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Abstract: Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance
proteins involved in plants’ defense against their pathogens. Although sunflower is affected by
many diseases, only a few molecular details have been uncovered regarding pathogenesis and
resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly
accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1
receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL),
Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding
genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower
resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes
with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified
signal peptides and nuclear localization signals present in the identified genes and their homologs.
We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of
which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis
NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A
clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap
support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and
TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high
synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression
data revealed functional divergence of the NBS genes with basal level tissue-specific expression.
This study represents the first genome-wide identification of NBS genes in sunflower paving avenues
for functional characterization and potential crop improvement.

Keywords: coiled coil; disease resistance; nucleotide binding site encoding genes; gene clustering;
plant defense; resistance pathways; resistance to powdery mildew 8; R genes; sunflower; synteny

1. Introduction

Plants employ different gene families in signaling networks in response to numerous biotic and
abiotic stresses [1]. In order to deal with these stresses, during the course of evolution, plants have
developed multifaceted processes to recognize the stress stimuli, transfer them to the plant’s own
message(s) and complete the signal transduction pathways [2,3]. In response to the stresses due to
pathogens, plants have developed race-specific and race non-specific resistance, known as qualitative
and quantitative resistance, respectively [4]. Plants recruit proteins encoded by disease resistance (R)
genes that recognize or interact with specific pathogen avirulence (avr) gene products [5] or effector
molecules triggering a downstream signaling in resistance pathways [6,7]. Various models, such as
Zig-zag and multicomponent models, propose a dynamic relationship between a host and its pathogen
and explain how incompatible interactions between the hosts and pathogens lead to a selection of
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new R genes in response to co-evolutionary pressure due to pathogen races [6,8]. Host R genes
can vary within a species, and their variation is correlated with that of the corresponding pathogen
effectors [9]. For example, host polymorphic to R genes is found to provide partial resistance against
pathogens [10]. Such partial resistance accumulates throughout the plant development and eventually
provide quantitative resistance in the form of broad spectrum resistance [10]. Identification of R genes
and their pathogen effectors is essential for understanding host–pathogen interactions and disease
resistance pathways in order to develop durable resistance in crop species.

The Pathogen Recognition Genes database (PRGdb, http://prgdb.org) listed 153 R genes
that have been cloned and characterized, and 177,072 annotated candidate Pathogen Receptor
Genes (PRGs) [11]. These R genes encode mostly nucleotide binding site (NBS) leucine-rich
repeat (LRR) proteins and have been classified into categories based upon the domains and motifs
organization in the proteins [12,13]. Most commonly recognized categories are Toll-interleukin-1
receptor-like-NBS-LRR (TNL), Coiled-Coil-NBS-LRR (CNL), and Resistance to powdery mildew8
(RPW8)-NBS-LRR (RNL) [13,14]. All TNL, CNL and RNL genes are present in dicots, whereas TNL
genes are absent in monocots [14,15]. Analysis of NBS genes in Fabaceae and Brassicaceae revealed
that CNLs and RNLs diverged prior to divergence of Rosid I and Rosid II lineages of Angiosperms,
and, in both plant families, the two clades are sister to each other [15,16]. The NBS domain, also known
as NB-ARC where ARC stands for APAF1 (apoptotic protease-activating factor-1), R genes, and CED4
(Caenorhabditis elegans death-4 protein), hydrolyzes ATP to induce the conformational change in R
proteins by acting as the nucleotide binding pocket [17]. The NBS domain mainly consists of P-loop,
Kinase-2, RNBS A, GLPL and MHDL motifs [14]. The LRR domains at the C-terminus help activate
or deactivate the defense signaling by interacting with the NBS domain in the presence or absence
of pathogen effectors, respectively [18]. A diverse number of NBS genes have been reported in
various plant species since the first study in Arabidopsis thaliana was published in 2003 [14]. With the
increasing availability of plant genome sequences, R gene proteins have been identified in many
plant species, such as A. thaliana [5,14]; Vaccinium spp. [19]; Amborella trichopoda, Musa acuminata,
Phyllostachys heterocycla, Capsicum annuum, and Sesamum indicum by Shao et al. 2016 [13]; Cicer
arietinum [20]; Glycine max [21–24]; Oryza sativa [25,26]; Medicago truncatula [27]; Vitis vinifera and
Populus trichocarpa by Yang et al. 2008 [28]; Solanum tuberosum [29]; Brassica rapa and Brassica oleracea by
Zhang et al. 2016 [30]; Hordeum vulgare [31]; Setaria italica [32]; Theobroma cacao [5]; Populus trichocarpa [5];
V. vinifera [5]; Cucumis sativus [33]; Phaseolus vulgaris [16,24], Lotus japonicas, Cajanus cajan, Glycine soja
by Zheng et al. 2016 [16], Gossypium arboretum [34], etc. A recent study by Li et al. 2016 [35] has
identified NBS-encoding genes as well as receptor-like protein kinases (RLKs) and receptor-like
proteins (RLPs), collectively called as Resistance Gene Analogs (RGAs), for 50 plant genomes using a
RGAugury pipeline.

According to a report by Food and Agriculture Organization (FAO) in 2010 (http://www.fao.org),
domesticated Helianthus annuus L. (Family Asteraceae), is the fourth most important oilseed crop in the
world. Since sunflower has the capacity to maintain sTable yields in different environmental conditions
such as drought, it has been a model crop species for studying climate change adaptation [36].
The study on diversity analysis of 128 expressed sequenced tag (EST)-based microsatellites in wild
H. annuus has provided insights into the ability to adapt salt and drought stress and selective sweeps
revealing transcription factors as the major group of genes involved in those processes [36]. In addition,
studies on wild and cultivated relatives of sunflower on disease resistance [37] and oil content [38]
aspects have played great roles in understanding the genetic background for these traits. However,
many fungal diseases like charcoal rot (Macrophomina phseolina), downy mildew (Plasmopara halstedii),
Fusarium rot and stem rots (Fusarium sp.), phoma black stem (Phoma macdonaldii), phomopsis stem
canker (Diaporthe helianthi, D. gulyae), Sclerotinia mid and basal stem rot (Sclerotinia scelerotiorum),
Verticillium wilt (Verticillium dahlia), leaf blight (Alternariaster helianthi), leaf spot (Pseudomonas syringae
pv. helianthi), powdery mildew (Erysiphe cichoracearum), rust (Puccinia helianthi) and many others have
caused crop damage resulting in the loss of yield and oil content [39].

http://prgdb.org
http://www.fao.org


Genes 2018, 9, 384 3 of 21

Previously, various studies have contributed their findings about the NBS group of R genes in
sunflower [40–43]. Plocik et al. 2004 [40] identified nine sunflower resistance gene candidates with
coiled-coil (CC) domains in the N-terminal region using degenerate primer sets. Sunflower showed
diverse structures in CC subfamily, while lettuce and chicory, closely related species, showed high
similarity in structure. Radwan et al. 2008 [42] used degenerate primers to identify 630 NBS-LRR
homologs in wild species of sunflower (Helianthus annuus, Helianthus argophyllus, Helianthus deserticola,
Helianthus paradoxus, and Helianthus tuberosus). In addition, Radwan et al. 2004 [43] isolated R gene
analogs belonging to the CNL class of R genes from the inbred sunflower line QIR8 containing Pl8I
locus against P. halstedii, which causes downy mildew. Later, Hewezi et al. 2006 [41] cloned partial
antisense PLFOR48, which showed homology to the TNL family, in mildew resistant sunflower line,
RHA 266 and Nicotiana tabacum L. The recent availability of the H. annuus genome [44] has now made
it possible for studying the diversity and evolution of gene families in sunflower. The main objectives
of this research were to conduct a genome-wide search for H. annuus NBS genes and analyze their
genomic structure and functions. A proper identification of the R genes is crucial to elucidate their
roles against various diseases in sunflower.

2. Materials and Methods

2.1. Retrieval and Identification of Sunflower NBS-Encoding Genes

The genome of sunflower (INRA inbred genotype XRQ described in [44]; H. annuus r1.2) was
accessed from the sunflower genome database (https://www.sunflowergenome.org) as well as
Phytozome (https://phytozome.jgi.doe.gov). The sunflower genome is 3.6 gigabases and its genes
distributed over 17 chromosomes encode 52,243 proteins (https://phytozome.jgi.doe.gov). A. thaliana
TNL and CNL (= nonTNL or nTNL) protein sequences were used as reference for the identification of
NBS-LRR proteins in sunflower, and were obtained from http://niblrrs.ucdavis.edu. The multiple
sequence alignment file of these reference sequences in Stockholm format were employed in hmmbuild
and hmmsearch for HMM profiling using the program HMMER version 3.1b2 [45] at a cut-off value
of 0.01. InterProScan Version 5.27 (EMBL-European Bioinformatics Institute, UK) [46] and Pfam
ID [47] and PROSITE ID (http://prosite.expasy.org/) were used to search for the conserved domains.
The proteins with PfamID of TIR (PF01582), NBS (PF00931), RPW8 (PF05659), CC and LRR domains
with ‘LxxLxxLxx’ signatures were selected to determine the NBS proteins in sunflower. Further
verification of the CC domains at the N-terminus was carried out using the MARCOIL server [48]
with a 9FAM matrix having probability between 0.4–1. Multiple expectation maximization for motif
elicitation (MEME) [49] analysis was performed to confirm the presence of P-loop, Kinase-2, GLPL,
MHDL, RNBS A, RNBS B, RNBS C, and RNBS D motifs in the NBS domain, TIR1, TIR2, TIR3 motifs in
TIR domain and RPW8 motifs in RPW8 domains. A set of parameters used in MEME analysis included
maxsize: 100,000, mod: zoops, nmotifs: 20, minw: 6, and maxw: 50 to 25. Subcellular localization of the
putative NBS genes were analyzed using TargetP 1.1 [50]. The program NLStradamus [51] was used
to examine nuclear localization signals (NLS) in identified NBS genes of sunflower using a two-state
HMM static model with Viterbi and posterior prediction methods (with 0.5 cut-off).

2.2. Phylogenetic Tree Construction

The NBS protein sequences from A. thaliana and H. annuus were aligned using CLUSTAL W [52]
and MUSCLE [53] integrated in the program Geneious [54]. Phylogenetic analysis of the aligned data
matrix was performed using Maximum Likelihood (ML) method (1000 replicates) in the program
MEGA Version 7.0.14 [55]. The phylogenetic analysis employed the best evolutionary model (resulted
from the ModelTest analysis using MEGA7) JTT + G + I (Jones–Taylor–Thornton with γ distribution
and invariant sites), and Streptomyces coelicolor accession P25941 as an outgroup [14]. Additional
phylogenetic trees of the NBS domains of predicted TNL and CNL proteins of sunflower and all
reference proteins obtained from http://prgdb.crg.eu were reconstructed using the methods and
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models described above. Thus, the obtained Newick format of phylogenetic trees were employed in
the Interactive tree of life (iTOL) Version 3 (Biobyte solutions GmbH, Bothestr, Germany) for their
visual enhancement [56].

2.3. Chromosomal Locations, Clustering and Gene Structure

All 17 chromosome sequences of H. annuus were obtained from https://www.sunflowergenome.
org and uploaded in the program Geneious [54]. The chromosome locations of the respective gene
families were visualized using an annotation file in Generic Feature Format (GFF). The NBS gene
locations, NBS types and clustering were visualized on their respective chromosomes. Gene clustering
of the NBS genes was carried out following Jupe et al. 2012 [57], using two major criteria: (a) distance
between two NBS genes is less than 200 kb, and (b) presence of no more than eight annotated non-NBS
sequences between two consecutive NBS sequences. The exon-intron distribution pattern was obtained
by the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn).

2.4. Ka/Ks and Syntenic Analysis

Coding sequences (CDS) of the NBS genes were used in calculating nonsynonymous substitutions
per nonsynonymous site (Ka) and synonymous substitutions per synonymous site (Ks) in the program
DnaSP 6.11.01 [58]. Syntenic map of the NBS genes of H. annuus and A. thaliana was created using
SyMAP Version 4.2 (Arizona Genomics Computational Lab, Tucson, AZ, USA) [59], executed within
South Dakota State University’s High-Performance Computing Cluster. Whole chromosome sequences
and gene annotation files were used as input files for syntenic mapping of H. annuus and A. thaliana.

2.5. Gene Homology and Expression Analysis

Putative homologs of the predicted sunflower NBS genes were accessed using BLAST tool
available in http://prgdb.org with reference genes of PRGdb and a cutoff E-value of 0.01. The filtering
included sequences with E-values less than 0.01 and identity percentage of greater than 50%.
Expression profiles of the putative NBS genes were downloaded from https://www.sunflowergenome.
org. A heatmap was generated using deseq normalized data through the MeV package, available
at http://mev.tm4.org/ [60]. The heatmap clustering was performed based on Euclidean distance
under 1000 iterations using the K-means Clustering Method. The clustering classification used these
categories: moderate to minimal expression, minimal expression to no expression, and no expression
at all.

3. Results

3.1. Diversity of the NBS-Encoding Genes in Sunflower

The HMM analysis of all sunflower protein-coding genes using the reference sequences of
A. thaliana resulted in 485 NBS proteins, using a filtering threshold expectation value of 0.01.
These sequences were further annotated with InterProscan, and evaluated for the presence of NBS
domains in each sequence. After a careful examination, 352 protein sequences were confirmed to have
an NBS domain. Among these, 100 genes belonging to CNL group (after verification using MARCOIL
server omitted ten false positives), 77 to TNL, 13 to RNL group, as well as 162 genes possess neither
CC nor TIR domains thus classified as an NL group. Among 100 CNL types, 64 possesses a CC domain
similar to S. tuberosum disease resistance protein (Rx). Furthermore, Leucine-rich repeats (LxxLxxLxx
signatures) were examined to classify CNLs, TNLs, RNLs and NLs into their subgroups. Following
the classification of NBS-encoding genes in Brassica species and A. thaliana [5], the NBS genes were
classified into: CC-NBS-LRR (CNL), CC-NBS (CN), CC-NBS-NBS-LRR (CNNL), CC-NBS-NBS (CNN),
RPW8-NBS-LRR (RNL), RPW8-NBS (RN), RPW8-CC-LRR (RCL), TIR-NBS-LRR (TNL), TIR-NBS
(TN), TIR-TIR-NBS-LRR (TTNL), TIR-NBS-LRR-TIR-NBS-LRR (TNLTNL), TIR-CC-NBS-LRR (CTNL),
TIR-CC-NBS (CTN), NBS (N), NBS-LRR (NL), NBS-NBS (NN), and NBS-NBS-LRR (NNL) (see Table 1,

https://www.sunflowergenome.org
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Figures S1–S4). The LxxLxxLxx (=LRRs) signatures were present in 97 (out of 100) CNL genes with their
LRRs ranging from two to 22, 12 (of 13) RNL genes with one to eight LRRs, 55 (of 77) TNL genes with
two to 26 LRRs, and 131 (of 162) NL genes with two to 30 LRRs. Among them, HanXRQChr02g0052061,
a TNL protein sequence contained a unique Kelch motif sequence (PF01344). TargetP analysis showed
that 20 NBS proteins were predicted to localize to the chloroplast, 14 to mitochondria, 80 enter the
secretory pathway, and 238 were predicted to enter other subcellular locations other than mitochondria
or the chloroplast (Table S1). Thirteen CNLs, seven TNLs, one RNL, and eight NLs were identified to
contain a putative NLS using NLStradamus (Table S2).

Three major signature motifs: P-loop, Kinase-2, and GLPL of the NBS domain of disease resistance
proteins were present in 57 out of 100 CNLs, 69 out of 77 TNLs, all 13 RNLs and 58 out of 162 NLs
(Supplementary File S1, Figures S5–S7). Other important motifs RNBS A, RNBS B, RNBS C and RNBS
D, and MHDL were also present in the NBS proteins (Tables S3–S5). Motifs TIR1, TIR2, TIR3, and TIR4
varied in number across the TNL genes: among the 77 TNLs, 76 had TIR1, 76 had TIR2, 75 had TIR3
and 76 had TIR4 motifs. Only two TNLs (HanXRQChr05g0136351 and HanXRQChr06g0184071) did
not have all four TIR motifs. Of the 100 CNLs, 81 had the characteristic conserved amino acid sequence
’DDVW’ in the Kinase-2 motif. Remaining CNLs had either Isoleucine (I), Methionine (M), or Leucine
(L) in the place of Valine (V) amino acid in the sequence ‘DDVW’. Of the 77 TNLs, 50 shared the
characteristic ‘DDVD’ amino acid sequence in the Kinase-2 motif. Of the 162 NLs, 83 had ‘DDVW’ and
18 had ‘DDVD’, hence classified as NCC and NTIR group of the NLs, respectively. All of the 13 RNLs
had ‘DDVW’ sequence in the Kinase-2 motif except for HanXRQChr03g0067681 with ‘DDVR’ sequence.
Another key characteristic found within the RNBS B motif was that the majority of the CNLs had
‘TSR’, TNLs had ‘TTRD’, and RNLs had ‘TSR’ residues. The sequence alignments illustrating all the
conserved motifs of the CNLs, TNLs, and RNLs are presented in Supplementary File S2.

3.2. Gene Location, Clustering, Ka/Ks Values and Structural Variation

The NBS genes are located on each of the chromosomes, with only four (HanXRQChr00c0003g0570971,
HanXRQChr00c0003g0570951, HanXRQChr00c0004g0571011, and HanXRQChr00c0037g0571241) were not
assigned to any chromosome (Figure S8). The number of the NBS genes located on each chromosome
ranged from three (chromosome Ha12) to 99 (chromosome Ha13). Chromosomal distribution of the
CNL, TNL, RNL, and NL genes and their clusters are shown in Figure 1. The CNL genes were absent in
chromosomes Ha3, Ha5, and Ha16, whereas, TNL genes were absent in chromosomes Ha7 and Ha11.
Most of the TNL genes were uniformly distributed across the chromosomes, whereas most of the CNL
and NL genes were densely represented on chromosome Ha13 (approximately 28%). The smallest
number of RNL genes (thirteen) were present in chromosomes Ha2, Ha3, Ha4, Ha5, Ha7, Ha11, Ha14,
and Ha15 (see Figure 1). Among the 352 NBS genes, 200 (~57%) genes formed 75 clusters (4.4 clusters
per chromosome and 2.7 genes per cluster) with chromosome Ha13 hosting 25 clusters of 73 genes
(~37%; Table S6). The gene clusters were present in all chromosomes except for Ha5 and Ha12. Gene
positions and clusters on chromosomes of H. annuus are shown in Figure 2. The average Ka/Ks values
for the clades of CNLs, TNLs, and RNLs were 0.68, 0.89, and 0.31, respectively. The number of exons
in the genes is shown in Table S1 and Figures S9–S12. The number of exons for CNLs, TNLs, RNLs,
and NLs ranged from 1 to 11, 2 to 18, 4 to 9, and 1 to 19, respectively. In average CNLs, TNLs, RNLs,
and NLs had 2.7, 6.1, 6.2, and 2.9 exons per gene, respectively.
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Table 1. Nucleotide Binding Site (NBS)-encoding proteins in sunflower in relation to 15 other plant species.

Protein Letter Code Number of Proteins

Ha * At a Gm b,c Mt a Bo a Br a Tc a Pt a Vv a Ca d Cs e Pv f,c Lj f Cc f Gs f Ga g

CNL 90 17 95 152 6 19 82 120 203 19 17 31 11 37 47 80
CN 5 8 - 25 5 15 46 14 26 33 1 40 26 41 62 44

CNNL 4 - 5 - - 2 - - - 1 - - - - - -
CNN 1 - - - - - - - - - - - - - - -
RNL 10 2 6 - 1 4 - - - 2 2 - - - - 3
RN 1 3 - - 2 1 - - - 2 - - - - - -

RCNL 2 - - - - - - - - - - - - - - -
TNL 52 79 126 118 40 93 8 78 97 6 11 81 16 47 49 5
TN 21 17 22 38 29 23 4 10 14 7 2 11 53 36 76 2

TNNL 0 1 - - 1 4 - - - - - - - - - -
TTNL 1 - - - - - - - - 1 - - - - - -

TNLTNL 1 - - - - - - - - - - - - - - -
CTNL 1 - - - - - - - - - - - - - - -
CTN 1 - - - - - - - - - - - - - - -

N 29 26 4 328 53 29 53 62 36 14 1 59 82 136 213 59
NL 125 20 73 - 24 27 104 132 159 12 23 20 18 56 58 53
NN 2 - - - 3 2 - - - 1 - - - - - -

NNL 6 - - - - 3 - - - - - - - - - -

Note: Ha: Helianthus annuus; At: Arabidopsis thaliana; Gm: Glycine max; Mt: Medicago truncatula; Bo: Brassica oleracea; Br: Brassica rapa; Tc: Theobroma cacao; Pt: Populus trichocarpa; Vv: Vitis
vinifera; Ca: Cicer arietinum; Cs: Cucumus sativus; Pv: Phaseolus vulgaris; Lj: Lotus japonicas; Cc: Cajanus cajan; Gs: Glycine soja; Ga: Gossypium arboretum (* = this study, a = [5], b = [23], c = [24],
d = [20], e = [33], f = [16], g = [34]).
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Figure 1. Chromosomal distribution (Ha1–Ha17) of the NBS genes and gene clusters in sunflower.
Different NBS groups and gene clusters are color coded. CNL: Coiled-Coil-NBS-LRR; TNL: Toll-
interleukin-1 receptor-like-NBS-LRR, RNL: Resistance to powdery mildew8 (RPW8)-NBS-LRR; NL:
Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR).

3.3. Phylogenetic and Syntenic Analysis

The data matrix with the NBS aligned sequences (NBS domain region is more conserved than
remaining 5’ and 3’ regions) was used in phylogenetic analyses. Phylogenetic relationships among
the sunflower NBS sequences are shown in Figure 3, and those of the sunflower and Arabidopsis
NBS sequences are shown in Figure 4; each tree reveals distinct clades of CNLs, RNLs and TNLs.
The RNL clade was surprisingly nested within the TNL clade. As shown in Figure 3, the CNLs
and TNLs formed six subclades each. The TNL subclades are named TIR (I), TIR (II), TIR (III), TIR
(IV), TIR (V), and TIR (VI), whereas CNL subclades are named CC (I), CC (II), CC (III), CC (IV),
CC (V), and CC (VI). The phylogenetic tree reconstructed using sunflower and Arabidopsis NBS
sequences revealed clade-specific nesting patterns in the CNL group (Figure 4). The nesting of all
sunflower RNL genes within CNL-A clade (with Arabidopsis RPW8 genes) was strongly supported
(bootstrap support = 96%). CNL-C (I) clade constituted six CNL genes (HanXQRChr14g0440091,
HanXQRChr17g0562451, HanXQRChr12g0374601, HanXQRChr08g0224171, HanXQRChr13g0417971,
and HanXQRChr13g0417981) with a weak support [bootstrap support (BS) = 57%]. CNL-C (I)
clade, sister clade to CNL-C (II) and CNL-D constituted 79 genes. CNL-B clade constituted three
genes (HanXQRChr02g0046161, HanXQRChr11g0333001, and HanXQRChr11g0333091). The remaining
12 genes did not belong to any clade of Arabidopsis CNL genes. The TNL group formed a species-specific
clade, except ten genes that formed a small clade with AT5G36930, named TNL-D clade with strong
bootstrap support of 100%. We found a moderate bootstrap support (BS = 50%) for CNL-A clade being
nested within TNL clade making both the CNL and TNL clades paraphyletic. Another tree constructed
using RNL genes of A. thaliana and H. annuus showed two distinct clades for two lineages: activated
disease resistance gene 1 (ADR1) and N-required gene 1 (NRG1) (Figure 5). The Newick files related
to phylogenetic trees in Figures 3–5 are provided in Supplementary File S3. For the comparative
study, all the manually curated TNL and CNL reference proteins obtained from http://prgdb.crg.eu
were phylogenetically compared with sunflower TNL and CNL NBS proteins. The sunflower NBS

http://prgdb.crg.eu
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proteins formed clades with various reference proteins such as Pi36, Pl8, Rps2, VAT, RPG1, Gro1.4,
RY-1, and N proteins suggesting their homologs (Figure S13). The syntenic relationship between the
Arabidopsis’s 119,146 kb genome and sunflower’s 3,641,596 kb genome showed 87 syntenic blocks
with 1049 synteny hits. The chromosome 2 of Arabidopsis was highly syntenic to chromosome Ha1,
Ha2, Ha3, and Ha15 chromosomes of sunflower. Similarly, the highest syntenic region was observed
between chromosomes 5 of Arabidopsis and chromosome 6 of sunflower. The sunflower chromosomes
Ha2, Ha5, Ha11, Ha13, Ha15, and Ha17 are least syntenic to any of the chromosome of Arabidopsis.
The pericentromeric region of the sunflower chromosomes Ha3, Ha9, and Ha14 were highly syntenic to
the chromosomes of Arabidopsis. The chromosome Ha13 that contains 99 NBS genes contains fragments
from only chromosome 2 of Arabidopsis (Figure S14).
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Figure 2. Chromosomal distribution of sunflower NBS gene clusters (n = 17). Each arrow color
represents an NBS gene type and orientation, and the thick vertical line represents a chromosome.



Genes 2018, 9, 384 9 of 21

Figure 3. Maximum likelihood (ML) tree featuring NBS groups based on the conserved domains of the
CNL, TNL, and RNL genes from Helianthus annuus. The ML tree was constructed using the JTT + G + I
(Jones–Taylor–Thornton with γ distribution and invariant sites) model with 1000 bootstrap replicates.
The ML tree was rooted using a Streptomyces coelicolor NBS containing protein, P25941, as an outgroup.
The clades TNL (blue), CNL (red), and RNL (green) and outgroup (purple) are color-coded. Subclades
are mentioned as TIR (I) to TIR (VI) and CC (I) to CC (VI).
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Figure 4. Maximum likelihood (ML) tree featuring NBS domain amino acid sequences of the CNL,
TNL, and RNL genes from Arabidopsis thaliana (AT; orange) and Helianthus annuus (light blue). The ML
tree was reconstructed using JTT + G + I (Jones–Taylor–Thornton with γ distribution and invariant
sites) evolutionary model with 1000 bootstrap replicates. The ML tree was rooted using Streptomyces
coelicolor NBS-containing protein, P25941, as an outgroup (yellow). The clades are color-coded: TNL
in blue, CNL in red, RNL clade in green, and outgroup in purple. Subclades are labeled as CNL-A to
CNL-D and TNL-A to TNL-H.

3.4. Homologs and Expression Analysis

The predicted 352 NBS proteins of sunflower showed homology, with identity greater than
50% and E-value less than 0.01, to 39 genes among 153 reference genes on the Plant Resistance Genes
database (Table S7). Among them, 21 proteins showed greater than 70% identity to the H. annuus
clone Ha-NTIR11g CC-NBS-LRR gene (Pl8). HanXRQChr13g0425411, HanXRQChr13g0425361,
and HanXRQChr13g0425431 showed more than an 80% identity to the Pl8 gene suggesting the
probable homologs to that gene. HanXRQChr04g0123041, belonging to the NL group has shown
homology to Lycopersicon esculentum EIX receptor 1 (LeEIX1), a gene that encodes receptor-like proteins
(RLPs). Similarly, HanXRQChr17g0552491 showed homology to MLA10, HanXRQChr13g0420141 to
N, HanXRQChr17g0552491 to both MLA12 and MLA13 and HanXRQChr17g0552491 to Sr33 protein
with greater than 60% identity. Sunflower Genome Database with H. annuus r1 annotations was
employed to obtain expression data for predicted NBS genes. We compared accessions of H. annuus
r1.2 annotations to H. annuus r1 to obtain the expression data for NBS proteins. Since there were
many duplicates for H. annuus r1.2 annotations, we used only the sequences with the unique names.
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The raw Read Per Kilobase Million) (RPKM) values of gene expression were downloaded separately.
The expression values were from bract, corolla, leaves, ligule, ovary, pollen, seed, stamen and stem.
Only expression data for 9 CNL type, 33 TNL type, 23 NL type and 6 RNL type genes were retrieved
from the database and employed to generate heatmap after deseq normalization of the data using MeV
package (Figure 6). Cluster I consists of 13 genes representing moderate to minimal expression, cluster
II with 43 genes representing basal to no expression and cluster III with 15 genes representing minimal
expression to basal expression (Figure S15).
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Figure 5. Phylogenetic relationships of RNL proteins in Arabidopsis thaliana and Helianthus annuus.
The clades N-required gene 1 (NRG1) and activated disease resistance gene 1 (ADR1) are color-coded
in blue and red, respectively. The tree was rooted using Streptomyces coelicolor NBS-containing protein,
P25941, as an outgroup.

4. Discussion

4.1. Diversity of NBS-Encoding Genes

Our findings on the NBS-encoding genes in this study is based on recently sequenced sunflower
genome [44]. Previously, Gedil et al. 2001 [61] identified RGC fragments with the NBS domains and
assigned to 11 groups among which Ha4W2A was linked to Pl1, a downy mildew resistance gene.
Plocik et al. 2004 [40] identified nine unique NBS domain sequences using degenerate primers in
sunflower and compared them to lettuce, chicory and A. thaliana. They concluded that NBS gene
sequences of Asteraceae family are ancestral to the Brassicaceae family. Later, Radwan et al. 2008 [42]
identified 118 and 95 NBS domain sequences in RHA373 and ANN-1811 germplasm of H. annuus,
respectively. In this study, we identified 352 NBS-encoding genes that constitute 0.67% of the total
predicted proteins in sunflower, which shows similarity to M. truncatula (~0.66%) [27]. This number
is higher than that of Arabidopsis (~0.43%) [14], C. sativus (~0.21%) [33], Carica papaya (~0.21%) [62]
and lower than that of P. vulgaris (~1.19%) [63], Manihot esculenta (~0.9%) [64], V. vinifera (~1.3%) [28],
and G. max (~0.73%) [23,24]. We performed protein blast (BLASTp) analyses using 352 NBS domains of
NBS-encoding genes identified in this study against a database with previously studied NBS domain
sequences. The BLASTp analyses against a database comprised of sequences from Gedil et al. 2001 [61],
Plocik et al. 2004 [40], and Radwan et al. 2008 [42] showed 70 to 100% identity to 143, 68 and 100 NBS
domain sequences identified in this study, respectively (Supplementary File S4).
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Figure 6. Expression profile of NBS genes from sunflower visualized as heatmap. The heatmap
was generated using deseq normalized data for sunflower NBS genes expression in different tissues.
K-means Clustering Method was employed for clustering (I, II and III). Gene IDs are followed by NBS
type (C: CNLs; T: TNLs; N: NLs and R: RNLs).

Following the classification of NBS genes by Shao et al. 2016 [13] and Yu et al. 2014 [5], we classified
NBS genes of sunflower into CNL, TNL, RNL and NL groups and their subgroups. We identified
100 genes belonging to the CNL group, with 64 possessing RX_CC like domain, 77 to the TNL group,
13 to the RNL group, and 162 to the NL group. In sunflower, the number of CNLs was found to be
higher than that of TNLs, and the ratio of CNLs to TNLs was 1.3:1. The CNL:TNL ratio in the current
study is not consistent with the findings observed in some other dicot species such as A. thaliana (1:2),
A. lyrata (1:2), B. rapa (1:2), Eucalyptus grandis (1:1.25), and Thellungiella salsuginea (1:1.5) as numbers of
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TNLs were higher than CNLs in these species [14,30,65–67]. However, grapevine, chickpea, and potato
genomes constituted CNL:TNL in a ratio of 4:1 [20,28,57]. The higher number of CNLs in sunflower
might suggest the higher contribution of these genes providing resistance against pest or pathogen
attack, which warrants future investigation. Furthermore, these groups are classified into subgroups
as CNLs were classified into four subgroups [CNL (90), CN (5), CNN (1), CNNL (4)], TNLs into six
subgroups [TNL (52), TN (21), TTNL (1), TNLTNL (1), CTNL (1), CTN (1)], RNLs into three subgroups
[RNL (10), RN (1), RCNL (2)], and NLs into four subgroups [N (29), NL (125), NN (2), NNL (6)].
The classification is based on the presence of the CC domain named as ‘C’, the presence of TIR domain
as ‘T’, the presence of RPW8 domain as ‘R’, the presence of the NBS domain as ‘N’, the presence
of two NBS domains as ‘NN’, and the presence of LxxLxxLxx signatures as ‘L’ in the amino acid
sequences of the proteins. The CNL type constituted approximately 92% of the genes belonging to
CNL subgroup, 67% of the genes belonging to TNL subgroup in the TNL type, 76% of the genes
belonging to RNL subgroup in RNL type and 77% of the NL types genes are comprised of NL subgroup
genes. The subgroups CN, CNNL, N, NN, and TTNL were also observed in M. truncatula, A. thaliana,
and B. rapa [5,19,27]. HanXRQChr03g0067681 and HanXRQChr03g0073241 constituted both RPW8
and coiled-coil domains in the N-terminal and named RCNL, which were also reported in A. thaliana
and B. rapa [5]. HanXRQChr05g0136351 and HanXRQChr06g0184071 possessed both TIR and coiled
coil domain in the N-terminal of NBS proteins of sunflower and named CTN and CTNL, respectively.
Such subgroups have been previously reported in many legumes and blueberries [16,19].

NBS-encoding genes also called NBS-LRR genes encode proteins having TIR/CC at the N-terminal,
NBS domain in the center and LRR at the C-terminal [14]. Among the identified NBS groups, genes
belonging to NLs possessed less conserved NBS domain, as only 32% of the genes possessed all
three signature motifs, while 57% of the CNLs, 89% of TNLs, and 100% of RNLs possessed all three
signature motifs. Of the 100 CNLs, 64 genes possessed Rx_CC like domain in their N-terminal region.
The disease resistance protein Rx possess CC domain in the N-terminal, and is expressed against potato
virus X in S. tuberosum [68]. All TIR1, TIR2, TIR3 and TIR4 were detected in the TNLs of sunflower,
which shows the consistency of TIR domain as described in other plant species such as A. thaliana,
P. vulgaris, G. max, and P. trichocarpa [14,24,63,69]. The characteristic ‘DDVW’ sequence was conserved
in kinase-2 motifs of RNL and CNL genes, whereas ‘DDVD’ sequence was frequently found in TNL
genes. The ‘TSR’ sequence was highly conserved in RNBS B motifs of the RNLs, while it slightly varies
as ‘TTR’ and ‘TTRD’ in the CNLs and TNLs, respectively. This was found to be consistent with the
large scale study of NBS proteins in angiosperms [13]. All of the identified NBS proteins possessed
MHDL motifs, except for the RNL genes, frequently possessing QHDL motif. Such QHDL motifs
were observed in NBS proteins of P. trichocarpa [69]. A unique Kelch motif sequence was observed
in HanXRQChr02g0052061 protein. Previously, Kelch motifs were reported in the NBS proteins of
B. rapa [5]. Kelch motif sequences are considered to be signature motif for positive selection mostly
found at the C-terminal of F-Box proteins and are well studied in plant species such as A. thaliana,
P. trichocarpa, and O. sativa [70].

We further compared our pipeline with another pipeline, RGAugury [35], for the identification
of NBS-encoding genes. RGAugury is the integrative pipeline that facilitates the prediction of
NBS-encoding genes, RLKs, and RLPs [35]. RGAugury predicted all 352 NBS proteins identified
in this study plus five more proteins [HanXRQChr02g0037021 (TN), HanXRQChr09g0240471 (TN),
HanXRQChr11g0340171 (CNL), HanXRQChr13g0394521 (TN), and HanXRQChr16g0515381 (CN)] and
25 belonging TX (absence of NBS domain) subclass. These missed proteins were manually checked and
NBS domain (PF00931) in HanXRQChr09g0240471, HanXRQChr11g0340171, HanXRQChr13g0394521,
and HanXRQChr16g0515381 were absent except in HanXRQChr02g0037021 (could belong to TN
subgroup). In addition, we suggest HanXRQChr09g0240471 to be classified as a TX subclass. We found
some discrepancies in the CNL group counts between two pipelines. The use of a MARCOIL tool in
our pipeline helped with filtering false positives from the CNL group counts, and we could not observe
any discrepancies in the TNL group counts between the two pipelines. Furthermore, the RGAugury
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pipeline could not identify an RNL group of genes that were identified in this study and majorly
categorized them to NL group (N and NL subclasses) of genes. The study and identification of
TX proteins were beyond the scope of our study as these proteins were filtered out because of the
absence of NBS domains. The differences and discrepancies between identification and classification of
predicted NBS-encoding genes using our and RGAugury pipelines are represented in Supplementary
File S5. In addition, RGAugury was employed to predict proteins belonging to RLP, RLK and
Transmembrane-coiled-coil (TM-CC) proteins. A total of 257 RLPs [255-LRR type, 2-lysin motif
(LysM) type], 1086 RLKs (368-LRR type, 12-LysM type and 706 Other-receptor type) and 173 TM-CC
proteins were predicted in the sunflower (Supplementary File S5). Both RLKs and RLPs play important
role in plant development and defense mechanism [4,71]. RLKs such as FLAGELLIN SENSITIVE
2 (FLS2) [72], elongation factor Tu receptor (EFR) [73], systemin cell-surface receptor (SR160) [74],
Xa21 [75], ERECTA RLK [76] and many more are well characterized that are mainly involved in
detection of pathogen associated molecular patterns (PAMPs). On the other hand, RLP (lacking
Kinase-2 domain) such as Arabidopsis CLAVATA2 (CLV2, AtRLP10) [77] is involved in the development
of meristem and Cf is involved in pathogenesis against Cladosporium fulvum in tomato [78].

4.2. Gene Location, Clustering, Ka/Ks Values and Structural Variation

A variety of clustering patterns of NBS-encoding genes, frequently observed in almost all plant
species, is one of the major reasons for rapid evolution of the NBS genes [14,79]. The NBS genes of
sunflower formed 75 clusters, 25 of which reside in chromosome Ha13, 73 out of 200 (~37%) genes.
In M. esculenta, 143 NBS genes positioned in 39 clusters [64]. In C. sativus, 33 NBS genes were located
in nine clusters [33]. The average number of NBS proteins per cluster in sunflower was approximately
2.7, lesser than ratios in Solanaceae species such as tomato (3.48), potato (4.65), pepper (3.44) [80],
Brassicaceae species such as B. oleracea (3.04), B. rapa (2.7), A. thaliana (2.8) [5], Fabaceae species such as
G. max (4), V. vinifera (6), M. truncatula (5) [16], Gossypium species such as G. arboretum (3.4), G. raimondii
(5.5), G. hirsutum (5.3), and G. barbadense (3.5) [34]. Both segmental and tandem duplications are
responsible for the formation of new clusters that generate intraspecific variation by processes such as
unequal crossing over [9,14,81]. However, NBS-encoding genes do not undergo high rates of mutation
and maintain both intra- and inter-specific variation [9]. The average exon counts of sunflower CNLs
(2.7 exons per gene) and TNLs (6.1 exons per gene) were consistent with CNLs (2.7 exons per gene)
and TNLs (5.1) of Arabidopsis [14]. This implies a high number of exons of TNLs and RNLs could help
with generating diverse resistance proteins through alternative splicing. All NBS types showed Ka/Ks

values of less than one, indicating that these genes are under the influence of purifying selection.

4.3. Phylogenetic Relationships, Homology, Synteny and Expression Analysis

Sunflower CNL genes were similar to C. sativus CNL genes while compared to their respective
TNL genes [33]. However, the CNL clade size in sunflower is different from Arabidopsis, as TNL clades
constitute larger numbers of genes than CNL clade [14]. Subclades CC (I) possessed gene members
with introns in range of one to ten, and CC (II) constituted gene members with introns in the range
of zero to one. Other subclades, CC (III) and CC (IV) constituted gene members with introns in the
range of zero to two and CC (V) and CC (VI) constituted gene members with introns in the range of
zero to four. Only HanXRQChr02g0057361, HanXRQChr02g0057351, and HanXRQChr13g0425771 in
the subclade CC (VI) possessed in the range of five to seven. Similarly, subclade TIR (II) possessed
gene members with introns in the lowest range (three to five). TIR (I), TIR (III), TIR (IV), TIR (V)
and TIR (VI) gene members possessed introns in range of 3 to 17, 2 to 7, 1 to six, 1 to 15, and 1 to
13, respectively. Similar patterns were also observed in the phylogenetic tree of CNL and TNL in
C. sativus [33]. The differences in the clade pattern with correlation to introns in two gene families
suggest the role of intron loss and gain in the structural evolution of the NBS genes as suggested by
Wan et al. 2013 [33]. In addition, the position, presence or absence, and phase of introns often play
important roles in phylogeny [82].
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We found that RNLs were nested within the clade of TNLs in sunflower (a member of the Asterids
lineage) although RNLs in the families Brassicaceae and Fabaceae (Rosids lineage) were found to
be related to CNLs [15,30]. The lineage of Asterids is believed to have evolved from the rest of
Angiosperms (Rosids + monocots + basal Angiosperms) little over 100 million years ago (MYA) [83].
A large-scale study of Angiosperms NBS genes also concluded that RNLs were sister to the CNLs [13].
However, these earlier studies did not include H. annuus in the analysis as the genome was not
available by then. Our results indicate a surprising position of RNLs within TNLs in sunflower making
the clades of TNL and CNL potentially paraphyletic. Upon reconstruction of the phylogenetic tree
with Arabidopsis NBS genes, RNL genes of sunflower were observed in a CNL-A clade (although it is
consistent with the previous study) [14]. The CNL-A clade did not consist of any sunflower CNL gene
members besides RNLs. Further study on comparative genomics or transcriptomes across the Asterids
lineage can confirm whether CNL genes are completely absent in the lineage. Shao et al. 2016 [13]
suggested that RNLs were derived from ADR1 and NRG1, and two ancient lineages separated before
the Angiosperms diversified. The RNL genes, ADR1 and NRG1, have been characterized in Arabidopsis
and Nicotiana, respectively. A separate tree, constructed to observe the relationships among sunflower
RNLs and Arabidopsis RNLs, formed two clades. The sunflower RNL genes HanXRQChr02g0046611 and
HanXRQChr05g0129181 were nested with AT4G3330 (ADR1-L1), AT1G33560 (ADR1) and AT5G04720
(ADR1-L2 or PHX21), with bootstrap support of 90%. On the other hand, HanXRQChr02g0048181,
HanXRQChr11g0331571, HanXRQChr03g0067681, HanXRQChr0073241, and HanXRQChr04g0095241
were nested with AT5G66630 (RNL) and AT5G66910 (homologous to NRG1), with bootstrap support of
63%. This suggests that the sunflower RNLs mentioned above are orthologous to the ADR1 and NRG1
homologs of Arabidopsis. ADR1 proteins play a role as helper genes for receiving signals from the R
genes in downstream signaling of effector-triggered immunity [84]. Similarly, NRG1 proteins help
the N protein during the pathogenesis by the tobacco mosaic virus [85]. Since they are not directly
involved in detecting the pathogen effectors, they are not much influenced by a selection pressure
due to the pathogens [13]. Only 5.8% of the total NBS genes in sunflower are RNL genes which is
consistent with other species, such as A. lyrata (2.5%), A. thaliana (4.2%), B. rapa (4.4%), Capsella rubella
(4.7%) and T. salsuginea (5.7%) [30]. Other results from this study that separate RNLs from the rest of
the NBS genes include their highest average number of exons per gene and lowest average Ka/Ks ratios
values for the clade. This supports the hypothesis of high conservation and slow evolutionary rates
among the RNL genes [86].

Sunflower NBS proteins identified in this study formed clades with reference proteins such as
Pi36, Pl8, Rps2, VAT, RPG1, Gro1.4, RY-1, and N proteins, suggesting their homologous relationships
(Figure S13). The sunflower TNL proteins are inferred to be orthologous to S. tuberosum nematode
resistance protein (Gro1.4) [87], S. tuberosum subsp. andigena RY-1 (conferring resistance to potato
virus Y) [88], and N. glutinosa Tobacco Mosaic Virus resistance (N) gene [89]. Similarly, sunflower
CNL proteins are inferred to be orthologous to A. thaliana RPS2 (Resistant to P. syringae 2) [90],
Cucumis melo VAT (resistance to Aphis gossypii) [91], H. annuus Pl8 [43], O. sativa Pi36 (conferring
resistance to Blast fungus) [92], and H. vulgare subsp. vulgare RPG1 (conferring resistance to stem rust
fungus) [93]. The BLAST investigation of sunflower NBS proteins with reference proteins available
on http://www.prgdb.org has shown some of them to be the possible homologs of the reference
proteins (Table S7). Sunflower NBS proteins such as HanXRQChr13g0425411, HanXRQChr13g0425361,
and HanXRQChr13g0425431 showed greater than 80% sequence identity to the H. annuus gene, Pl8
gene (CNL). The Pl8 gene is involved in conferring resistance to P. halstedii, a causative agent to
downy mildew [43]. HanXRQChr04g0123041, belonging to the NL group has shown homology
to L. esculentum EIX receptor 2 (Eix2), a gene that encodes receptor-like proteins (RLPs) involved
in detecting ethylene-inducing xylanase, a fungus elicitor [94]. Other inferred homologs include
HanXRQChr17g0552491 to MLA10, HanXRQChr13g0420141 to N, HanXRQChr17g0552491 to both
MLA12 as well as MLA13, and HanXRQChr17g0552491 to Sr33. The MLA locus is highly polymorphic
and encode allelic CNL type resistance proteins such as MLA1, MLA2, and MLA3 that confer resistance
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to barley powdery mildew fungus (Blumeria graminis f. sp. Hordei, Bgh) [95]. Another protein, Sr33,
which belongs to the CNL type, confers resistance to a wheat stem rust pathogen, Puccinia graminis f.
sp. tritici [96]. We were able to access expression profiles for only a few unique sunflower NBS proteins
because of the duplicated names found for corresponding H. annuus r1.2 annotations compared to
H. annuus r1 annotations. From the available expression data, it can be deduced that NBS genes can
be expressed at a basal level with tissue specificity in unchallenged conditions [97]. In the expression
dataset, most of the NBS genes were found to have a minimal to no expression value possibly as a
result of low sequencing coverage, or their expression dependent on infection of pathogens or due to a
pseudogenization, which was also noted by Frazier et al. 2016 [98]. Thus, detailed transcriptomic and
proteomics studies are warranted to functionally characterize the sunflower NBS genes, particularly
challenging the plant by various pests and pathogens through carefully crafted experimental designs.

5. Conclusions

We identified 352 NBS genes in sunflower and studied their clustering, phylogenetic relationships,
gene homology and functional divergence. These genes formed clusters and showed structural
conservation in signature domains and exon/intron architecture in CNL, TNL and RNL types of NBS
genes. The RNLs belonged to the CNL-A clade, which in turn was found nested within the TNL clade,
making both CNL and TNL clades paraphyletic. This warrants further rigorous analysis. All of the
NBS-encoding genes have undergone purifying selection and available expression data have revealed
their functional divergence. We confirmed homology of sunflower NBS genes to multiple previously
characterized Pl8, LeEIX1, MLA10-13, Sr33 resistance genes. Further characterization of the NBS genes
will help us to understand resistance pathways and to develop durable resistance necessary for crop
improvement in sunflower, one of the major oilseed crops in the world.
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