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Introduction

Post-operative atrial fibrillation (POAF) continues to be a 
devastating complication following cardiac surgery, affecting 
25–40% coronary artery bypass graft (CABG) (1,2) and 
30–40% valve patients (3). Although POAF is thought to be 
transient in nature, peaking on post-operative days 2–4 and 
resolving within 4–6 weeks (4), there is mounting evidence 
to suggest POAF increases risk of stroke, respiratory failure, 
pneumonia, morbidity and mortality, longer intensive care 
unit and hospital stays, and increased resource use (4-13).

Recent advancements and current research indicate 
POAF is in part preventable (4); however, progress has been 
hindered by scarce, conflicting data, and lack of knowledge 
on independent predictors, effective interventions, and 
a consistent, all-encompassing clinical and biochemical 
database. Currently, the use of statistical analysis is common 

to assess an individual’s risk of developing POAF. However, 
this method limits plasticity and fails to account for 
ongoing changes in clinical and functional indices during 
peri-operative stay. Despite continuing growth in POAF 
literature, POAF incidence has not changed over the past 
three decades (12). This poses the question—can we predict 
and detect POAF more effectively? That is, can we stack 
patient factors and comorbidities with real-time, continuous 
data from multimodal streams to better predict, diagnose, 
and manage patients for improving personalized care?

Whether utilizing advanced neural networks (NN) such 
as convolutional NN to diagnose skin lesions or automate 
the classification of radiological reports for clinical care, 
machine learning (ML) has demonstrated superiority to 
traditional statistical methods for predictive scoring and 
diagnosis. Similarly, within the cardiovascular arena, several 
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strategies to identify and detect arrhythmias by constructing 
a digital atlas of the atria and classifying rhythms from 
ECG and Holter monitors have been demonstrated over 
the past two decades (14). Nevertheless, despite defining 
independent risk predictors and addressing differences 
in clinical outcomes, heterogeneous data from multiple 
studies and lack of interoperability among medical devices 
limit progress in this field. Developing an ecosystem with 
crosstalk capabilities coupled with building data repositories 
can expatiate on the underlying mechanisms of POAF. 
In this review, we will appraise the current literature and 
evaluate the future direction of risk prediction models for 
POAF using machine and deep learning.

POAF 

Definition and diagnosis

AF following surgery is described as POAF, but the 
pathogenesis and trigger differentiate it from regular AF. 
At present, there is a lack of consensus on the definition of 
POAF. The Society of Thoracic Surgeons (STS) describes it 
as AF post-surgery requiring treatment while Heart Rhythm 
Society for clinical diagnosis specifies it as POAF treatment 
with rate or rhythm control agents, anticoagulation, and or 
extending hospital stay (4,15). Further, American Association 
for Thoracic Surgery (AATS) signify POAF as a class 1 
diagnosis recommendation with ECG features lasting at 
least 30 seconds or for the duration of the ECG recording 
if less than 30 seconds (4). As Hui et al. highlight, the STS 
definition underestimates nearly 10,000 patients annually 
who experienced AF that terminated prior to treatment or 
had contraindications to therapy (15). This thereby neglects 
increased 30-day mortality risk and warrants a refined 
definition that not only accounts for continuous monitoring 
but also is not limited by physician documentation alone.

Pathophysiology

Probable mechanisms contributing to POAF often require 
a trigger and a vulnerable atrial substrate. However, 
of note, the mechanism remains elusive (4). Although 
increasing age seems to be the best-appreciated risk 
factor, several studies suggest patients with hypertension, 
myocardial infarction (MI), valvular heart disease, heart 
failure, obesity, atrial fibrosis or dilation, male sex, and 
history of arrhythmias have greater propensity to develop 
POAF (4). Increase in adrenergic drive and change in vagal 

tone can affect heart rate and shorten atrial wavelength, 
thereby potentially triggering POAF. Moreover, the 
local and systemic inflammation from cardiac procedures 
augments vulnerability of the atrial substrate, which is 
further supported by a reduction in POAF incidence 
with off-pump CABG surgeries and decreased duration 
of cardiopulmonary bypass. Following surgery, POAF 
develops within the first few days and often returns to 
sinus rhythm, which is distinctive from other forms of AF, 
suggesting a different pathophysiology. Through retrieval 
of retrospective data from health records and monitoring 
devices, predictable risk factors and prophylactic therapies 
can be uncovered.

Prevention strategies

EuroSCORE (16) and STS risk models (17) have been 
utilized for decades to risk stratify cardiac patients. These 
risk calculators identify the patient’s chance of mortality, 
renal failure, permanent stroke, prolonged ventilation, 
infection, length of stay, and reoperation (17). Presently, 
there is no current standard model to predict the risk of 
POAF. However, previously cited risk factors help speculate 
a patient’s risk of POAF and stroke (4). CHA2DS2VASc 
score is currently used to determine the one-year risk of 
thromboembolic events in a non-anticoagulated patient 
with non-valvular AF and indicate a sense of a patient’s 
long-term stroke risk; the risk factors include congestive 
heart failure, hypertension, age, diabetes, stroke, vascular 
disease, and female sex (18). Pre-operative assessment for 
cardiac surgery routinely includes complete blood count, 
comprehensive metabolic panel, coagulation studies, blood 
type and screen, dental screen, pulmonary function test, 
12-lead ECG, chest radiograph, carotid ultrasound study, 
ankle-brachial index, vein mapping, computed tomography 
scan, and left heart catheterization. These diagnostic studies 
are weighed with screening questionnaires for functional 
status and peri-operative risk during pre-operative 
screening. Further workup is dictated by the patient’s 
pathology and medical history.

A common practice at most hospitals is continuous 
physiological (e.g., ECG) monitoring for 48–72 hours 
post-operatively, which is recommended for patients 
who exhibit clinical signs or who undergo procedures 
that pose intermediate to high POAF risk. Efficacy of 
several agents has been tested in randomized clinical trials  
(19-32) or suggested through meta-analyses (33-39). 
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AATS recommends that all patients should continue beta-
blockers to avoid withdrawal and prevent POAF (class I, 
LOE A recommendation) (4,33,40). However, based on 
AATS surveys, this strategy is currently underused. Post-
operative beta blocker use has demonstrated a reduction 
in POAF with high heterogeneity in several studies and 
was found to be inferior to amiodarone therapy (41,42). 
Moreover, intravenous (IV) magnesium supplementation 
may be considered for patients with low total body or serum 
magnesium level (class IIb) (4,43).

For intermediate to high-risk patients, post-operative 
administration of diltiazem to patients with preserved 
cardiac function who are not taking beta-blockers pre-
operatively (class IIa, LOE B) or amiodarone IV (class 
IIa, LOE A) can reduce the incidence of POAF (4,40). 
Intra-operative left atrial appendage ligation has also been 
demonstrated as a preventative strategy for patients who 
are not candidates for anticoagulation (class IIb, LOE C)  
(4,44). Based on reports from meta-analyses and trials, 
other therapies such as pre-operative statins (45), n-3 
polyunsaturated fatty acids (46,47), colchicine (28), 
corticosteroids (48), and posterior pericardiectomy (49) 
have failed to validate efficacy (41).

In Figure 1, we summarize the risk factors, pathogenesis, 
and prevention recommendations of POAF.

Management strategies

Despite current best practices to prevent POAF, POAF 
continues to develop in 20–50% of cardiac patients. 
Management strategies for all patients involve minimizing 
inotropic agents, optimize fluid status, and correct 
electrolyte or other metabolic imbalances. Further 
treatment is guided by the patient’s hemodynamic stability 
for cardioversion or pharmaceutical therapy and duration 
of new-onset POAF for rate control or anticoagulation 
management. Gillinov and colleagues showed that short-
term mortality was comparable between rate and rhythm 
controlled-strategies (50).

Potential data sources

In this section, potential data sources to predict POAF are 
described.

Electronic health records (EHR)

The EHR maintains an electronic version of a patient 

medical history including demographics, progress notes, 
complications, medications, vital signs summary, past 
medical history, immunizations, laboratory data, and 
imaging reports. EHR is a common data source for 
detecting clinical risks and outcomes.

With the help of EHR, the STS National Database, 
established in 1989, stores over ten years of data from 
cardiothoracic patients nationwide. Initially started as an 
initiative for quality improvement and patient safety, the 
database with over 1,000 variables collected from each 
patient has now become a treasure chest for researchers 
and physicians to mitigate surgical complications. While 
the STS database is a proven, invaluable tool to identify 
a handful of independent predictors such as age and 
other cardiac comorbidities, research progress is limited 
by the vast amount of human capital, resources, and 
exorbitant costs required to access and handle such data. 
This along with the possibility of inaccuracy restricts 
the scope of application. Nevertheless, automating data 
input into an algorithmic model can expedite real-time 
evaluation and treatment while limiting erroneous data. 
Deployment of ML with longitudinal data from EHR 
has demonstrated feasibility and value in predicting 
cardiovascular events (51).

Conventional imaging modalities including echocardiography, 
computed tomography (CT), and magnetic resonance 
imaging (MRI) from EHR and imaging software can be 
used to abstract, quantify, and measure tissue matter. This 
has been previously employed and revealed the association 
of pericardial fat content with AF (52,53). Similarly, 
evaluation of the left atrial appendage structure and finding 
of left atrial thrombus using echocardiography was observed 
to be a predictor in non-valvular AF (54). Development of 
a fully automated algorithm for segmenting from imaging 
modalities to quantify body composition can meet or exceed 
the accuracy of manual segmentation.

Vital signs

Industry-leading clinical monitoring equipment measures 
high-fidelity vital signs such as ECG, blood pressure, 
pulse, oxygen saturation data from bedside monitors 
and offer customization and assessment entries into the 
system. These data can be also reviewed at the point of 
care and incremental data linked to the EHR. Continuous 
capture of high-fidelity time-stamped data exported to the 
algorithm model can be assimilated for further accuracy and 
prediction.
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Figure 1 Pathogenesis of post-operative atrial fibrillation. IV, intravenous; LAA, left atrial appendage; Mg, magnesium.
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Electrocardiogram and telemetry

For over half a century, the 12-lead electrocardiogram 
(ECG) has served as the gold standard for arrhythmia 
detection and screening. Continuous surveillance for 
bedside and ambulatory cardiac patients with telemetry data 
and temperature, pressure, and anesthetic gas monitoring 
capabilities allows arrhythmia analysis, alarm notifications, 
and event-based examination. Raw and processed data 
isolating ECG intervals and segments from the device 
technology can augment predictive models to alert medical 
providers and patients if POAF is imminent (55). In 
addition to the traditional 12-lead ECG and continuous 
surveillance of heart rate and irregular RR intervals to 
screen for AF, Nihon Kohdens’ 510K cleared AF alarm 
performs AF detection by using both RR intervals and P 
waves as input. More precisely, the algorithm uses three 
features of input ECG to output AF detection result-
RR irregularity, PR interval variability, and P wave  
variability (56). AF lasting at least two minutes is identified 
and is notified every time it is detected. In addition, an AF 
end alarm allows the provider to recognize and measure the 
AF burden per patient. Similar methodologies are applied 
for Philips and GE Healthcare monitoring systems (57,58).

Holter monitors

Holter monitors can capture ambulatory ECG tracings for 
24–48 hours or longer to detect paroxysmal or sub-clinical 
AF in an outpatient setting. Other archives of ECG data 
from Holter-like monitors such as from implantable cardiac 
monitors (59) can further enhance diagnostics and lead 
to innovative solutions such as online remote monitoring 
system (60).

Wearable devices

Comparable undertakings have been employed to translate 
and compare electrical signals from ECG and Holter with 
photoplethysmography (PPG) from wearable devices.

Similar to background noise signals from ECG and 
Holter data, PPG signals are limited by implemented 
sensing setup, probe attachment site and contact pressure, 
subject movement and posture, poor blood perfusion, 
ambient light, and environmental temperature (61). Many 
technology companies, such as iRhythm, Apple, Philips, and 
AliveCor have invested heavily in healthcare analytics to 
improve validation systems and provide low-cost wearable 
technology to facilitate precision medicine (62). Use of 

smart watches and other wrist devices for pulse monitoring 
has enabled large-scale screening for undiagnosed 
arrhythmias such as the Apple Heart study (63). Turakhia 
et al. conducted a clinical trial to identify the incidence of 
pulse irregularity in AF patients using the Apple Watch 
(Apple Inc, Cupertino, CA, USA) and evaluate the accuracy 
of episodes based on simultaneous recorded ambulatory 
ECG (63). Findings suggest that pulse irregularity was 
noted in 0.52% of the participants and was most frequent 
in those over age 65. Of those who received and wore the 
ECG patch for monitoring, 34% were identified to have 
AF (64). As Apple unveils the new features of the Apple 
watch, further stacked ECG and PPG data will reveal 
advances and limitations to detect AF, especially at home. 
Other commercially available smartwatches and devices 
such as the Polar watch, KardiaBand, and KardiaMobile 
have demonstrated benefit with variable discriminative 
ability (65). POAF has been shown to occur even after 30 
days following surgery; therefore, wearable devices can 
allow for detecting arrhythmias. Currently, Ai-Cor (66), an 
app utilizing continuous Apple watch monitoring, strives 
to predict AF based on HRV changes. Full integration 
with Apple Health kit, provision to add medication lists, 
symptoms, and daily activity, and interaction with Ai-
Me, the augmented human intelligence bot, promotes a 
promising tool for personalized medicine (66).

Omics data

‘Omics refers to big data from biology fields such as 
genomics, metabolomics, and proteomics that collectively 
characterize the biological modifications and complex 
interactions in cell metabolism. Biospecimens collected 
from patients are processed using high-throughput 
instruments routinely used in laboratories to generate 
complex datasets. Multi-layered heterogeneous biological 
data are then analyzed using various software platforms 
for data integration. These biochemical networks allow 
visualization of biological pathways to elucidate further 
mechanistic processes.

Identification of candidate genes, pathways, and 
biological responses can reveal predictive biomarkers, 
deliver novel insights of disease progression, and uncover 
disease subtyping. As the genesis of POAF is due to 
an operative trigger and a vulnerable atrial substrate, 
characterization of the atrial substrate and plasma content 
from training datasets can support predictive models. 
Exhaustive examination of discrete components of the 
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POAF temporal phenotype through deep phenotyping 
can enhance specificity, increase big data yield with 
high resolution, and bolster disease subtype and genetic 
variation networks. Currently, the development of open-
access computational resources has cultivated further 
advancements in discovery and understanding of biological 
systems. This will allow for prediction and actionable 
insights.

Lifestyle questionnaires

As day-to-day lifestyle behaviors and mental health 
influence clinical outcomes, it is imperative to evaluate 
and measure the burden of lifestyle and environmental 
factors. Although these surveys are provided for patients, 
the data is often assessed for real-time diagnostics and are 
seldom stored in EHR. This limits longitudinal capture 
and measurement of progress. Today, mobile apps to track 
physical activity, mindfulness, nutrition, and sleep are well 
utilized. However, we have not exhausted the potential of 
this massive reservoir of data. Addition of this data to other 
physiological data can have an immense impact on diagnosis 
and treatment.

ML for POAF prevention

AF detection

ML algorithms, including traditional ML, deep learning, 
and their combination, are widely used for automatic 
arrhythmia detection (67), in both short and long-term 
ECG analysis. With the popularity of deep learning 
approaches, several studies have used convolutional neural 
networks (CNN) and recurrent neural networks (RNN) 
and categorized ECG signals as sinus rhythm and AF. For 
example, Acharya et al. were successfully able to classify 
AF from a 5-second ECG signal at 94.90% accuracy and 
99.13% sensitivity. While several others have employed 
other models to attain higher sensitivity and specificity, for 
example by using the Jiang method, many require longer 
ECG signals, which may cause shorter-lived arrhythmias 
to go unnoticed (68). Endeavors to detect and mitigate 
this pervasive disease were further incentivized by the 
PhysioNet challenge conducted in 2017. AI engineers 
from across the world competed to create AF algorithms 
from ECG recordings. The highest score was submitted by 
Teijeiro et al. (69) with a score of 0.85, in which the team 
used a combined algorithm of XGBoost, RNN, and LDA-

Stacker, while other algorithms proposed by Zihlmann (70),  
Vollmer (71), Rubin (72), Stepien (73), Schwab (74), and 
Andreotti (75) scored 0.82, 0.81, 0.80, 0.79, 0.79, 0.79 
respectively. Results of Physionet/Computing in Cardiology 
Challenge 2017 on AF detection (76) demonstrates that 
an automatic detection of AF versus normal sinus rhythm 
(NSR), other rhythm (O), and noise using ECG is possible. 
Furthermore, the results of this challenge show that there 
is no superior algorithm for classification of NSR/AF/O/ 
noise (77) and suggests that a combination of different 
algorithms through voting can be beneficial (76). Of 
note, the performance of AF detection algorithms could 
potentially be improved by the advancement of ML 
techniques and the availability of larger datasets.

While many describe noise contamination as a 
limitation, the variability in methodologies and variances 
in predictability urges the continued use of ECG as 
a biomarker for AF detection. Nonetheless, noise 
contamination will need to be addressed to detect POAF, 
especially in the post-cardiac surgery hospital setting where 
patients are monitored via telemetry.

Learned model parameters based on ECG and Holter 
data were tested on PPG data using cross-domain 
generalizability to assess superiority and improve AF 
detection performance (78). Gotlibovych and colleagues 
inputted raw PPG signal data to develop a neural-
network-based algorithm by extracting a range of features 
describing variability in periods of amplitudes as well and 
morphology of individual heartbeats (79). Results from the 
study achieved a 0.998 and 0.999 specificity and sensitivity, 
respectively (79). Deep learning algorithms such as CNN 
are also used for AF detection captured by a wrist-worn 
PPG (78,80). PPG data captured by wrist-worn devices (e.g., 
Fitbit and Apple watch) can be further improved for AF 
detection.

AF prediction

ECG could be used to predict AF and ischemic stroke. For 
example, Johnson et al. (81) demonstrate that short irregular 
supraventricular tachycardia without p-waves are associated 
with incident AF and ischemic stroke. Furthermore, Boon et 
al. used heart rate variability (HRV) and support vector ML 
to predict AF (82) with an accuracy rate of 87.7%. Despite 
research studies in this area, the application of ML for 
prediction of AF and its complications especially by using 
biomarkers (e.g., ECG) needs further exploration.

Addition of complementary information from other data 
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sources explained in Section 3 to the ML model created 
using vital signs (e.g., ECG and PPG) could potentially 
improve AF detection and prediction. Furthermore, 
improving the interpretability of deep learning models 
can facilitate knowledge discovery (e.g., identification of 
new digital biomarkers) especially after presenting more 
interpretable results to domain experts to get their insight.

Natural language processing and image processing

Utilization of natural language processing for further 
analysis of available notes in EHR (e.g., physician notes 
and radiology reports), image processing, and other 
ML approaches such as CNN from CT, MRI, and 
echocardiograms can allow ML to extract millions of data 
points for risk analysis. Pre-, intra-, and post-operative 
information from EHRs can be readily available including 
past medical diagnoses, continuous telemetry data, labs, 
hemodynamics, and outcome measures. Advances in 
ML can help reduce the need for routine surveillance 
by consolidating the information from EHRs. Data can 
be captured, classified, and scored to predict POAF and 
improve patient healthcare.

ML for omic data

Data integrat ion from RNAseq,  proteomics ,  and 
metabolomics involves multiple steps. Raw paired-end 
reads obtained from high throughput RNA sequencing are 
assembled after quality trimming. Reads are then aligned 
to the human genome. Feature-counts allow efficient 
chromosome hashing and feature blocking techniques 
to generate a gene counts table. Differential expression 
analysis is performed based on gene-wise dispersion 
estimates and fold changes to improve stability and to 
focus the strength of the estimates. Pathway analysis and 
gene set enrichment analysis tools support visualization 
of downstream effects and association of pathways. 
Proteomic analyses can be performed by one-dimensional 
gel electrophoresis followed by high-performance liquid 
chromatography-electrospray ionization tandem mass 
spectrometry. Bioinformatics is then used to determined 
protein abundance. Similarly, metabolomic raw data from 
ultra-performance liquid chromatography– tandem mass 
spectroscopy can be extracted for peak-identification and 
quality control processing. Once peaks are quantified, and 
data are compared to library entries of purified standards, 
visualization of curated data can elucidate significantly 
altered biochemicals.

Pipeline tools for data integration from high throughput 
RNA sequencing, proteomics, and metabolomics allow 
matching individual omic data matrices and for easier 
experimentation and reproducibility. Autoencoder-
based deep learning, integrative clustering analysis, and 
principal component analysis can be incorporated to 
evaluate the performance of integration approaches. This 
allows classification labeling and evaluation of association 
to patients’ prognosis. Supervised models with feature 
combination with the highest predictive accuracy offer 
prediction of groups (POAF versus no POAF) for internal 
and external validation sets.

Proposed methodology

Current prognostic practices for many diseases and 
complications undervalue the significance of multimodal 
data streams. Use of ML practices to identify drivers 
during pre-, intra-, and post-operation can boost prediction 
accuracy for POAF. The following propositions may be 
prized to create a centralized approach for prognostics in 
clinical practice, as illustrated in Figures 2 and 3.

During pre-operative management, patients’ medical 

Figure 2 Machine learning enabling personalized medicine for 
cardiac patients.
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history, radiology imaging, baseline labs, and omic data can 
be stored and streamlined into a HIPAA-compliant server 
that allows for data abstraction and sorting. Multi-stacked, 
labeled data can then be used to define a personalized, 
predictive score that comprises the patient’s risk of POAF, 
recovery, morbidity, and mortality. Based on the initial 
score, therapy and treatment timeline can be tailored 
accordingly, and modified clinical management can alleviate 
the economic burden. Additional intra-operative data such 
as continuous vital signs, telemetry, hemodynamics, and pre- 
and post-cardiac bypass omic data can reassess the patient’s 
risks and progression. As patients continue to be monitored 
during their post-operative stay, changes in the patient’s 
telemetry and physiological state can be evaluated with 
real-time predictive tools to guide therapy. Post-operative 
complications secondary to POAF such as stroke can be 
further averted through careful, prognostic management. If 
a clinical alert requires intervention, treatment alterations 
can be inputted to modify predictive analysis and modify 
future clinical course. This continuous revision of clinical 
indices can catalyze prospective mechanistic and therapeutic 
advances.

Cost analysis

Predictive models to mitigate the POAF burden can 
also effectively govern cost management. Recognizing 
comorbidities and its impact on the overall cost of cardiac 
surgery and POAF complication is critical in optimizing 
expenses. POAF accumulates an additional $10,000–20,000 
hospital costs per patient (4,5). This compounded with 
follow-up, potentially lifetime oral anticoagulant treatment 
of at least $23,000 (83), amasses to a large economic burden. 
A recent study by Atreya et al. (84) demonstrated peri-
operative amiodarone treatment in cardiac surgery patients 
decrease atrial arrhythmias including AF; however, a higher 
incidence of ventricular arrhythmias and an increase of 
$1,866 in cost were observed. With over 150,000 CABG 
surgeries (85) performed each year, averaging $151,271 
and ranging from $44,824–$448,039 (86), coupling the 
proposed methodology with outcome measurement and 
cost analysis can identify and tighten major cost drivers. 
Moreover, this can guide novel diagnostic and therapeutic 
strategies as well as promote healthcare policy changes. 
Through transparency in healthcare prices and hospital 
quality outcomes, policies can be shifted to a more value-
based rather than fee-based model to improve patient care 
while reducing costs.

Discussion

POAF has continued to be the most common complication 
seen in cardiac surgical patients, and an aging population, a 
major factor of POAF, compounds the increased prevalence. 
Prediction and prevention of POAF can help alleviate 
both the clinical burden of stroke and morbidities as well 
as the economic burden from increased length of stay and 
treatment management. Furthermore, despite continued 
research and formation of taskforces, advancements have 
been limited by a lack of integration of heterogeneous  
big data.

To address these gaps in knowledge, the development 
of an effective and robust platform that utilizes ML state-
of-the-art computational tools and statistical models can 
accelerate understanding of divergent POAF mechanistic 
hypotheses, help define novel functional POAF phenotypes, 
and guide medical therapy. Integration of EHR data 
with continuous real-time data from medical devices and 
wearables, along with imaging and omic big data can 
transform our understanding of this disease as well as 
translate such models to other medical illnesses. While 

Figure 3 Data source integration for cardiac patients.
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this will require crosstalk features between devices and 
EHRs and therefore time and capital, we trust our review 
of current developments and enormous potential of such 
capabilities will inspire, engage, and unite multidisciplinary 
teams to translate into practice.
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