0%) vs. 
4.7% (95% CI 3.6%–6.2%, p = 0.63) and median PFS 3.3 
months (95% CI 2.6–4.0) vs. 2.5 months (95% CI 2.0–3.7, 
 p = 0.22), respectively

[101]

NSCLC, non-small cell lung cancer; ORR, overall response rate; IQR, interquartile range; PFS, progression-free survival; 
OS, overall survival; FDA, Food and Drug Administration; RRR, relative response rate; HR, hazard ratio; CI, confidence 
interval; RR, response rate.
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cytotoxic agents had higher median treatment-related death 
rates (2.42%, 95% CI 2.08%–2.83%) than targeted therapy 
arms (median 1.94%, 95% CI 1.74%–2.17%, p = 0.023). In 
addition to the potentially increased morbidity and mortality 
from treatment-related AEs in nonpersonalized strategies, 
AE management has been shown to be a main driver of cost 
and reason for greater expenses with therapies not based 
on biomarker strategies compared to biomarker-based 
approaches [81].

A recent meta-analysis of 41 randomized clinical trials 
evaluating 28 targeted agents for solid tumors approved 
by the FDA since 2000 evaluated the rate of treatment-
discontinuation due to toxicity and grade 3–4 AEs and 
showed that targeted therapies with companion diagnostics 
were associated with improved safety and tolerability [213]. 
Specifically, agents with companion diagnostics compared 
to those without companion diagnostics had lower odds of 
treatment discontinuation (odds ratio (OR) 1.12 vs. 1.65, p 
< 0.001) and grade 3–4 AEs (OR 1.09 vs. 2.10, p < 0.001) 
with differences in safety being greatest for gastrointestinal, 
neurologic, and cutaneous toxicity. Indeed, the FDA has 
recently implemented a policy requiring the co-approval of 
a diagnostic with a therapeutic agent when the companion 
diagnostic is essential to the safe and effective use of the 
therapeutic product [214]. To achieve this, the FDA has 
executed numerous accommodations to facilitate this 
process without slowing the approval of the co-developed 
products.

Beyond the toxicities associated with cancer 
therapies, the financial toxicity associated with cancer 
care is becoming increasingly relevant in the face of rising 
cancer care costs and given that out-of-pocket expenses, 
copayments, and insurance premiums can often cause 
significant financial stress and burden to cancer patients 
that can adversely affect QOL and outcomes [21, 22]. 
Accordingly, evidence-based financial toxicity grading 
systems analogous to the NCI-Common Terminology 
Criteria for Adverse Events grading system have been 
developed and are undergoing validation [215].

 A timely study has been conducted in recognition 
that tailoring cancer therapies to individual patients based 
on NGS is an emerging field that lacks formal coverage 
by the majority of U.S. payers [216]. Here, interviews of 
private payers covering more than 2/3 of the U.S. insured 
population provided perspectives and challenges that 
remain to NGS reimbursement. Of 7 senior executives 
from the 10 largest U.S. health plans and regional plans 
covering >125 million enrollees interviewed, 80% 
agreed that NGS has substantive potential to benefit 
and transform the state of cancer care. However, 80% of 
the panel agreed that NGS does not fit the definition of 
“medically necessary” and is considered “experimental 
or investigational.” One additional concern was that 
coverage in this instance may appear as an endorsement 
for novel targets and related off-label use. Notably, 40% 
considered a pan-cancer NGS application beneficial 

given that it is already common in oncology and provides 
rationale for off-label drug use, and although formal 
coverage for pan-cancer therapies may not be provided 
by payers, payment could be continued on exception 
bases. Furthermore, 70% of the panel recognized that 
NGS represents a misalignment to the “single test/single 
result” contemporary coverage approach, while 60% 
believed that the accompanying bioinformatics should be 
considered its own diagnostic for which there has been 
no precedent to pay for separately. For reasons including 
lack of large correlative studies and lack of experience 
with new study methodologies, 70% of the panel believe 
that the current evidence methods proposed for NGS do 
not fit payers’ evidentiary standards. Lastly, for reasons 
including potential for departure from standard care 
protocols, lack of transparency on NGS application, and 
lack of competent infrastructure, 50% of the panel raised 
concerns regarding the adoption and implementation of 
NGS in cancer care.

DISCUSSION

In this review, we highlighted available data 
through the ASCO Value in Cancer Task Force framework 
to assess the value of genomic profiling in cancer care. 
Advancements in NGS technologies and our greater 
understanding of tumor molecular biology have, in part, 
led to achievements in cost (efficiency), clinical benefit 
(effectiveness), and toxicity (safety) in precision oncology. 
However, significant challenges remain and need to be 
considered in order to attain value-based genomics. 

Genomic profiling has become undeniably more 
cost-effective since the time of the human genome 
sequencing project when the cost of sequencing the human 
genome ranged in the hundreds of millions of dollars and 
took over a decade to complete to current NGS platforms 
that can sequence an individual’s genome on the order 
of days with costs that range in the thousands of dollars 
[46, 47]. Several studies have shown the cost-effectiveness 
of NGS panels over single-analyte tests, over SOC 
sequential genetic testing, and in one instance, a NGS-
guided treatment strategy showed improvement in survival 
without increasing healthcare costs compared to a SOC 
genomic testing only approach [73, 74, 78]. In another 
study, implementation of targeted therapy based on NGS 
in refractory metastatic NSCLC produced an unfavorable 
ICER suggesting that this approach was not cost-effective 
[80]. Several studies have shown that NGS panels and 
related management strategies are less costly than Sanger 
sequencing, targeted therapy approaches without NGS, 
or treatment of advanced NSCLC without incorporation 
of NGS in management [72, 76, 81]. One cost analysis 
forecasted that costs of WGS would gradually decrease 
over 10-years to a projected $1000 by September 2021 
[83]. Other studies have demonstrated a wide range of 
costs of NGS across platforms (Table 2).
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Despite the progress and promise shown in 
improving the cost-effectiveness of genomic sequencing 
in cancer care, the mixed results presented in the 
literature likely reflect that data from current studies 
assessing the costs and cost-effectiveness of NGS-based 
strategies are still early and relatively limited. Several 
systematic reviews have emphasized that there is a lack 
of robust published data to make an informed analysis 
on the cost-effectiveness of NGS and current evidence 
is quite heterogeneous and difficult to compare given 
the unclear and poor study methodologies and uncertain 
reproducibility of published results [71, 72]. For example, 
many cost estimates are based on published price lists 
of NGS technologies from manufacturers that often 
neglect the multidisciplinary nature of the work including 
necessary personnel, bioinformatics, and laboratory 
oversight [217]. Cost estimates are also limited in their 
applicability given that assumptions factored into cost 
calculations are not always transparent. Furthermore, 
some research institutions and manufacturers provide 
genomic sequencing services for profit and therefore using 
published pricing estimates to inform decision making in 
publicly-funded healthcare systems may not be directly 
translatable and are often not recommended. 

The seemingly disparate range of costs for NGS 
across studies underscores the tendency to focus on 
expenses related to procurement and running of NGS 
platforms with failure to account for the real costs of 
the entire genome sequencing workflow, including data 
management and analysis [71]. The contribution of 
subsequent analyses to overall costs of NGS is becoming 
increasingly important to consider as recent projection 
analyses have shown that as sequencing costs continue 
to decrease over time, costs associated with analysis of 
data downstream of sequencing are expected to grow by 
approximately 50% between 2010 and 2020 [70, 218]. 
To improve assessments of the cost-effectiveness of 
NGS strategies, several factors need to be considered: 1.) 
conducting more comprehensive cost calculations with 
transparency of genomic sequencing that include costs 
of products and consumables, inpatient vs. outpatient 
expenses, costs based on diagnostic context (e.g., NGS to 
inform cancer care vs. NGS to diagnose a rare disease in 
genetic counseling), approach and technology used (e.g., 
cost per Mb and sequencing time), personnel and labor 
costs, costs of bioinformatics, and additional cost factors 
such as overhead costs, 2.) redefining the conventional 
$50,000 per QALY threshold to reflect higher and more 
contemporary cost-per-QALY thresholds, and 3.) placing 
value on sequencing results that could affect family 
members and/or economic impact of secondary findings 
or incidental findings [71, 82, 219, 220].

A comprehensive understanding of costs as just 
described is critical to our ability to assess the cost-
effectiveness of NGS in cancer care; however, development 
of strategies to improve the costs and efficiency of precision 

oncology requires a greater understanding of health 
economics and policy, which is beyond the scope of this 
review. In general, as increasing commercialization and 
application of NGS in clinical and research settings are 
expected, costs for equipment and consumables may lower 
as a result of competition and economies of scale [84]. In 
the U.S., the Orphan Drug Act of 1983 (ODA) pathway, the 
extent that precision drugs are more likely to be biologic and 
require technology-intensive manufacturing, development 
of biomarkers and diagnostics, and costs needed to justify 
expected research and development expenditures are all 
factors critical in shaping the pricing of precision medicine 
[221]. Implementing financial instruments similar to 
mortgages that spread the costs of high-value, high-price 
treatment approaches over time, spreading costs over larger 
insurance pools or publicly financed “high-risk pools,” and 
creating price competition through expediting biosimilar 
approval, encouraging physician use of biosimilars, 
and stimulating brand-brand and biologic-biosimilar 
competition represent several proposed and potential 
means of offering financial relief for patients and payers 
of precision oncology strategies [221]. Last but not least, 
cancer treatment pathways represent a growing and ever-
important concept with potential to incorporate molecular 
profiling in promoting high-value care through helping 
oncologists identify evidence-based treatments of greatest 
clinical benefit while reducing costs [23, 39, 40].  

The evidence supporting the clinical benefit 
(effectiveness) of NGS in cancer care appears relatively 
more robust than those supporting its cost-effectiveness. 
Guidelines currently recommend molecular profiling as 
standard practice in the management of a growing number 
of cancers (Supplementary Table 1). Aside from the value 
to routine cancer care, NGS provides research value 
through expediting the detection of novel biomarkers 
with the potential to further improve patient outcomes 
in the future. Furthermore, meta-analyses of >1,000 
prospective clinical trials enrolling >80,000 patients with 
solid tumors and hematologic malignancies have shown 
superior outcomes in those with personalized treatment 
strategies over those in nonpersonalized management 
arms (Table 3). Mature and final results from a number of 
cancer clinical trials matching targeted therapy to genomic 
profiling are eagerly awaited to see if further support for 
precision oncology is provided [9–17]. Again, clinical 
pathways in cancer represent a potential but important 
avenue to maximize clinical benefit through incorporation 
of genomic sequencing [39, 40].

To further enhance our ability to achieve clinical 
benefit or effectiveness in cancer care through NGS, 
we should understand that not all NGS platforms are 
equivalent in performance and applicability in the clinic. 
Currently there are several types of NGS platforms 
including single-gene tests, targeted gene panels utilizing 
polymerase chain reaction (PCR)-based techniques or 
DNA captures, WES, and WGS [77, 84]. Differences 
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in coverage across platforms have been the subject of 
early studies [84, 222, 223]. NGS targeted panels have 
been reported to have approximately 4- to 5-fold greater 
coverage than WES, while another report illustrates the 
average coverage for targeted panels to be 100X, 70X 
for WES, and 30X for WGS [84, 223]. For high-quality 
genome data, many commercial entities recommend 30X 
coverage for WGS to represent a contemporary benchmark 
[82, 84]. Despite typically greater coverage for targeted 
panels, variability in the coverage of designed probes 
targeting a genomic region of interest have been shown 
across commercially available target enrichment methods 
[48]. Additionally, missed opportunities for treatment have 
been shown in cross-comparisons of NGS panels where 
instances of missed germline mutations and copy number 
variation detection occurred [49].

Recent results suggest that for Mendelian diseases 
and certain cancers WES may achieve a diagnostic yield 
similar to panel-based targeted sequencing though a 
higher false negative rate should be considered for WES 
use in cancer [224, 225]. In addition, one investigation 
has demonstrated a high concordance with WES across 
institutions [226]. On the contrary, comparison of WES 
to WGS may result in small differences in diagnostic 
yield given that WES accounts for all protein-coding 
regions in which 85% of all mutations are believed to 
occur [84]. Evidence suggests that single-gene tests 
are best served in clinical scenarios with minimal locus 
heterogeneity while NGS panels are less useful in those 
with extreme heterogeneity where targeted panels identify 
fewer actionable alterations than other platforms – in 
instances of rare diseases or in patients with an abnormal 
or unknown phenotype, WGS may provide the diagnostic 
solution [82, 223]. Certainly, WGS has established a 
diagnostic role in medical genetics, typically after first-tier 
testing [223]. However, WGS has been associated with a 
greater potential to detect IFs compared to targeted panels 
(less likely) and single-gene tests (no IFs), which given 
the increased costs and possible complications incurred 
from further diagnostic work-up prohibits its widespread 
and first-tier application except in certain conditions [82, 
223]. One group has recently proposed a role for WGS as 
a first-tier genetic test given the improved diagnostic yield 
compared with targeted gene sequencing panels and WES 
in a pediatric population [227]. For cancer care, WGS may 
ultimately generate more cost savings if used as a first-
tier strategy given the potential for earlier diagnoses and 
avoidance of ineffective therapy as well as identification 
of resistance mechanisms to often expensive therapeutic 
agents [83].

Along these latter lines, analysis of cell-free 
circulating tumor DNA (ctDNA) represents a promising 
development that can optimize clinical benefit in cancer 
treatment given its ability to detect resistance mutations 
and serially monitor a tumor’s molecular profile to various 
pressures including systemic therapy [228–230]. Extension 

of targeted deep sequencing that allows for detection 
of DNA rearrangements and copy number variations to 
whole-exome or whole-genome approaches in plasma 
has afforded predictive and prognostic information in 
cancer patients. In addition, ctDNA analysis is relatively 
simple and noninvasive compared to tissue biopsy and the 
ability to collect serial assays and provide comprehensive 
molecular profiling over time can address concerns 
regarding genetic heterogeneity in tumor specimens 
procured from tissue biopsies.

In the current landscape, targeted gene panels 
and single-gene testing are recommended by national 
guidelines (NCCN) and are more routinely used in 
the diagnostic evaluation and management for several 
cancers while WES and WGS are not yet as incorporated 
into routine clinical practice in cancer care [36–38]. With 
the continued development and decrease in costs of NGS 
technologies, the streamlining of WGS into a single 
laboratory workflow and one-time test providing the basis 
for lifelong follow-up that replaces other sequencing tests 
is within reach in the foreseeable future [223]. Notably, 
as NGS becomes more entrenched in routine cancer 
care, further development of NGS targeted panels should 
undergo rigorous validation that requires adequate training 
of pathologists and refinement of international laboratory 
standards [231]. Similar stringent guidelines for validation 
of WES and WGS will be required as well, should these 
platforms become further implemented in cancer care and 
research [232].

Targeted gene panels and WES are relatively 
less costly than WGS, although this price gap is 
narrowing (Table 2). Targeted gene panels often require 
complementary assays to detect duplications and deletions 
and Sanger sequencing for confirmation while WES 
often requires Sanger sequencing for confirmation as 
well [223]. Furthermore, a major obstacle to the routine 
clinical application of NGS has been interpretation of 
the large number of sequencing variants and variants of 
unknown significance (VUS) of which published results 
to help assess variant pathogenicity provided by public 
and commercial databases can often contain ambiguous 
or insufficient information that may potentially lead to 
overassessment of pathogenicity and misdiagnosis [223]. 
Of the number of VUS that are potentially detected, 
single-gene tests detect the fewest followed by targeted 
gene panels and WES which can detect large numbers 
of VUS. Ultimately, the decision to proceed with a 
clinical sequencing platform and method is dependent 
on numerous considerations including, but not limited 
to, required turnaround time, samples to be tested, type 
and complexity of the genetic variants to be assessed, 
required sensitivity, degree of bioinformatics support, 
infrastructure, and resources available in the laboratory 
(particularly computational resources), expected volume 
of testing, and overall costs per sample [84, 233].
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Although molecular profiling can improve safety 
and tolerability regarding to toxicities associated with 
cancer therapies, financial toxicity remains a major 
looming challenge to achieving value-based genomics. 
As highlighted by a timely study, U.S. payers in 
general believe that NGS does not fit the definition of 
medically necessary and is considered experimental or 
investigational, NGS represents a misalignment to the 
single test/single result contemporary coverage approach, 
current evidence methods proposed for NGS do not fit 
payers’ evidentiary standards, and that issues regarding 
the adoption and implementation of NGS in cancer care 
will arise given the potential for departure from standard 
care protocols, lack of transparency on NGS application, 
and lack of competent infrastructure [216]. 

The authors in this study propose 2 general 
approaches to increase payer coverage: redefine NGS to 
satisfy the current coverage and evidence framework or 
redefine the current coverage and evidence framework to 
satisfy NGS. For within the current coverage framework 
approach, evidentiary challenges, for example, could be 
addressed by collaboration with the health technology 
and pharmaceutical  industry, physicians and healthcare 
providers, policy-makers, and stakeholders to agree 
on novel research methods and develop corresponding 
evidence [216]. Spreading the costs of high-value, high-
price treatment approaches over time, spreading costs over 
larger insurance pools or publicly financed high-risk pools, 
and creating price competition in precision oncology are 
also potential strategies to provide financial relief for 
patients and payers within the current framework [221]. 
Furthermore, success of basket trials or trials investigating 
targeted therapy matched by genomic profile can reduce 
both the cost and length of trials allowing more drugs to 
become more commercially viable that can lead to more 
innovation and competition [221]. Payers have shown 
enthusiasm regarding the value of pathways as they reduce 
unwarranted variation in care and improve adherence to 
evidence-based medicine; further development of clinical 
pathways that incorporate genomics-based treatment 
represents an additional strategy within the current 
framework to improve payer coverage [39, 40]. Pan-
cancer NGS applications are becoming more common 
and provide rationale for off-label drug use allowing for 
payment that can be continued on exception bases as 
another method to reduce financial toxicity [216].

The second approach of redefining the current 
coverage and evidence framework to satisfy NGS is 
undoubtedly more complex [216]. Here, the authors 
comment that this approach would require collaboration 
with stakeholders to explicitly identify and define coverage 
disruptive features of NGS, modify the evidentiary 
framework including evidence research methods and 
approach to assessing evidence, and adjust the current 
coverage framework to align with the evidentiary 
framework and permit incorporation of NGS benefits. 

In essence, proactive multidisciplinary efforts to define 
methods of evidence generation, the direction for which 
NGS development should proceed, and implementation 
into coverage policy are fundamental aspects to this 
approach that although seemingly uncertain can provide 
unprecedented benefits and reduce financial toxicity in the 
era of precision oncology.

Lastly, our analysis is based primarily on available 
data, especially from the U.S. It will now be important 
to accumulate and analyze data to assess the value of 
genomics in cancer care from other countries. We hope 
that in the future there will ultimately be international 
guidelines for genomics in oncology. 
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