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Alzheimer’s disease (AD), the most common neurodegenerative disorder, is the
leading cause of dementia. Neuritic plaque, one of the major characteristics of AD
neuropathology, mainly consists of amyloid β (Aβ) protein. Aβ is derived from amyloid
precursor protein (APP) by sequential cleavages of β- and γ-secretase. Although APP
upregulation can promote AD pathogenesis by facilitating Aβ production, growing
evidence indicates that aberrant post-translational modifications and trafficking of APP
play a pivotal role in AD pathogenesis by dysregulating APP processing and Aβ

generation. In this report, we reviewed the current knowledge of APP modifications and
trafficking as well as their role in APP processing. More importantly, we discussed the
effect of aberrant APP modifications and trafficking on Aβ generation and the underlying
mechanisms, which may provide novel strategies for drug development in AD.
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INTRODUCTION

Alzheimer’s disease (AD), the most common neurodegenerative disorder leading to dementia,
accounts for ∼75% of dementia cases (ADI World Alzheimer Report, 2014; Korvatska et al.,
2015). The rapid increase of AD prevalence is a challenge to the public health and causes a
huge socioeconomic burden worldwide. However, no effective treatment has been developed.
Progressive memory loss is often the earliest sign of AD, while the impairment of other cognitive
functions and psychosis are also presented (Hort et al., 2010; McKhann et al., 2011; Segal-Gidan
et al., 2011).

Early-onset AD (EOAD) and late-onset AD (LOAD), occurring before and after the age of
65 years, respectively, are the two types of AD. Less than 5% of AD cases are EOAD (Alzheimer’s
Association, 2016). EOAD is caused by genetic alterations, including pathogenic mutations in
the amyloid-β precursor protein (APP) gene (Goldgaber et al., 1987; Kang et al., 1987; Robakis
et al., 1987; St. George-Hyslop et al., 1987; Tanzi et al., 1987), presenilin 1 (PSEN1) gene
(Mullan et al., 1992; Schellenberg et al., 1992; St. George-Hyslop et al., 1992; Li et al., 1995;
Sherrington et al., 1995) and presenilin 2 (PSEN2) gene (Levy-Lahad et al., 1995a,b; Rogaev
et al., 1995), a duplication of APP locus, as well as trisomy of chromosome 21 causing Down
syndrome (DS; Campion et al., 1999; Bettens et al., 2013). The etiology of LOAD is not yet fully
understood. A combination of multiple factors is believed to contribute to the pathogenesis
of LOAD, including aging, genetics, nutrition, lifestyle and chronic metabolic disorders (ADI;
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Qiu et al., 2009; Yang and Song, 2013; Kang et al., 2017; Zeng
et al., 2017; Zhang and Song, 2017). Among them, aging has been
demonstrated as the greatest risk factor of AD. Due to the rapid
increase in global aging population, the AD prevalence will be
continuously increased worldwide (ADI; Korvatska et al., 2015).

Both EOAD and LOAD share the same pathological
hallmarks in the brain, including extraneuronal neuritic plaques,
intraneuronal neurofibrillary tangles and synaptic/neuronal loss
leading to brain atrophy. As one of the major characteristics
of AD neuropathology, neuritic plaque is mainly composed
of amyloid β (Aβ), which was first identified by Glenner
and Wong (1984). Thus, it has been proposed that Aβ

overloading and plaque formation initiate the cascade of
AD pathogenesis and also contribute to other pathological
features, such as neurofibrillary tangles and synaptic/neuronal
loss (Hardy and Higgins, 1992). Recent studies suggested
that soluble Aβ oligomers might be the main culprit of
neuron toxicity. Thus, amyloid hypothesis has been revised to
propose that Aβ oligomers play a more important role in AD
pathogenesis than mature amyloid fibrils do, indicating that
reducing Aβ generation, facilitating Aβ clearance and blocking
Aβ oligomerization would be potential strategies to inhibit the
pathogenesis of AD (Sun et al., 2006a; Walsh and Selkoe, 2007;
Qing et al., 2008; Karran et al., 2011; Ly et al., 2013; Dong et al.,
2015).

Aβ is derived from sequential cleavages of the amyloid
precursor protein (APP) by β- and γ-secretase. Over
30 pathogenic mutations in APP have been identified to
cause early-onset familial AD due to the dysregulation of
Aβ generation (Deng et al., 2013; Zhang S. et al., 2017).
Overexpression of APP results in the elevation of Aβ levels,
which is also implicated in AD pathogenesis (Brouwers et al.,
2006; Rovelet-Lecrux et al., 2006, 2007; Sleegers et al., 2006;
Ryoo et al., 2007; Kasuga et al., 2009; Sun et al., 2011, 2014;
Long et al., 2012; Wu and Song, 2013; Yang et al., 2013; Wu
et al., 2014, 2015; Song et al., 2015). For example, rare cases
with APP locus duplication develop EOAD (Rovelet-Lecrux
et al., 2006, 2007; Sleegers et al., 2006; Kasuga et al., 2009).
In addition, DS patients with an extra copy of APP gene
show the increase of APP expression and Aβ generation in
the brain, which is associated with the development of AD
neuropathology (Ryoo et al., 2007; Sun et al., 2011, 2014; Wu
and Song, 2013; Wu et al., 2014, 2015; Song et al., 2015).
Moreover, AD-associated mutations within APP gene promoter
region also enhance APP expression (Brouwers et al., 2006).
The downregulation of MiR-106b or MiR-153, targeting
APP mRNA, has been observed in patients of sporadic AD
with the elevation of APP mRNA (Long et al., 2012). More
importantly, emerging evidence shows that alterations of
APP trafficking and post-translational modifications have
significant effects on APP processing and Aβ production.
Therefore, we aim to introduce the current knowledge of APP
modifications and trafficking, review their important roles in
APP processing and Aβ generation, and discuss the effect of
aberrant post-translational modifications and trafficking on
Aβ generation, which may provide novel strategies for drug
development in AD.

APP GENE AND PROTEIN

The human APP gene is located on chromosome 21q21.3,
spanning approximately 290,586bp of genomic DNA (Goldgaber
et al., 1987; Kang et al., 1987; Robakis et al., 1987; Tanzi et al.,
1987; Yoshikai et al., 1990; Lamb et al., 1993). By alternative
splicing, approximate ten APP variants are generated, encoding
APP isoforms with 639–770 amino acids. The three major
isoforms are APP695, APP751 and APP770, all of which can
generate Aβ after sequential cleavages by β- and γ- secretase
(Neve et al., 1988; Tanzi et al., 1988; Zimmermann et al., 1988;
Kang and Müller-Hill, 1990; Sisodia et al., 1993).

APP is ubiquitously expressed in human tissues with
high expression in the central nervous system (CNS). Both
APP751 and APP770 isoforms are mainly expressed in
non-neuronal cells, while APP695 isoform is predominantly
expressed in neurons. As the major isoform in human brains,
APP695 expression is markedly increased during neuronal
differentiation (Kang and Müller-Hill, 1990; Sisodia et al.,
1993). The three isoforms share the conserved protein structure
with a larger extracellular domain, a short transmembrane
domain and a cytoplasmic domain (Muresan and Ladescu
Muresan, 2015). The large ectodomain includes a cysteine-rich
globular domain (E1), an acidic domain (AC), a helix-rich
domain (E2) and a part of the Aβ domain extending into the
transmembrane domain. The short cytoplasmic domain (the
intracellular C-terminal domain) contains a conserved YENPTY
motif responsible for the protein interactions. E1 domain
contains a heparin-binding site (HBD) and a metal-binding
domain (MBD) with copper and zinc binding sites. The
E2 domain is composed of six α-helices forming a coiled-coil
substructure. Both APP770 and APP751 contain a Kunitz-type
serine protease inhibitors (KPI) domain following the AC.
In addition, APP770 contains an OX2 domain following the
KPI domain. APP plays numerous functions, such as neuronal
differentiation, neurogenesis, synaptic function, apoptosis and
cell proliferation (Bolós et al., 2014; Milosch et al., 2014; Fanutza
et al., 2015; Wu et al., 2015, 2016).

APP PROCESSING AND Aβ GENERATION

Overview of APP Processing and Aβ

Generation
Although Aβ is a well-known proteolytic product of APP, APP
indeed undergoes both non-amyloidogenic and amyloidogenic
pathways mediated by sequential cleavages of α-/β-/θ-/η-
secretase and γ-secretase (Figure 1). The majority of APP
undergoes non-amyloidogenic pathway. First, APP is cleaved by
α-secretase to generate a N-terminal secreted APP (sAPPα) and
C-terminal fragment (CTF) of 83 amino acids (C83) which is
further cleaved by γ-secretase to release a 3 kDa product (P3)
and APP intracellular domain (AICD). In addition, beta-site
APP cleaving enzyme 2 (BACE2) is a θ-secretase, which is
implicated in APP processing without Aβ generation (Sun et al.,
2006b; Liu et al., 2013). The minority of APP is cleaved by
β-secretase at Asp1 (β site) and Glu11 (β’ site, numbering for Aβ)
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FIGURE 1 | Amyloid precursor protein (APP) processing and amyloid β (Aβ) generation. APP is mainly cleaved by α-secretase to generate secreted APP (sAPPα) and
C-terminal fragment (CTF) of 83 amino acids (C83). C83 is further cleaved by γ-secretases to generates a truncated Aβ and APP intracellular domain (AICD),
respectively. The minority of APP is cleaved by beta-site APP cleaving enzyme 1 (BACE1; β-secretase) at Asp1 and Glu11 (numbering for Aβ) sites to generate a CTF
with 99 and 89 amino acids (C99 and C89), respectively. They were further cleaved by γ-secretase to produce Aβ and a truncated form of Aβ, respectively. APP is
proteolyzed by BACE2 (θ-secretase) to generate a CTF with 80 amino acids (C80), which is further cleaved by γ-secretase to produce a truncated form of Aβ.
Membrane type 5 matrix metalloproteinase (MT5-MMP; η-secretase) is revealed to cleave APP generating C191, which is further cleaved by α-secretase and
β-secretase to produce Aη-α and Aη-β, respectively. However, the generation of C83, C99, C89 and their downstream cleavage products following η- cleavage
remains elusive.

sites, respectively. Glu11 is the major β-cleavage site to yield a
CTF with 89 amino acids (C89), which is further cleaved by
γ-secretase to produce a truncated Aβ11−40/42. Asp1 is the minor
β-cleavage site to generate a CTF with 99 amino acids (C99; Deng
et al., 2013). C99 is further cleaved by γ-secretase to produce
Aβ (Liu et al., 2002; Deng et al., 2013). Recently, η-secretase,
e.g., membrane type 5 matrix metalloproteinase (MT5-MMP), is
revealed to be involved in APP processing (Willem et al., 2015).

α-Secretase
Although α-secretase is not yet fully defined, three a disintegrin
and metalloproteinase (ADAM) family members (ADAM9,
ADAM10 and ADAM17) may feature α-secretase activity.
α-cleavage predominantly occurs at plasma membrane (PM) to
generate sAPPα and C83 excluding Aβ production, which is
the major proteolytic process of APP at PM (Sisodia, 1992).
The activity of α-secretase in Trans-Golgi-Network (TGN) v is
regulated by multiple factors such as protein kinase C (PKC;
Skovronsky et al., 2000).

Beta-Site APP Cleaving Enzyme 1
BACE1, the dominant β-secretase in vivo, is a type-I
transmembrane protein with 501 amino acids (Sun et al.,
2012). The trafficking of BACE1 has been reviewed previously
(Zhang and Song, 2013; Agostinho et al., 2015; Toh and
Gleeson, 2016). Briefly, it is synthesized in the endoplasmic
reticulum (ER)-bound polysomes as immature BACE1. Along
the secretory pathway, BACE1 undergoes a series of post-
translational- modifications in the ER and Golgi apparatus,

becoming mature. Mature BACE1 is internalized through
endosomes to lysosomes for degradation. It is also transported
to the TGN via the retrograde route or recycled to the PM.
BACE1 mainly localizes in the TGN and endosome where
the acidic environment is optimal for BACE1 activity (Vassar
et al., 1999). Thus, β-cleavage mainly occurs in the post-Golgi
secretory compartments and endosomal/lysosome organelles
(Koo and Squazzo, 1994; Haass et al., 1995; Munger et al., 1995).
However, accumulated evidence has shown that intracellular
β-secretase cleavage also occurs in ER/ER-Golgi Intermediate
Compartment (ERGIC), indicating that acidic pH is not essential
for BACE1 activity (Chyung et al., 1997). More importantly,
the site preference of β-cleavage is mainly determined by the
subcellular location and modification of BACE1 (Huse et al.,
2002; Wang et al., 2014). Asp1 is the major BACE1 cleavage
site in the ER resulting in C99 generation, which contributes to
Aβ generation. However, Glu11 is the predominant β-cleavage
site in the TGN, leading to C89 generation without the
subsequent Aβ production. In addition, lipid raft is the preferred
microdomain for β-secretase cleavage (Zhang and Song,
2013). Many BACE1 inhibitors have been developed for AD
treatment by inhibiting the generation of Aβ (Godyń et al.,
2016; Hung and Fu, 2017). However, none of them is approved
so far.

θ-Secretase
BACE2, the homolog of BACE1, consists of 518 amino acids
(Sun et al., 2005). BACE2 is a θ-secretase, which predominantly
cleaves APP at Phe19 within the Aβ domain to yield CTF of
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80 amino acids (C80) excluding Aβ generation (Figure 1; Sun
et al., 2006b; Liu et al., 2013). Consistently, no Aβ overproduction
and cognitive deficits were observed in BACE2 transgenic mice
(Azkona et al., 2010; Bacher et al., 2010). Despite of high
homology, the expression of BACE2 and BACE1 is differentially
regulated at transcriptional and post-transcriptional levels (Sun
et al., 2005, 2006b). BACE1 is predominantly expressed in
neurons, whereas BACE2 expression is extremely low in the brain
(Bennett et al., 2000; Marcinkiewicz and Seidah, 2000).

γ-Secretase
γ-secretase is a protein complex consisting of presenilins
(PSEN1 and PSEN2), nicastrin, APH-1 and PEN-2, which cleaves
APP following α-/β-/θ-secretase cleavage. PSEN1 and PSEN2 are
the core catalytic subunits of γ-secretase, while nicastrin, APH-1
and PEN-2 are the regulatory subunits playing a key role in the
maturation and stabilization of the complex (De Strooper et al.,
1998, 1999; Song et al., 1999; Zhang et al., 2000, 2013; Takasugi
et al., 2003). In addition, Chen et al. (2006) showed that TMP21,
a vesicle trafficking protein, is a component of γ-secretase, and
its dysregulation and SNPs significantly affect Aβ generation
(Chen et al., 2006; Zhang X. et al., 2017). Studies suggest that
all the components of the complex are synthesized and mainly
localized in the ER (Walter et al., 1996). Most evidence supports
that the assembly and maturation processes, mainly occurring
in the compartments of the secretory pathway, are crucial for
γ-secretase activity, although one report showed that presenilins
are not required for Aβ generation in the early secretory pathway
(Wilson et al., 2002; Zhao et al., 2004; Capell et al., 2005).
The details of γ-secretase trafficking and assembly have been
extensively reviewed (Zhang et al., 2013; Agostinho et al., 2015).
The active γ-secretase is mainly localized in late endosome and
lysosome system (Kanatsu et al., 2014). However, the γ-cleavage
has also been observed in the ER, TGN and at PM (Munger et al.,
1995; Walter et al., 1996; Maltese et al., 2001; Zhao et al., 2004;
Capell et al., 2005; Kaether et al., 2006). Targeting γ-cleavage
is a well-known strategy for AD treatment by inhibiting Aβ

generation. Although many γ-cleavage inhibitors have been
developed, none of them is approved for clinical application
(Godyń et al., 2016; Hung and Fu, 2017).

η-Secretase
Membrane type 1 matrix metalloproteinase (MT1-MMP) was
first revealed to be involved in APP processing (Higashi and
Miyazaki, 2003). Later on, Ahmad et al. (2006) found that
MT3-MMP and MT5-MMP also contribute to APP processing.
However, MT3-MMP has no effect on Aβ generation (Ahmad
et al., 2006). Recently, Willem et al. (2015) demonstrated that
MT5-MMP has η-secretase activity, which cleaves APP695 at
amino acids 504–505 to generate a higher molecular mass
carboxy-terminal fragment of APP, termed CTF-η (C191).
C191 is enriched in an AD mouse model and human AD brains
and it could be further processed by α- and β-secretase generating
Aη-α and Aη-β, respectively (Figure 1; Willem et al., 2015). Aη-α
significantly inhibits long-term potentiation in vitro and in vivo
(Willem et al., 2015). However, the generation of C83, C99,
C89 and downstream cleavage products following η-cleavage

remains elusive although Baranger et al. (2016, 2017) reported
that MT5-MMP is a pro-amyloidogenic secretase, promoting
amyloid pathology and cognitive decline in AD model mice.

Aβ Generation Along the Secretory
Pathway
Aβ, the major component of senile plaques in AD brains,
is generated through sequential cleavages of APP by β- and
γ-secretase. The trafficking-dependent co-residence of APP and
secreatases plays a key role in the Aβ generation. However,
the subcellular location of Aβ production is not fully defined.
Several studies have shown that Aβ is mainly generated in the
endosome/lysosome where the acidic environment facilitates the
activity of β- and γ-secretase (Golde et al., 1992; Koo et al.,
1996; Yamazaki et al., 1996; Kanatsu et al., 2014). In contrast,
a large body of evidence indicates that Aβ is also generated
along the secretory pathway, including ER, Golgi and TGN
(Busciglio et al., 1993; Stephens and Austen, 1996; Cook et al.,
1997; Hartmann et al., 1997; Tomita et al., 1998; Greenfield et al.,
1999; McFarlane et al., 1999). It has been found that Aβ42 instead
of Aβ40 is generated in the ER of neurons (Cook et al., 1997;
Hartmann et al., 1997; Greenfield et al., 1999). Consistently,
ER retention signal or BFA treatment-induced ER retention of
APP increases the level of Aβ42. Since both α- and β-secretases
exert their cleavages in the TGN, there is a competition between
α-secretase and β-secretase for APP cleavage (Skovronsky et al.,
2000).

APP MODIFICATIONS AND TRAFFICKING
IN Aβ GENERATION

APP Trafficking and Co-Residence with
Secretases
As a type I transmembrane protein, APP trafficks through the
classic secretory, endo-lysosome and recycling pathways
(Figure 2). After synthesized in the membrane-bound
polysomes, the N-terminal signal peptide is removed during
its translocation into the ER. Then, it transports to the Golgi
apparatus and TGN via ERGIC. Finally, approximately 10%
nascent APP reaches the PM, while the majority of APP resides
in the Golgi apparatus and TGN. APP at PM is mainly cleaved
by α-secretase to release sAPP and C83. The uncleaved APP
on the cell surface is rapidly internalized into the endosome,
which is mediated by its C-terminal ‘‘YENPTY’’ motif. The
internalized APP is sorted into three pathways. Most APP is
sorted into late endosome-lysosome pathway for degradation
while a small fraction of APP is recycled back to the cell surface
or retrograded to the TGN (Haass et al., 1992). Moreover, part
of APP at TGN could be directly sorted into the endosome. APP
and its fragments have also been detected in the mitochondria,
cytoplasm and nuclear. However, the detailed routes and
processes remain elusive since the holo-APP and multiple APP
fragments may traffic through different pathways (Muresan
and Ladescu Muresan, 2015). Furthermore, the trafficking of
APP plays a key role in APP processing as the co-residence of
APP with secretases (e.g., α-, β-, γ-secretase) along the secretory
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FIGURE 2 | APP trafficking and co-residence with secretases. After
synthesized in the membrane-bound polysomes, the N-terminal signal peptide
is removed during its translocation into the endoplasmic reticulum (ER).
N-glycosylation (N-Gly) and palmitoylation (Pal) is crucial for APP transporting
to the Golgi apparatus and Trans-Golgi-Network (TGN), while O-glycosylation
(O-Gly) in Golgi apparatus is essential for APP transporting to the plasma
membrane (PM). The uncleaved APP is rapidly internalized by the endosome
and sorted into three pathways. Most APP is sorted into late
endosome-lysosome pathway for degradation while a small fraction of APP is
recycled back to the PM or retrograded to the TGN. Moreover, the
co-residence of APP with secretases (e.g., α-, β-, γ-secretase) along the
secretory pathway might contribute to the APP processing and Aβ generation.

pathway and organelle-specific secretase activity significantly
affect APP processing and Aβ generation (Figure 2; Zhang
and Song, 2013; Zhang et al., 2013; Agostinho et al., 2015).
For example, α-cleavage predominantly occurs at PM (Sisodia,
1992), while β-cleavage mainly occurs in the endosome and
lysosome (Koo and Squazzo, 1994; Haass et al., 1995; Munger
et al., 1995).

Post-Translational Modifications of APP
During the constitutive secretory pathway, APP undergoes
extensive post-translational modifications, including
N-glycosylation (N-Gly) and O-glycosylation (O-Gly),
phosphorylation, sulfation, palmitoylation, ubiquitination
and sumoylation. The residue numbering in the following
corresponds to the APP695, unless otherwise indicated.

Glycosylation
When the nascent APP translocates into the ER, N-Gly is
catalyzed by the oligosaccharyl transferase (OST) complex with
the addition of a precursor oligosaccharide to the luminal side of
a polypeptide chain, forming the immature APP. Two asparagine
sites, Asn467 and Asn496, are predicted to be glycosylated
although only the former one has been confirmed (Pahlsson et al.,
1992). However, Yazaki et al. (1996) showed that deletion of
either Asn467 or Asn496 leads to a decrease of APP molecular
weight in COS-1 cells, which indirectly indicates that both sites
are N-glycosylated. O-Gly of APP occurs in Golgi apparatus
to form the mature APP. Multiple O-Gly sites of APP have
been identified by both in vitro and in vivo studies. Thr291,
Thr292, Thr576 and Thr353 (numbering of APP770) are found
to be O-Glycosylated in cultures (Perdivara et al., 2009). The

O-Gly of Ser597, Ser606, Ser611, Thr616, Thr634, Thr635,
Ser662 and Ser680 (numbering of APP770) has also been
identified in human CSF (Halim et al., 2011). In addition to
the classical O-GalNAcylation, O-GlcNAcylation is another form
of O-Gly and characterized by the addition of a single β-N-
acetylglucosamine (GlcNAc) to the residue of serine or threonine
(Griffith et al., 1995). Alteration of O-GlcNAcylation in APP
plays an important role in regulating APP processing and Aβ

generation (Jacobsen and Iverfeldt, 2011; Chun et al., 2015b).

Phosphorylation
Although APP is a phosphoprotein, the fully glycosylated (N-and
O-glycosylated) APP is preferred to be phosphorylated (Gandy
et al., 1988; Weidemann et al., 1989; Hung and Selkoe, 1994;
Oishi et al., 1997). Ten phosphorylated sites of APP have been
identified, including two sites in the ectodomain (Ser198 and
Ser206) and eight sites in the cytoplasmic domain (Tyr653,
Tyr682, Tyr687, Ser655, Ser675, Thr654, Thr668 and Thr686;
Gandy et al., 1988; Walter et al., 1997; Lee et al., 2003). Under
basal conditions, two phosphorylated serine residues (Ser198 and
Ser206) could be detected in the ectodomain of APP and Ser198 is
the major phosphorylated site compared with Ser206 (Hung and
Selkoe, 1994; Walter et al., 1997).

More studies about APP phosphorylation focus on the
residues within the cytoplasmic domain. Ser655 can be
phosphorylated by PKC, while Ca++/calmodulin-dependent
protein kinase II is involved in the phosphorylation of both
Ser655 and Thr654 during in vitro culture (Gandy et al., 1988;
Suzuki et al., 1992). Moreover, Ser655 can be phosphorylated
by APP kinase I in vivo (Isohara et al., 1999). Oishi et al.
(1997) has reported that okadaic acid, a protein phosphatase 1
(PP1) and PP2A inhibitor, increases Ser655 phosphorylation,
suggesting that phosphatases are also involved in the regulation
of Ser655 phosphorylation. Phosphorylation of Ser655 is mainly
detected in the mature APP, whereas Thr668 is the most
common phosphorylated site in the immature APP (Oishi et al.,
1997). The phosphorylation of Thr668 occurs in the ER and
is cell-cycle dependent (Muresan and Muresan, 2012). Multiple
kinases, such as glycogen synthase kinase 3β (GSK3β), cyclin
dependent kinase 5 (CDK5), CDK1, stress-activated protein
kinase1β (SAPK1β), dual-specificity tyrosinephosphorylation-
regulated kinase 1A (DYRK1A) and c-Jun N-terminal protein
kinase (JNK) are involved in the process of its phosphorylation
(Suzuki et al., 1994; Aplin et al., 1996; Oishi et al., 1997;
Iijima et al., 2000; Standen et al., 2001; Ryoo et al., 2008;
Mazzitelli et al., 2011). In addition, a couple of phosphatases,
such as PP1, PP2A, PP2B are also involved in the regulation of
Thr668 phosphorylation (Oliveira et al., 2015).

Palmitoylation
Palmitoylation is a common way of protein modifications
with the addition of fatty acids to a cysteine residue,
which is regulated by both palmitoyl acyltransferases and
acyl protein thioesterases. Protein palmitoylation is involved
in the regulation of protein trafficking and protein-protein
interactions. Around 10% of APP undergoes palmitoylation,
mainly occurring in ER (Bhattacharyya et al., 2013). Recently,
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Bhattacharyya et al. (2013) has reported that APP palmitoylation
is mediated by two palmitoyl acyltransferases, DHHC-7 and
DHHC-21, and Cys186 and Cys187 are two palmitoylated sites
in APP.

Ubiquitination
Ubiquitination can modify the target protein by attaching
ubiquitin, a small protein with 76 amino acids, to the
lysine residues. It is catalyzed by ubiquitin-activating enzymes,
ubiquitin-conjugating enzymes and ubiquitin ligases. Protein
ubiquitination is implicated in the processes including protein
degradation, trafficking and protein-protein interactions. Recent
studies have identified a couple of ubiquitination sites within the
cytoplasmic domain of APP, including Lys649–651, Lys651 and
Lys688 (Kaneko et al., 2010; El Ayadi et al., 2012; Watanabe et al.,
2012; Morel et al., 2013).

Sumoylation
Protein sumoylation is characterized by the covalent
modification of lysine residues on target proteins with small
ubiquitin-like modifier (SUMO; SUMO-1, -2 and -3). It is
an important modification to regulate protein functions and

catalyzed by SUMOE1, E2 and E3 enzymes. It has been identified
that both SUMO-1 and -2 are implicated in APP sumoylation
with two sumoylated sites, Lys587 and Lys595 (Zhang and Sarge,
2008).

Sulfation
Tyrosine sulfation is a common post-translational modification
of cell surface protein occurring in the late Golgi compartments,
which is implicated in protein trafficking as well as proteolysis
process. APP is a tyrosine sulfated protein with two potential
sulfated residues, Tyr217 and Tyr262 (Weidemann et al., 1989).
However, the exact sulfated sites and the function of APP
sulfation have not been fully investigated.

Interplay of Post-Translational Modifications
Growing evidence indicates that the interplay of
post-translational modifications, including phosphorylation
and O-GlcNAcylation, phosphorylation and sumoylation,
sumoylation and ubiquitination, and O-GlcNAcylation and
sumoylation, is involved in complex physiological processes and
the pathogenesis of multiple diseases (Zeidan and Hart, 2010;
Hart et al., 2011; Ruan et al., 2013; Luo et al., 2014; Liebelt and

TABLE 1 | Amyloid precursor protein (APP) modifications and trafficking in amyloid β (Aβ) generation.

Modification Trafficking Affected cleavage Aβ Cells/Organs References

Glycosylation
N-Glycosylation COS-7

HEK293
Pahlsson et al. (1992)

O-Glycosylation PM α-secretase ↓ PC12
CHO
Hela

Weidemann et al. (1989)
Perdivara et al. (2009)
Jacobsen and Iverfeldt (2011)
Chun et al. (2015a,b)

Palmitoylation
Cys186/187 Lipid

raft
β-secretase ↑ CHO

PC12
Primary neuron

Bhattacharyya et al. (2013)

Phosphorylation
Ser655 TGN α-secretase ↓ PC12

Rat brains
Gandy et al. (1988)
Buxbaum et al. (1990)
Suzuki et al. (1992)
Isohara et al. (1999)

Thr668 β-/γ-secretase ↑ SKSH-SY5Y
H4
AD brains
Mouse brains
Primary neuron

Lee et al. (2003)
Vingtdeux et al. (2005)
Judge et al. (2011)
Mazzitelli et al. (2011)

Tyr687 ER/Golgi α-/γ-secretase ↓ AD brains
COS-7
HEK293

Zambrano et al. (2001)
Tarr et al. (2002)
Lee et al. (2003)
Rebelo et al. (2007)
Takahashi et al. (2008)

Ubiquitination
Lys651 PM

↓ Lipid raft
α-secretase
↓β-secretase

↓

↓

Primary neuron
Hela
HEK293
N2a
Mouse brains

Watanabe et al. (2012)
Morel et al. (2013)

Lys688 Golgi ↓ PC12, H4 and HEK293 Hiltunen et al. (2006)
El Ayadi et al. (2012)

Sumoylation
Lys587/Lys595 ↓ Hela Zhang and Sarge (2008)
Sulfation PC12 Weidemann et al. (1989)
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Vertegaal, 2016). For example, alternative phosphorylation
and O-GlcNAcylation of insulin receptors substrates is
implicated in the risk of AD and diabetes (Jahangir et al.,
2014). In addition, sumoylation of Tau protein promotes Tau
phosphorylation and inhibits its ubiquitination, contributing
to AD-associated Tau hyperphosphorylation and accumulation
(Luo et al., 2014). As phosphorylation, O-GlcNAcylation,
sumoylation and ubiquitination are all involved in APP
modification, the interplay of APP modifications may affect
APP processing and Aβ generation. For example, both
phosphorylation and O-GlcNAcylation occur on serine
and threonine residues, suggesting that these two types of
post-translational modifications may have reciprocal effects
at the same site contributing to the regulation of APP
processing and Aβ generation (Weidemann et al., 1989;
Chou et al., 1995; Cheng and Hart, 2001; Zeidan and Hart,
2010). However, the interplay of APP modifications has not
been reported so far. Therefore, further investigation is essential
to elucidate the interplay among APP modifications and its
role in AD pathogenesis, providing a novel insight into AD
treatment.

Modifications and Trafficking
Along the secretory pathway, APP is subject to post-translational
modifications. On the other hand, APP modifications affect its
sorting and trafficking (Table 1). Thus, APP modifications and
trafficking are mutually regulated, contributing to the regulation
of Aβ generation.

Glycosylation and Trafficking
N-Gly and O-Gly primarily occurs in the ER and Golgi/TGN,
respectively. Both of them are essential for APP trafficking
(Greenfield et al., 1999). The N-glycosylated APP (i.e., immature
APP) is mainly located in the ER, while the mature APP
generated through N-Gly, O-Gly and other modifications
(e.g., sulfation, palmitoylation and phosphorylation) is mainly
located in the TGN and at the PM (Tomita et al., 1998).
Weidemann et al. (1989) reported that only the mature form
of APP is detected on the cell surface, indicating that both N-
and O-Gly are required for APP trafficking to the PM. A study
by Chun et al. (2015b) has also shown that O-GlcNAcylation
facilitates APP trafficking from the TGN to the PM, but inhibits
the endocytosis of APP from the PM. Moreover, the sorting of
APP from the Golgi apparatus to the cell surface is prevented
due to the deletion of two N-glycosylated sites, Asn467 and
Asn496 (Yazaki et al., 1996; McFarlane et al., 1999). Blockade
of N-Gly can also inhibit the transport of APP to axonal
synaptic membrane (McFarlane et al., 2000). Aforementioned
evidence indicates that glycosylation plays a pivotal role in APP
trafficking.

Phosphorylation and Trafficking
APP phosphorylation occurs along the secretory pathway
and modulates its sorting and trafficking (Knops et al.,
1993; Walter et al., 1997). For example, a APP mutant
mimicking the constitutive phosphorylated Tyr687 retains
APP in the ER and Golgi. In contrast, a dephosphomimetic

APP mutant, the whose phosphorylation site Tyr687 was
substituted by alanine, markedly reduces the expression of
APP on the cell surface (Rebelo et al., 2007; Takahashi
et al., 2008). Phosphorylation of Ser655 also potentiates APP
sorting and trafficking from the endosome to the TGN,
but attenuates its trafficking to the lysosomes (Vieira et al.,
2010). Accordingly, the dephosphomimetic Ser655Ala mutant is
preferred to be targeted for lysosomal degradation (Vieira et al.,
2010).

Palmitoylation and Trafficking
APP palmitoylation is essential for APP trafficking and
maturation. Double mutations at two palmitoylation sites,
Cys186 and Cys187, result in the ER retention of APP and
the blockade of APP maturation. Moreover, palmitoylated
APP is highly enriched in lipid rafts (Bhattacharyya et al.,
2013).

Ubiquitination and Trafficking
Ubiquitination of APP also affects its sorting and trafficking.
Abolishing ubiquitination by substituting Lys649–651
with arginines inhibits the sorting of APP into endosomal
intraluminal vesicles (ILVs) in both Hela cells and hippocampal
neurons (Morel et al., 2013). In addition, K63-linked
polyubiquitination of APP inhibits APP maturation and
impairs APP trafficking by sequestering it in the early
secretory pathway, such as the Golgi apparatus. The
substitution of Lys688 with arginine dramatically reduces
APP ubiquitination and Golgi sequestration (El Ayadi et al.,
2012). Moreover, FBL2-induced APP ubiquitination inhibits
APP endocytosis resulting in an increase of APP on the cell
surface and a decrease of APP in lipid rafts (Watanabe et al.,
2012).

Aberrant APP Modifications and
Trafficking Dysregulate Aβ Generation in
AD
Aberrant APP modifications and impairment of APP
trafficking have been found in AD patients (Lee et al., 2003;
Placido et al., 2014; Joshi and Wang, 2015), which plays an
important role in the regulation of APP processing and Aβ

generation (Table 1). Compared with the impairment of APP
trafficking, the role of aberrant APP modifications in AD
pathogenesis have been studied more extensively. Therefore, the
dysregulation of trafficking is incorporated into the alteration of
modifications.

Phosphorylation and Aβ Generation
Dysregulation of multiple kinases and phosphatases has been
observed in AD brains, including GSK3, PKC, DYRK1A, PP1,
PP2A (Wang et al., 1994; Pei et al., 1999; Ferrer et al., 2005;
Braithwaite et al., 2012). The abnormality of SET and RCAN1,
two phosphatase regulators, has also been found in AD and
DS brains, which possibly contributes to the dysregulation of
phosphatase activity (Tanimukai et al., 2005; Wu and Song, 2013;
Wu et al., 2015; Zhang et al., 2015). As the substrate of above
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kinases and phosphatases, APP phosphorylation is impaired in
AD, leading to the aberrant APP processing and Aβ generation.

The phosphorylation status of APP differentially affects APP
processing and Aβ generation. Previous studies have suggested
that reduction of Ser655 and ectodomain phosphorylation may
stimulate Aβ generation in AD. For example, a deficiency
of PKC in AD brains may reduce the phosphorylation
of Ser655 and ectodomain (Wang et al., 1994), promoting
Aβ generation (Buxbaum et al., 1990), while PKC-induced
increased α-secretase cleavage in the TGN results in the
reduction of β-cleavage and Aβ generation (Skovronsky et al.,
2000). Moreover, PP1 and PP2A inhibitors have the same
effect as PKC activation, such as increasing the secretion
of soluble APP and reducing Aβ generation (Buxbaum
et al., 1990, 1993; Hung et al., 1993; Hung and Selkoe,
1994).

Increased Thr668 phosphorylation has been detected in AD
and DS brains, which is resulted from the imbalance between
kinases and phosphatases. For example, increased DYRK1A in
DS and AD promotes Thr668 phosphorylation (Ferrer et al.,
2005; Ryoo et al., 2008; Wegiel et al., 2008). A number of
studies have identified that Thr668 phosphorylation increases
Aβ generation both in vitro and in vivo (Lee et al., 2003;
Vingtdeux et al., 2005; Judge et al., 2011; Mazzitelli et al.,
2011). Although phosphorylation of Thr668 residue reduces
APP secretion, it facilitates β- and γ-secretase cleavages in
neurons (Ando et al., 2001; Lee et al., 2003; Vingtdeux et al.,
2005; Ryoo et al., 2008; Mazzitelli et al., 2011; Kim et al.,
2016; Triaca et al., 2016), leading to enhanced generation
of C99 sand Aβ (Suzuki et al., 1994; Colombo et al., 2009;
Mazzitelli et al., 2011). However, two studies have reported that
Thr668 phosphorylation reduces Aβ generation by inhibiting
γ-secretase cleavage (Feyt et al., 2007; Matsushima et al., 2012). It
has to be noted that Thr668 phosphorylation inhibits γ-secretase
cleavage in CHO cells, which is different from that in neurons
Although Thr668E could mimic Thr668 phosphorylation, it
may have differential effects on APP conformation change
compared with phosphorylated Thr668. Moreover, kinase
activation and inhibition may also directly modulate the
activity of α-, β- and γ-secretases in addition to APP
phosphorylation.

Phosphorylated Tyr682 and Tyr687 have been detected
in AD brains but not in healthy controls (Zambrano
et al., 2001; Tarr et al., 2002; Lee et al., 2003; Rebelo
et al., 2007). Compared with Tyr682, Tyr687 is the major
tyrosine phosphorylation site (Takahashi et al., 2008).
However, Tyr682 and Tyr687 phosphorylation cannot be
detected in the cell lines overexpressing APP, suggesting that
phosphorylation of these two residues may be exclusive in
AD brains. Intriguingly, a couple of studies suggested that the
phosphorylation of Tyr682 and Tyr687 negatively regulates
APP processing and Aβ generation. For example, Trk A
phosphorylates APP at Tyr682 and reduces the level of AICD
(Tarr et al., 2002). In addition, APP mutant which mimics
constitutive Tyr687 phosphorylation increases its half-life,
but reduces Aβ generation in COS cells (Rebelo et al., 2007).
However, a APP mutant with constitutive dephosphorylated

Tyr687 (tyrosine replaced by alanine) also reduces both
α- and γ-cleavages on APP (Takahashi et al., 2008). Since
the cell type and conformation change of APP mutants
may differently affect APP processing and Aβ generation,
the role of Tyr682 and Tyr687 phosphorylation in Aβ

generation remains elusive, which needs to be further
investigated.

Glycosylation and Aβ Generation
Reduced O-GlcNAcylation is observed in AD brains (Liu
et al., 2009). Recent studies showed that APP O-GlcNAcylation
plays a key role in APP processing. Jacobsen and Iverfeldt
(2011) reported that increased O-GlcNAcylated APP by
O-GlcNAcase (OGN) inhibitor or siRNA stimulated α-cleavage
of APP and reduced Aβ generation. Consistently, Chun
et al. (2015b) showed that the OGN inhibitor increased
α-cleavage of APP and inhibited the β-cleavage of APP.
These effects are due to the inhibition of APP endocytosis,
which further increases the level of APP at PM (Sisodia,
1992). In addition, O-GlcNAcylation status of α-, β- and
γ-secretases may also be implicated in OGN inhibitor-induced
alteration of APP processing (Dias et al., 2009; Tarrant et al.,
2012). Recently, Chun et al. (2015a) showed that the APP
O-glycosylated site mutant (Thr576Ala) reduced APP expression
on cell surface but increased its accumulation in the early
endosome, leading to the increase of Aβ generation. It indicates
that APP glycosylation does affect its processing and Aβ

generation, which is associated with the alteration of APP
trafficking.

Palmitoylation and Aβ Generation
Emerging evidence indicates that APP palmitoylation plays an
important role in Aβ generation. Abolishing APP palmitoylation
by site-direct mutagenesis inhibits APP cleavage by α- and
β-secretase, resulting in the dramatic reduction of APP-CTFs.
On the hand, APP palmitoylation preferentially targets APP
into the lipid rafts where BACE1 is enriched, facilitating
β-cleavage by BACE1 and Aβ generation (Bhattacharyya et al.,
2013).

FIGURE 3 | Effects of modifications and trafficking of APP on its processing
and Aβ generation. Post-translational modifications of APP occur along the
constitutive secretory pathway, while the modifications also affect APP
trafficking. Both APP modifications-induced conformation changes and
trafficking-dependent co-residence with different secretases may alter the
cleavage preference of each secretase, resulting in the alteration of APP
processing and Aβ generation.
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Ubiquitination and Aβ Generation
It has been demonstrated that APP ubiquitination inhibits
APP processing and Aβ generation. HRD1-induced APP
ubiquitination facilitates APP degradation, leading to
the reduction of Aβ generation (Kaneko et al., 2010). In
addition, blocking APP ubiquitination by the substitution of
Lys649–651with arginines impairs APP sorting and enhances
Aβ generation (Morel et al., 2013), while the ubiquitination of
Lys651 is essential for FBL2-induced reduction of Aβ generation
(Watanabe et al., 2012). Moreover, ubiquilin 1-mediated
K63-linked polyubiquitination of APP delays its proteolytic
processing, while reduced UBQLN1 increases Aβ generation
(Hiltunen et al., 2006; El Ayadi et al., 2012).

Sumoylation and Aβ Generation
Two sumoylation sites of APP, Lys587 and Lys595, are
close to the β-cleavage site, suggesting that sumoylation
of APP may affect β-cleavage of APP and Aβ generation.
Simultaneous overexpression of Ubc9 and SUMO-1 promotes
APP sumoylation, which is associated with the reduction of
Aβ generation. The result indicates that APP sumoylation may
negatively regulate Aβ generation (Zhang and Sarge, 2008). In
addition, SUMO3 reduces APP turnover rate, which may also
contribute to the alteration of Aβ generation (Dorval et al., 2007).

Therapeutic Strategies for AD by Targeting
Aβ
Currently, only four symptomatic drugs, rivastigmine, donepezil,
galantamine and memantine, are available for AD treatment
by regulating cholinergic and glutamatergic systems, which
only leads to a temporary slowdown in the loss of cognitive
function. However, these drugs neither delay the progression
of dementia nor represent a cure (Godyń et al., 2016; Hung
and Fu, 2017). As there is no effective treatment for AD, it
is urgent to develop novel drugs for AD treatment. Targeting
Aβ generation e is a major strategy for drug development in
addition to accelerating Aβ clearance, anti-Tau pathology and
anti-inflammation strategies (Godyń et al., 2016; Hung and Fu,
2017). Up to now, more than a hundred of BACE1 inhibitors and
γ-secretase modulators have been developed for AD treatment
by inhibiting the generation of Aβ. However, none of them is
approved although a couple of inhibitors are still in the clinical
trial (Godyń et al., 2016; Hung and Fu, 2017). The failure of
many inhibitors in clinical trial suggests that several key issues
need to be considered. First, as there are tons of known and
unknown substrates of BACE1 and γ-secretase, the effects of the
inhibitors on other substrates and associated processes should
be considered. For example, the severe side effect of the first
generation of γ-secretase inhibitor is caused by inhibiting Notch
cleavage, a major substrate of γ-secretase (Song et al., 1999; Qing
et al., 2008). Second, the inhibition effect on site preference of
BACE1 and γ-secretase should be considered because only β-site
and γ-site cleavages by BACE1 and γ-secretase contribute to Aβ

generation but not β’-site and ε-site cleavages by BACE1 and
γ-secretase, respectively (Deng et al., 2013; Zhang et al., 2013).
In addition, the effect of the inhibitors on the co-residence of
APP with BACE1 and γ-secretase should be considered, which

is more important than the general inhibition of BACE1 and
γ-secretase activity. Moreover, modulating APP modification
might be a novel strategy to complement current strategies of
inhibiting BACE1 and γ-secretase activity, which has two major
advantages. First, it would have less or no effect on the processing
of other BACE1 and γ-secretase substrates, resulting in less or no
side effect. Second, it could reduce the co-residence of APP with
BACE1 and γ-secretase by altering APP trafficking leading to the
reduction of Aβ generation. Importantly, it may alter the cleavage
site preference contributing to the reduction of Aβ generation as
two recent studies reported that the APP mutants significantly
affect cleavage site preference of BACE1 (Kimura et al., 2016;
Zhang S. et al., 2017).

CONCLUSION

Post-translational modifications of APP occur along the
constitutive secretory pathway, while it also affect APP trafficking
(Figure 2 and Table 1), indicating that APP modifications and
trafficking are mutually regulated (Figure 3). The modifications
and trafficking of APP are precisely controlled to execute its
physiological functions and maintain its normal processing. A
growing body of evidence has shown that modifications and
trafficking of APP have significant effects on APP processing and
Aβ production. Aberrant APP modifications-induced trafficking
and conformation changes may alter the cleavage preference of
each secretase, resulting in the dysregulation of APP processing
and Aβ generation (Figure 3). Moreover, alteration of APP
trafficking has significant effects on its co-residence with
different secretases, contributing to the alterations of APP
processing and Aβ generation (Figure 3). Thus, the regulation
of APP modifications and trafficking needs to be further
investigated in order to develop novel therapeutic approaches for
AD by modulating APP modification and trafficking.
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