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Metagenomic analysis of bacterial species in tongue
microbiome of current and never smokers
Noriaki Sato1,2, Masanori Kakuta 3, Takanori Hasegawa4, Rui Yamaguchi3, Eiichiro Uchino2,5, Wataru Kobayashi6, Kaori Sawada7,
Yoshihiro Tamura6, Itoyo Tokuda8, Koichi Murashita9, Shigeyuki Nakaji 7, Seiya Imoto 4, Motoko Yanagita2 and Yasushi Okuno1✉

Cigarette smoking affects the oral microbiome, which is related to various systemic diseases. While studies that investigated the
relationship between smoking and the oral microbiome by 16S rRNA amplicon sequencing have been performed, investigations
involving metagenomic sequences are rare. We investigated the bacterial species composition in the tongue microbiome, as well as
single-nucleotide variant (SNV) profiles and gene content of these species, in never and current smokers by utilizing metagenomic
sequences. Among 234 never smokers and 52 current smokers, beta diversity, as assessed by weighted UniFrac measure, differed
between never and current smokers (pseudo-F= 8.44, R2= 0.028, p= 0.001). Among the 26 species that had sufficient coverage,
the SNV profiles of Actinomyces graevenitzii, Megasphaera micronuciformis, Rothia mucilaginosa, Veillonella dispar, and one Veillonella
sp. were significantly different between never and current smokers. Analysis of gene and pathway content revealed that genes
related to the lipopolysaccharide biosynthesis pathway in Veillonella dispar were present more frequently in current smokers. We
found that species-level tongue microbiome differed between never and current smokers, and 5 species from never and current
smokers likely harbor different strains, as suggested by the difference in SNV frequency.
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INTRODUCTION
Cigarette smoking is associated with many oral diseases such as
periodontitis and oral cancer1. The oral microbiome are reported
to play a vital role in the pathogenesis of such oral diseases2, and
are also important in systemic diseases such as diabetes mellitus3

and rheumatoid arthritis4. The change of oral microbiome induced
by cigarette smoking could be associated with systemic diseases;
thus, the relationship between cigarette smoking and the oral
microbiome is of interest.
Recently, numerous studies investigating quantitative differ-

ences in oral microbiome across smoking status using 16S rRNA
amplicon sequencing technology have been performed. An
analysis of mouth rinse samples performed by Kato et al., revealed
that Neisseria was less abundant, while members of the
Veillonellaceae family were more abundant, in current smokers5.
A large study, conducted by Wu et al., indicated that anaerobic
bacteria favor the oral environment in smokers, and that aerobic
bacteria were less abundant6. Moreover, they revealed that the
functional metagenomic profile, which included the degradation
of certain toxic compounds contained in cigarettes, also differed
between current and never smokers. Mason et al., investigated
differences in the subgingival community and also identified
elevation of anaerobic bacteria and cariogenic species7. However,
although species-level differences in diversity and abundance
were investigated using 16S rRNA amplicon sequencing in some
previous studies, investigations involving metagenomic
sequences are rare, as previous studies suggested that species-

level prediction based on 16S rRNA had low accuracy8. Besides,
there are few studies that investigated differences in single-
nucleotide variant (SNV) profiles and gene content per species in
the oral environment across smoking status, which cannot be
explored by amplicon sequencing.
Here, we conducted the metagenomic profiling of tongue

plaque samples in a Japanese health-checkup cohort. Species-
level differences of diversity and abundance, as well as SNV
profiles and gene content of the bacterial species, were
investigated across the smoking status.

RESULTS
Characteristics and statistics of participant metagenomic
sequences
A flowchart summarizing participant selection for this study is
shown in Fig. 1. Table 1 details the background of the 286
participants included in the study. There were significant
differences in sex, BMI category, and presence of caries between
current and never smokers. After quality filtering and removal of
human genome contamination, the average reads (SD) across
participants was 9769630 (3920068) and the minimum and
maximum numbers of reads were 3169504 and 24023935,
respectively. The distribution of filtered reads across the groups
were visualized in Fig. 2.
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Differences in beta diversity and relative abundance
First, beta diversity and relative abundance were compared to
characterize overall microbiome differences at the species-level.
Beta diversity was compared between groups by weighted UniFrac
measure, and a statistically significant difference were identified
(pseudo-F= 8.44, R2= 0.028, p= 0.001). The PCoA plot of weighted
UniFrac distance is shown in Fig. 3. Next, the relative abundance of
the species was compared. Overall, 1157 species were present
across all samples. Among them, 313 species that have a relative

abundance of at least 0.0001 in above 20% of all the samples were
tested by MaAsLin2, and 38 species showed statistically significant
differences in relative abundance. We visualized the violin and box
plot of relative abundances for these species (Fig. 4). 29 species
including Porphyromonas endodontalis (coef.= 0.023, standard
error= 0.0037, q < 0.001), Streptococcus oralis (coef.= 0.020, stan-
dard error= 0.0041, q < 0.001), Streptococcus parasanguinis (coef.=
0.036, standard error= 0.0071, q < 0.001) were significantly present
more abundant in current smokers, while nine species including
Neisseria subflava (coef.=−0.062, standard error= 0.013, q=
0.0012), Lautropia mirabilis (coef.=−0.013, standard error=
0.0031, q= 0.0027), Neisseria flavescens (coef.=−0.050, standard
error= 0.013, q= 0.0087) were present less abundant in current
smokers. Species were listed according to the lowest 3 q-values. All
the statistical results are presented in Supplementary Data Set 1.
Additionally, species relative abundance table were deposited in
Supplementary Data.

Differences in SNV frequency
We next analyzed whether there are differences in bacterial
genome SNV frequency across smoking status. For SNV profiling,
26 species that have sufficient coverage in at least 10% of the
samples were analyzed. The number of participants with sufficient
read depth for the species is summarized in Supplementary Data
Set 1. Among these 26 species, a distance matrix calculated from
the SNV frequency table was compared by permutational multi-
variate analysis of variance (PERMANOVA). Overall, 5 species;
Actinomyces graevenitzii (profiled in 38 never and 13 current
smokers, pseudo-F= 2.60, R2= 0.051, q= 0.013, Actinomyces_grae-
venitzii_58300 in the MIDAS database), Megasphaera micronucifor-
mis (profiled in 37 never and 13 current smokers, pseudo-F= 1.56,
R2= 0.032, q= 0.021, Megasphaera_micronuciformis_62167 in the
MIDAS database), Rothia mucilaginosa (profiled in 25 never and 14
current smokers, pseudo-F= 6.47, R2= 0.124, q= 0.009, Rothia_-
mucilaginosa_62109 in the MIDAS database), Veillonella dispar
(profiled in 81 never and 31 current smokers, pseudo-F= 20.98,
R2= 0.16, q= 0.009, Veillonella_dispar_61763 in the MIDAS data-
base), one Veillonella sp (profiled in 116 participants, 100 never and
16 current smokers, pseudo-F= 2.71, R2= 0.023, q= 0.009, Veillo-
nella_sp_62404 in the MIDAS database) showed statistically
significant differences in SNV frequency between current and never
smokers. The PCoA plots and dendrograms based on SNV
frequency are shown in Figs 5 and 6. Those 5 species were selected
for the downstream analysis. The exact number of SNVs and the
genome length were summarized in Table 2. Participants’ back-
ground with average sufficient read depth of species included in
the downstream analysis are summarized in Supplementary Data
Set 1. The SNV location and SNV frequency of the samples for all the
species are deposited in Supplementary Data. As the proportion of
participants with “suspected of periodontitis” was higher in current
smokers, we performed the comparison between those with
healthy periodontal status and those with suspected of period-
ontitis controlling for age, sex, BMI, teeth number, caries status, and
smoking. There were no species that showed significant differences
between them (Supplementary Data Set 1). We performed the
analysis with the newly created custom database for the 5 species
that significantly differed, and the result was similar (Supplementary
Data Set 1). We additionally performed multiple sequence
alignment of the core-genome of these 5 species, and visualize
the tree in Supplementary Fig. 1. Additionally, the dendrogram
based on the distance matrix calculated from SNV frequency table,
with RefSeq deposited sequences are visualized in Supplementary
Fig. 2. Further, the proportion of within- and between-group strain
sharing are described in Supplementary Data Set 1.

Fig. 1 Flowchart detailing participant selection. Flowchart detail-
ing participant selection. Overall, 286 participants were selected.

Table 1. Participants’ background.

Clinical values Never smokers
(n= 234)

Current smokers
(n= 52)

p-value

Age (years), mean (SD) 47.99 (15.47) 43.56 (10.53) 0.05

Sex: # female (%) 192 (82.1) 32 (61.5) 0.002

Teeth number,
mean (SD)

25.63 (5.55) 26.15 (5.30) 0.534

eGFR (mL/min/1.73m2),
mean (SD)

82.59 (15.15) 83.76 (12.03) 0.605

HbA1c (%), mean (SD) 5.66 (0.30) 5.68 (0.29) 0.675

Systolic blood pressure
(mmHg), mean (SD)

115.09 (11.94) 111.94 (12.04) 0.087

Diastolic blood pressure
(mmHg), mean (SD)

70.11 (8.53) 68.81 (10.13) 0.337

Pack-year index,
mean (SD)

NaN (NA) 13.77 (15.13) NA

FEV1.0%, mean (SD) 83.28 (6.54) 82.06 (6.73) 0.228

BMI category # (%) 0.003

0–18.5 kg/m2 23 (9.8) 10 (19.2)

≥18.5–25 kg/m2 173 (73.9) 28 (53.8)

≥25–30 kg/m2 29 (12.4) 14 (26.9)

≥30 9 (3.8) 0 (0.0)

Caries present # (%) 66 (28.2) 23 (44.2) 0.036

Suspected of having
periodontitis # (%)

117 (50.0) 33 (63.5) 0.109

BMI body mass index, HbA1c hemoglobin A1c, eGFR estimated glomerular
filtration rate, FEV1.0% percent predicted forced expiratory volume in 1 s,
SD standard deviation.
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Differences in gene and pathway content of species
We next investigated differences in gene and pathway content
across species present in current or never smokers. The gene
presence table was analyzed by logistic regression models. The
gene differential results for 5 species were summarized in Table 3.
There were no significant differences in terms of gene presence
frequency between current and never smokers in Megasphaera
micronuciformis. Those genes yielded up-regulated and down-
regulated KO identifiers for each species and the KEGG pathways
were inferred by MinPath. Up-regulated pathways were as follows;
purine and pyrimidine metabolism, and lipopolysaccharide
biosynthesis in Veillonella dispar, pentose phosphate pathway,
glycine, serine and threonine metabolism, and phenylalanine,
tyrosine and tryptophan biosynthesis in Rothia mucilaginosa.
Down-regulated pathways were as follows; galactose metabolism

in Actinomyces graevenitzii, pyrimidine metabolism and ubiqui-
none and other terpenoid-quinone biosynthesis in Rothia
mucilaginosa, glycolysis/gluconeogenesis, cysteine and methio-
nine metabolism, and pyrimidine metabolism in Veillonella dispar,
and pentose phosphate pathway, purine metabolism, and
cysteine and methionine metabolism in Veillonella sp. Note that
the pathway with the highest three total number of involved KO
identifiers was listed, and genes that were differentially presented
between current and never smokers are listed in Supplementary
Data Set 1, and the inferred pathways are summarized in
Supplementary Data Set 1. In addition, a gene status heatmap
displaying presence or absence of four species that have
significantly differed genes is shown in Fig. 7. Further, the gene
presence table for all the species were deposited in Supplemen-
tary Data.

Random forest classification
We performed binary classification of current and never smokers by
random forest algorithm to characterize how these differences can
discriminate current and never smokers. The performance was
highest when the input was gene presence table of Veillonella
dispar (0.930 [0.060], mean [SD]). The performance was 0.913
[0.077], 0.824 [0.098], 0.817 [0.107], and 0.801 [0.128] respectively
(mean [SD]), when the input was SNV frequency table of Veillonella
dispar, SNV frequency table of Veillonella sp, gene presence table of
Veillonella sp, and SNV frequency table of Actionmyces graevenitzii.
Only the model with AUROC above 0.8 were listed, and other
performances regarding 5 species profiled were summarized in
Table 4. When the input was the relative abundance of all the
species presented in samples, the performance was 0.745 [0.097].
These results indicated that current and never smokers can be
discriminated by the SNV frequency or gene presence table of
Veillonella dispar, one of Veillonella sp, and Actinomyces graevenitzii,
which suggested these species within the oral microbiome of
current and never smokers have distinct SNV frequency or gene
presence frequency characteristics.

Fig. 2 The distribution of reads across groups. The barplot and distribution of reads across groups of never and current smokers are shown.
Blue indicates never smokers, while yellow indicates current smokers.

Fig. 3 The principal coordinate plot of beta diversity measured by
weighted UniFrac. The x- and y-axes represent the first and second
principal coordinates with the proportion of variance. The 95%
confidence ellipse is shown for each group. The points in blue
indicate never smokers, while the points in yellow indicate current
smokers.

N. Sato et al.

3

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2020)    11 



Fig. 4 The violin and boxplot demonstrating significant differences in relative species abundance. The group of never or current smokers
are shown on the x-axis and the relative abundances is shown on the y-axis (on a logarithmic scale). Blue indicates abundance in never
smokers, while yellow indicates abundance in current smokers.

Fig. 5 The principal coordinate plots based on the distance matrix of species differed significantly between never and current smokers in terms
of SNV frequency. The x- and y-axes represent the first and second principal coordinates, respectively, with the proportion of variance. The points in
blue indicate never smokers, while the points in yellow indicate current smokers, and the green points indicate the reference in the database.
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DISCUSSION
This study explored the species-level bacterial composition, SNV
profile, and gene content of species in the tongue microbiome, with
particular focus on the relationship with cigarette smoking. The
tongue is exposed to many chemical compounds during cigarette
smoking and many of these compounds are considered harmful9. In
the present study, we found 5 species that differed in terms of SNV
frequency. The relative abundance of Veillonella dispar was high in
current smokers, and the SNV profile differed in current smokers
compared to never smokers, which suggests that current smokers
have different strains of Veillonella dispar. It seems likely that Veillonella
genus is related with cigarette smoking, considering the results of
previous studies which reported quantitative changes of Veillonella5,6.
Veillonella are strict-anaerobic, Gram-negative diplococci from the

phylum Firmicutes that are commensal oral bacteria, and are
reported to be nitrate and nitrite reducing bacteria10. They were
also reported in some clinical case reports such as prosthetic joint
infection11. In various studies using 16S rRNA amplicon sequencing
technology, Veillonella were reported to be related to smoking. Wu

et al. reported that Veillonella were more abundant in mouthwash
samples of smokers, and suggested that the anaerobic character-
istics of these bacteria make them tolerant to the smoking
environment5. Kato et al. also found that the Veillonellaceae family
were more abundant in smoker’s saliva samples4. Veillonellaceae
were also reported to be related to certain cancers, such as lung
cancer, and are reported to be a good marker of squamous cell
carcinoma in the salivary microbiome12. In addition, Veillonella
parvula were reportedly found frequently in the lower air tracts of
lung cancer patients13. Furthermore, a study comparing micro-
biome in bronchoalveolar lavage fluid of lung cancer patients and
benign mass patients revealed that Megasphaera and Veillonella
were more abundant in lung cancer patients14.
Additionally, Veillonella dispar gene and pathway content analysis

revealed that some genes in Veillonella dispar were present with high
frequency in current smokers compared to never smokers. Interest-
ingly, the lipopolysaccharide (LPS) biosynthesis pathway was up-
regulated in the current smoker group, from the pathway
reconstruction based on the significantly different genes. LPS are

Fig. 6 The dendrogram based on the distance matrix of species that differed significantly between never and current smokers in terms
of SNV frequency. The circular dendrogram is shown for each species significantly differed in terms of SNV frequency. Red branches indicate
the leaf of current smokers, and blue branches indicate the leaf of never smokers.

Table 2. The detailed number of SNVs and the genome length.

Species_id Number_of_snv Number_of_snv_in_cds m-equal-r(count) m-equal-r(%) Genome_length

Actinomyces_graevenitzii_58300 97,158 90,456 80,295 0.82643735 2,196,917

Megasphaera_micronuciformis_62167 87,204 80,271 77,932 0.8936746 1,765,528

Rothia_mucilaginosa_62109 299 274 283 0.94648829 2,264,603

Veillonella_dispar_61763 5930 4714 4983 0.84030354 2,118,767

Veillonella_sp_62404 28,233 25,005 25,319 0.89678745 2,176,752

m-equal-r the number of SNV that the major allele are as same as the reference allele.
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located in outer membrane of Gram-negative bacteria like Veillonella,
and consist of lipid A, core oligosaccharide, and a distal polysacchar-
ide15. In the review by Delwiche et al., they postulated that Veillonella
produces significant endotoxic LPS by sugar assimilation of not only
ribose, but also fructose being incorporated into LPS16. Additionally,
Veillonella LPS were reported to have relatively high endotoxicity17.
Our results suggested that Veillonella dispar have a potentially
different activities related to LPS production in current and never
smokers, judging from the KEGG pathway analysis.
We identified quantitative differences between bacteria in current

and never smokers at the species-level. In accordance with other
studies, anaerobic bacteria, including those in the genus Strepto-
coccus or Veillonella, as well as Fusobacterium nucleatum, were
confirmed to be more abundant in current smokers7. In the genus

Veillonella, Veillonella dispar was significantly more abundant in terms
of relative abundance. In addition to quantitative differences
measured by 16S rRNA sequence, which has also been described
in some previous studies, the present study provided more specific
information regarding differences in the tongue microbiome
between current and never smokers.
Our results suggested that Veillonella dispar gene presence table

was able to distinguish current smokers and never smokers with the
highest performance using the random forest classifier, which
indicated that Veillonella dispar from current and never smokers
have distinct characteristics compared to other species investigated.
Additionally, the sequences of strains deposited in RefSeq under
Veillonella dispar were placed in different groups in the dendrogram,
suggesting that strains deposited in RefSeq could be grouped

Table 3. The summary of the differential analysis of genes.

Species_id Never Current Total-gene All-zero All-one Tested Down Up

Actinomyces_graevenitzii_58300 38 13 2471 46 918 1507 10 7

Megasphaera_micronuciformis_62167 37 13 1724 87 1210 427 0 0

Rothia_mucilaginosa_62109 107 30 1765 2 187 1576 24 37

Veillonella_dispar_61763 85 31 1890 10 349 1531 24 271

Veillonella_sp_62404 115 23 1991 19 303 1669 197 3

Never the number of never smokers profiled for genes, Current the number of current smokers profiled for genes, Total-gene the number of total genes, All-zero
the number of genes that were absent in all samples, All-one the number of genes that were present in all samples, Tested the number of genes tested, Down
the number of genes down-regulated, Up the number of genes up-regulated.

Fig. 7 Heatmap depicting gene presence or absence status. Rows indicate sample (red: current smokers, blue: never smokers), and columns
indicate statistical significance (gray: not significant, black: significant) along with q-values (on a logarithmic scale). Heatmap cells indicate
gene presence or absence (red: absent, yellow: present).

Table 4. The performance of random forest classifier measured by AUROC.

Input Species Mean Stdev

relative_abundances – 0.7453 0.0971

snv Actinomyces_graevenitzii_58300 0.7396 0.2034

snv Megasphaera_micronuciformis_62167 0.6631 0.1182

snv Rothia_mucilaginosa_62109 0.7467 0.204

snv Veillonella_dispar_61763 0.9132 0.0773

snv Veillonella_sp_62404 0.8238 0.0984

Gene Actinomyces_graevenitzii_58300 0.8012 0.1283

Gene Megasphaera_micronuciformis_62167 0.6554 0.1977

Gene Rothia_mucilaginosa_62109 0.6842 0.0939

Gene Veillonella_dispar_61763 0.9298 0.0596

Gene Veillonella_sp_62404 0.8174 0.1069

Mean the mean value of 5-fold cross validation, Stdev the standard deviation value of 5-fold cross validation.
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according to other criteria, such as SNV frequency and functional
differences.
Further, our study demonstrated that Actinomyces graevenitzii,

Megasphaera micronuciformis, Rothia mucilaginosa, and one
Veillonella sp also displayed the potential of having different
strains at the species-level based on the SNV frequency difference,
and some genes from those species were significantly differed.
Actinomyces graevenitzii has not been reported in association with
cigarette smoking. Megasphaera micronuciformis were reported to
be found more commonly in cigarette smoker’s upper gastro-
intestinal tract, as detected using the microarray18, and they are
under the family Veillonellaceae. The genus Rothia is an oral
commensal, and Rothia mucilaginosa was recently reported to be
increased in current smoker’s buccal microbiome19, although our
analysis in tongue microbiome did not find significant difference
in terms of relative abundance. We performed strain sharing
pattern analysis to further elucidate the meaning of these
differences, and two Veillonella species have relatively high strain
sharing within groups compared to between groups. However, we
cannot extrapolate functional consequences based on these SNV
findings. Additionally, there is currently no strict definition of
strain20, and the definition is given by the tool basis.
The current study has several strengths. The study explored

differences in SNV profiles of tongue microbiome across smoking
status using community-wide metagenomics data, and it revealed
that smokers may harbor different strains in some species compared
to never smokers. Further, we profiled the differences in gene content
for these species, which had not been thoroughly investigated
previously. As well, we minimized the effect of confounders by various
parameters which are said to affect oral microbiome.
The present study also contained limitations. First, due to the

cross-sectional nature of the study, it is unknown whether these
results indicate that species present originally in the tongue flora
underwent nucleotides alteration due to cigarette smoking, or
whether some species favor the habitat created by smoking. In
addition, we did not include dietary information, which may also
influence the tongue microbiome. The detailed functional
consequences, as well as the clinical implication, of differences
in SNV or gene profiles remain unclear and further investigations
will be necessary. Online tools other than MIDAS, such as
StrainPhlAn21 or metaSNV22, are available to investigate species
or strain-level microbiome profiles. These tools utilize different
databases, and differences in databases may influence the profile
results. The default database of MIDAS utilized clustering with a
cutoff of 95% genome-wide ANI, which correspond to the
standard definition of species. Thus, the present analysis could
detect variations under the species-level, and we validated the
result using a custom-built database based on RefSeq. We cannot
determine which species got sufficient read depth to profile SNV
beforehand. Additionally, we could not dissect the effect of
smoking and periodontitis on the tongue microbiome thoroughly
as cigarette smoking is a risk factor for periodontitis, and the
prevalence of periodontitis in current smokers in our cohort was
high. In addition, the oral examination was based on one-time
measurement when they admitted to the health-checkup, so the
detailed treatment history of oral diseases, or how often they got
maintenance treatment regarding oral diseases were unknown.
In summary, we conclude that tongue microbiome of cigarette

smokers differed from that of never smokers at a species-level
resolution. Moreover, Veillonella dispar was suggested to have a
different SNV profile and gene content in smokers, thus implying
different functionality. In addition to previous studies that mainly
investigated quantitative differences in relative abundances of the
oral microbiome, we show that differences related to SNV profile
and gene content may also be present between current and never
smokers. However, the clinical implication of these differences
requires further investigation.

METHODS
Study population and covariate assessment
This study was approved by the Ethical Committee of Hirosaki University
(approval number: 2016-028) and all participants provided written informed
consent. The participants were drawn from the Iwaki health-checkup cohort
conducted in 2016. The participants’ covariate information was obtained from
questionnaires administered upon induction into the study. Medical history,
current medication use, and smoking and drinking history was provided by
the participants. Body mass index (BMI) was calculated from participants’
height and weight, and was classified into four categories according to the
World Health Organization criteria. Smoking status was classified as current,
former, and never. Drinking status was classified as non-drinker, current
drinker, and former drinker. Natural tooth number, caries number, and
periodontal status were directly examined by the dentists, and caries number
was categorized as having caries or not. Periodontal status was classified as
suspected of having periodontitis or not. Specifically, if participants had the a
depth of gingivitis pocket ≥4mm and/or gum bleeding, they were
categorized as suspected of having periodontitis, according to the definition
of the Community Periodontal Index23. Patients were excluded based on the
following criteria: patients younger than 20 years or older than or equal to 90
years, use of antihypertensive drugs,　selection of “currently under
treatment”, “currently followed up” or “previously under treatment” of
hypertension in the questionnaire, systolic blood pressure of 140mmHg or
above, diastolic blood pressure of 90mmHg or above, use of antidiabetic
drugs, selection of “currently under treatment”, “currently followed up” or
“previously under treatment” of diabetes mellitus in the questionnaire, HbA1c
of 6.5 or above, estimated glomerular filtration rate below 30, use of
antimicrobials or steroids, current or former drinkers, former smokers, those
who have no teeth, and those with missing information regarding any of their
covariates. Overall, 52 current smokers and 234 never smokers were included
in the study. We measured the predicted percentage of forced expiratory
volume in 1 s and pack-year index (the number of cigarettes smoked per day
divided by 20, multiplied by the number of years of smoking).

Sample collection, DNA extraction, and Illumina shotgun
sequencing
For each of the participants, in the morning of admission and before breakfast
and tooth brushing, tongue plaque samples were obtained by brushing the
dorsal surface of tongue 4–5 times with a swab. The swab head was then
placed in a collection tube containing 4M guanidium thiocyanate, 100mM
Tris-HCl (pH 8.0), 40mM EDTA and 0.001% bromothymol blue. The samples
were mixed with zirconia beads using a FastPrep 24 instrument (MP
Biomedicals, Santa Ana, California, USA). DNA was extracted from the bead-
treated suspensions using an automatic nucleic acid extractor and MagDEA
DNA 200 (GC) (Precision System Science, Chiba, Japan). Quantification and
quality assessment of extracted DNA was performed using the 2200
TapeStation System (Agilent, Santa Clara, California, USA). DNA samples were
fragmented using LE220 (Covaris, Woburn, Massachusetts, USA), and
subjected to library preparation using the TruSeq ChIP Library Preparation
Kit (Illumina, San Diego, California, USA) following the manufacturer’s
instructions. Prepared libraries were evaluated using the 2200 TapeStation
System, and quantified by quantitative PCR using KAPA Library Quantification
Kits (KAPA Biosystems, Wilmington, Massachusetts, USA). Sequencing was
performed on the HiSeq2500 instrument (Illumina, San Diego, California, USA)
with 101 bp paired-end reads.

Metagenomic sequence processing
Raw paired-end reads were quality filtered via sickle version 1.3324 using the
sliding window approach and the following parameters: average quality
threshold of 30 and the minimum length of 20. Reads were then mapped to
the human reference genome (GRCh38) by Burrows-Wheeler Aligner MEM
(BWA-MEM) version 0.7.1725 with the default parameter set and mapped
reads with alignment length greater than 80 were subsequently discarded.

Relative abundance and SNV profiling
Metagenomic Intra-Species Diversity Analysis System (MIDAS) was used to
profile species abundance, SNV frequency, and gene content in each
species26. First, we aligned quality-filtered paired-end sequence reads to
the reference database, containing 31,007 sequences comprising 5952 spe-
cies provided by default in MIDAS, by HS-BLASTN27 to obtain species-level
abundance per sample (run_midas.py species in default parameter, and
merge_midas.py species with default parameter). The resulting alignment
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files were processed by MIDAS to profile SNVs against the bacterial
representative genome (run_midas.py snps with the default parameter).
Specifically, species with ≥3.0X coverage (total base pair aligned to the
representative sequence of the species divided by total genome length of
the species) were profiled SNV. Subsequently, the SNV profile was merged
across samples, and only bi-allelic positions were chosen. Participants with
average read depth across reference sites with at least 1 mapped read of
≥5.0 were merged SNV per species, and species with a number of profiled
participants ≥10% of the total number of participants were included in the
SNV analysis. Other parameters were in accordance with the preset option
‘–core-snps’ (merge_midas.py snps –core-snps). We additionally performed
a validation analysis using the updated custom database for species that
differed significantly in terms of SNV frequency. The complete genome
sequences for species significantly differed were downloaded from the
NCBI RefSeq28 based on the assembly summary on 17 December 2019. The
average nucleotide identity (ANI) of the sequences was calculated by
FastANI29, and the sequences were hierarchically clustered based on the
ANI. The representative sequence was chosen based on the medoid of the
clusters, and the build_db.py script was deployed. We again analyzed the
SNV frequency differences for significant species using the newly created
database and computed the result. Additionally, the SNV profile of
metagenomics in our cohort was compared with that of sequences
available in the NCBI RefSeq. In order to compare the reference sequences
with our metagenomic sequences, we simulated 9,000,000 metagenomic
sequence reads from reference sequences using wgsim, as MIDAS expect
metagenomic sequences to profile SNV, with parameters set to simulate
no errors, insertions, or deletions. Subsequently, these reads were
processed by the MIDAS pipeline via the same method used to profile
metagenomic samples from the cohort. Hierarchical clustering based on
the distance matrix calculated from SNV frequency was performed and a
dendrogram was constructed for visualization of the result.

Gene content and pathway analysis
We also performed pan-genome gene content analysis to infer the gene
content of species per sample by MIDAS using the default parameters
(run_midas.py genes with the default parameter), and results were merged
across samples (merge_midas.py genes with the default parameter). Gene
presence status was visualized by a heatmap, produced by R library
ComplexHeatmap30. Additionally, we inferred functional pathways using
significantly up-regulated or down-regulated genes to compare the functional
characteristic of species between groups. Specifically, the nucleotide sequences
of significantly differed genes were aligned to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) prokaryotic protein database31 by DIAMOND version
0.8.2232 with the default parameter. One gene was matched to one KEGG
prokaryotic protein with the lowest e-value. Subsequently, the protein was
matched to KEGG Orthologue (KO) database. The KEGG pathways were
inferred by MinPath version 1.4 from the resulting KO identifier. MinPath
infers the conservative estimate of pathways by a parsimony approach
rather than a naïve mapping approach using a set of genes33.

Statistical analysis
Participant backgrounds were compared via one-way ANOVA and chi-squared
test. Beta diversity was assessed by the weighted UniFrac measure, and
compared between current and never smokers by PERMANOVA using adonis
function in R package vegan34, adjusted for age, sex, BMI category, teeth
number, presence of caries, and periodontal status, and was subsequently
visualized by principal coordinate analysis (PCoA) plot. Default phylogenetic
trees provided by MIDAS were used. Beta diversity calculation was performed
by the function UniFrac in R library phyloseq35. Species abundance was
compared between current and never smokers using Multivariate Association
with Linear Models 2 (MaAsLin2)36 adjusted for age, sex, BMI category, teeth
number, presence of caries, and periodontal status. Relative abundances were
arc sine square root transformed, and taxa that had a minimum abundance of
0.0001 in at least 20% of all samples were tested (“transform=AST”,
“min_abundance= 0.0001”, and “min_prevalence= 0.2”). The distance
between samples was calculated based on the Manhattan distance, which
accounted for the sum of the differences of non-reference allele frequency per
SNV positions divided by the number of SNV positions. These distances were
calculated based on the sub-set of participants that have sufficient average
read depth for the candidate species. Subsequently, these distances were
tested for association with smoking status by PERMANOVA adjusted for age,
sex, BMI category, teeth number, presence of caries, and periodontal status
using adonis function. Permutations were set to 999. The distance matrix of

significant taxa was subsequently visualized by PCoA plot. In addition,
hierarchical clustering, based on the distance matrix calculated from SNV
frequency, was performed, and the resulting dendrogram was visualized.
Additionally, we built a strain-level phylogenetic tree by identifying core-
genome regions that have high coverage across multiple samples. We
performed the call_consensus.py script for the species significantly differed in
the SNV frequency comparison with the following parameters; –site_maf 0.01,
–site_depth 5, –site_prev 0.90, –sample_depth 10, –sample_cov 0.40,
–size_ratio 5.0 as suggested by the MIDAS manual. Subsequently, FastTree37

was used to build a phylogenetic tree for the species and we visualized the
resulting tree. Within groups strain sharing were measured by the MIDAS script
strain_tracking.py, with the parameter of –min_freq 0.90 and –min_reads 10 in
the strain_tracking.py id_markers, which identifies SNV that rarely occur in
different unrelated samples, and with the default parameter in the
strain_tracking.py track_markers, which identifies marker SNV sharing between
samples. We defined the SNV sharing cutoff level of 5%, and described the
proportion of SNV sharing within groups. Genes contained in representative
genomes included in the database were identified and annotated using
prokka38 version 1.14.0, in addition to the default annotation provided by
MIDAS. Specifically, the exact matching of scaffold identifiers, start
position, and end position was performed for the MIDAS default database
and prokka annotation. Prokka was used with the default parameter. Gene
content of each species was compared between current and never
smokers by logistic regression models implemented in brglm using the
binary table of gene presence of each species adjusted for age, sex, BMI
category, teeth number, presence of caries, and periodontal status39.
Genes present or absent in all the samples, or genes that were present or
absent in all the samples in each group were excluded before testing. All
statistical tests were two-sided, and a p-value, or false discovery rate
adjusted q-value, of <0.05 was considered statistically significant40. All
analysis was performed using R or Python. The plots were organized and
generated using ape, DECIPHER, dendextend, firatheme, and ggplot241–45.

Random forest classification
Classification of current and never smokers was achieved using the
random forest classifier using the species abundance table, SNV frequency,
and gene presence table of each species. The performance was evaluated
by area under receiver operator characteristic curve (AUROC). Five fold
cross-validation was performed, and the mean and standard deviation of
AUROC was calculated. Random forest classification was performed by
scikit-learn RandomForestClassifier function, default parameters provided
for the function, and a fixed seed number was used46.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary.
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