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Quantifying behavior is a challenge for scientists studying neuroscience, ethology,

psychology, pathology, etc. Until now, behavior was mostly considered as qualitative

descriptions of postures or labor intensive counting of bouts of individual movements.

Many prominent behavioral scientists conducted studies describing postures of mice

and rats, depicting step by step eating, grooming, courting, and other behaviors.

Automated video assessment technologies permit scientists to quantify daily behavioral

patterns/routines, social interactions, and postural changes in an unbiasedmanner. Here,

we extensively reviewed published research on the topic of the structural blocks of

behavior and proposed a structure of behavior based on the latest publications. We

discuss the importance of defining a clear structure of behavior to allow professionals

to write viable algorithms. We presented a discussion of technologies that are used in

automated video assessment of behavior in mice and rats. We considered advantages

and limitations of supervised and unsupervised learning. We presented the latest

scientific discoveries that were made using automated video assessment. In conclusion,

we proposed that the automated quantitative approach to evaluating animal behavior is

the future of understanding the effect of brain signaling, pathologies, genetic content,

and environment on behavior.
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INTRODUCTION

Rodent behavioral assessment tools that are implemented in research are lagging behind
technological advancements in the computerized motion and feature recognition, statistical
programing, and meta-data analysis. Annually, only a handful of publications utilize automated
behavioral assessment approaches in the fields studying knock-out mice (Jhuang et al., 2010;
de Chaumont et al., 2012; Kyzar et al., 2012; Ferhat et al., 2016), mouse disease models (Steele
et al., 2007; Lee et al., 2016), drug testing in mice (Brodkin et al., 2014) and rats (Dunne et al.,
2007), and social interactions (de Chaumont et al., 2012; Lo et al., 2016). It is widely recognized
that automated video assessment exceeds any human manual assessment (Dunne et al., 2007;
Schaefer and Claridge-Chang, 2012; Kabra et al., 2013; Dell et al., 2014; Egnor and Branson,
2016); yet due to its complexity, lack of appropriate training, and lack of resources, these superior
technologies are not commonplace in research. In this review, we describe the structure of behavior
and its constituents as it relates to computerized video assessment. We compare video-based
supervised and unsupervised learning paradigms in automated behavioral assessment systems;
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their advantages and limitations. In conclusion, we highlight the
importance of implementing automated behavioral assessment
software in assessing rodent behavior in animal models of human
diseases, drug testing, and other.

Structure of Behavior
A clear structure of behavior is needed to enable professionals
to write viable algorithms, which can adequately evaluate such
a multilayered subject. Over the past century, several behavioral
researchers and ethologists have studied this subject in-depth. In
1953 in The Study of Instinct, Tinbergen warned that behavior
should not be assessed as a fragment, but instead, should be
considered in broad perspective to see each problem as a part of
a whole. This is what the new technologies are aiming to achieve.

In 2014, Anderson and Perona co-authored a perspective
publication in which they broke down behavior into building
blocks: ethograms/activities, actions, and movements (Anderson
and Perona, 2014). Through numerous examples working with
drosophilae, authors used this structure to describe and explain
organism’s behavior using automated assessment tracking
technologies. According to Anderson and Perona, movements
are the simplest identifiable movements or trajectories such as
step, rear-up, turn, etc. Actions are combinations of movements
that occur in the same stereotypical sequence; for example,
eat, walk, and assess threat. Actions and movements, in turn,
are built into activities and can have stereotyped or variable
structures, examples include aggression, parenting, and courtship
(Anderson and Perona, 2014).

Gomez-Marin et al. in their 2014 review brought forward
a possibility of establishing an ethome, defined as “a complete
description of the set of behaviors manifested by species in
their natural environment.” They propose that this ethome
would vary in different environments and, as such, would have
sub-ethomes, defined as the set of ethograms within a defined
environment. He goes on to propose that with the improvements
in big data analysis, we might be able to narrow down and
identify fundamental behavioral units (ethons) (Gomez-Marin
et al., 2014).

Similar structures were referred to in research papers of
Wiltschko et al. (2015) and Vogelstein et al. (2014) with minor
variations in terminology. Wiltschko et al. studying mouse
behavior, call the simpler units of behavior, modules. They state
that these reused and stereotyped modules change with a defined
transition probability, which generates module sequences.
Vogelstein et al. call the smaller units of behavior of drosophila
larvae, behaviortypes. Further, they create a Behaviortype Family
Tree, which gives sequential structure to behavior from simple
movements to complex behavioral activities.

The above structure of behavior is not novel, and it was
discussed by the forefathers of ethology: Oskar Heinroth,
Konrad Lorenz, and Niko Tinbergen. Using the computer
vision technologies allows to observe individual behaviors in
a continues sequence. Behavior is organized in a pyramid-
like structure with, a multitude of poses at the bottom.
Poses comprise movements in the second layer of the
pyramid. In turn, movements build repeated sequences, called
ethograms. Ethograms limited to a specific environment

FIGURE 1 | Structure of Behavior. Ethome of an animal consists of numerous

sub-ethomes (a complete set of ethograms in a specified environment), which

consist of ethograms (sets of repeatable, predefined, trainable, or innate

movements), which consist of movements (the smallest complete motion).

Movements are built from poses (postural snapshots in time). Examples of

mouse behavior are presented in the pyramid.

constitute sub-ethomes. And finally, all the sub-ethomes of an
organism comprise its ultimate ethome (Figure 1).

Ethograms
Ethograms are defined as repeatable and predefined sets of
movements and they can be acquired or innate. Ethograms
continuously change, get interrupted, and repeat themselves
depending on the internal and/or external stimuli (Jones et al.,
2016). In rodents, examples include grooming, nursing, courting,
foraging, etc. In his recent work, Wiltschko et al. have quantified
65 ethograms (or modules) that were detected in an actively
behaving mouse in a round arena (sub-ethome; Wiltschko et al.,
2015) Over the past century, ethograms have been detected using
traditional observations by experienced researchers (Kalueff
and Tuohimaa, 2004; Han et al., 2017), by automated video
assessment approaches (Wiltschko et al., 2015), and vibrations
read-outs (Lutter et al., 2016).

Movements
In turn, ethograms are comprised of movements, which are
the smallest complete motion in a behaving animal such as
step, turn, chew, rear-up, etc. (Anderson and Perona, 2014;
Wiltschko et al., 2015). Numerous articles were published
dissecting the paw movements in rats in reaching for food
(Whishaw et al., 2003) and rat/mouse gait analysis (Ferber
et al., 2016) using manual analysis of video recordings. Whishaw
et al. described in detail using end-point measures (success
vs. failure), kinematics (Cartesian representation of action,
distance, velocity, and trajectories), movement description
(Eshkol Wachman Movement Notation) the exact reaching
and grabbing movements of a rat’s forelimb use (Whishaw
et al., 2008). These manual assessment techniques are extremely
labor-intensive. They laid the foundation for understanding
the relationship between brain and behavior, and provided
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the foundation for the first-generation of automated video
assessment software. Today, automated assessment software
simplifies and speeds up identification and quantification of these
smaller movements (Kalueff and Tuohimaa, 2004; Kyzar et al.,
2012).

Poses
In turn, movements are comprised of poses, which are postural
snapshots in time. Number of poses is indefinite considering that
the snapshot can be taken at any point in time. The ability to
break down behavior into poses allows a researcher to identify
the cause for the change in the resulting ethogram.

Automated Behavioral Assessment
Systems
The release of OpenCV (open source computer vision), a free
computer vision library, in 2,000 has allowed for numerous
developments in movement and object recognition technologies
(Schaefer and Claridge-Chang, 2012). The availability of
analytical programs, such as MatLab and R provide the tools
needed to group and analyze the large amounts of behavioral
data extracted in experiments (Colomb et al., 2012; de Chaumont
et al., 2012; Gomez-Marin et al., 2012; Patel et al., 2014;Wiltschko
et al., 2015). These technologies speed up the behavioral data
collection and analysis with increasing accuracy, depth, and
repeatability of experiments across laboratories (Spruijt et al.,
2014). The real-time behavior analysis opened doors to
correlative analysis of neuronal activation (optogenetics) to
behavior phenotypes and ultrasonic vocalization to behavior
phenotypes (Vogelstein et al., 2014; Ferhat et al., 2016; Han et al.,
2017). In addition, automated assessment of video recordings
allows for assessment of long-term experiments that last over
24 h. It was demonstrated that long-term behavioral experiments
yield more reliable results compared to short-term (<15min)
assessments due to the habituation-length differences between
mice strains and other factors (Fonio et al., 2012; Spruijt et al.,
2014).

Automated behavioral assessment technologies have been
used extensively as an aid in counting numbers of beams crossed,
nose peaks, time spent, and distance traveled in mazes or open
fields. In all these tests, the aid of the automation saved time
and increased accuracy. However, here we are looking at the
technology capable of analyzing and interpreting behavior of
unrestraint rodents. Analyzing rodents in their home cages
requires less handling; and, as such, causes less stress and
anxiety in animals, increasing the repeatability of the experiments
(Martin et al., 2014; Sorge et al., 2014; Spruijt et al., 2014).

As of today, most of the automated video behavioral
analysis systems are still not plug and play. A certain level of
understanding of the software is essential for ensuring correct
interpretations of the results (Egnor and Branson, 2016). In
this review, we are looking at systems that analyze unrestraint
rodents in an unchallenged home cage environment. It is
argued that challenging conditions must be provided for the
rodents to extract behaviors that might not be detectable in
the usual laboratory mouse cage. A review by Spruijt and
DeVisser provides an in-depth discussion with examples of

available “intelligent” home cages for such assessments (Spruijt
and DeVisser, 2006).

Supervised and Unsupervised Learning
Automated analysis software can be separated into two groups
based on the learning paradigm: supervised and unsupervised.
To create a software based on supervised learning, information
about rodent behavior is taught to computers using specific
instances of movement, which is assigned a name (as defined
by researcher; Egnor and Branson, 2016). For example, various
samples are taken of a mouse rearing. These photos are taught to
computer software; and “rearing” is assigned to the movement.
Therefore, the interpretation of the observed movements rests
solely with the researcher. This approach utilizes the decades of
work that was published by many laboratories around the world,
which describe animal postures, movements, and ethograms.
Movements are correlated to each other to create ethograms such
as eating, grooming, foraging, etc. using Hidden Markov Model
or other models (Stern et al., 2015). For example, in a home cage
environment, an animal is rearing-up, if within a specified time
it crosses a feeding box line, the algorithm regresses back to the
already assigned “rear-up” behavior and changes it to eating.

In unsupervised learning software, the videos are fed into the
computer software and a deep computer learning algorithm, such
as neural networks or convoluted neural networks combines
poses into categories based on mathematical annotation of
required difference/similarity (Stern et al., 2015; Wiltschko et al.,
2015; Egnor and Branson, 2016). Further, algorithms seek for
repeatable sequences of poses, which become movements; and
repeatable sequences of movements, which become ethograms.
By placing an animal into various environments such as round
arena, square home cage, etc., sub-ethomes can be established.
The algorithms are written by a human and, as such, carry
a certain bias, none-the-less the detection, compilation, and
categorisation stays consistent and unbiased for all the animals
in a study.

Supervised Learning
Supervised learning software is used more often than the
unsupervised learning (Brodkin et al., 2014; Dell et al., 2014).
A number of open source software options are available for
researchers, including Ctrax (http://ctrax.sourceforge.net/),
Mice Profiler Tracker (http://icy.bioimageanalysis.org/plugin/)
Mice_Profiler_Tracker, Sensory Orientation Software (SOS)
track (https://sourceforge.net/projects/sos-track/), Autotyping
(http://www.seas.upenn.edu/∼molneuro/autotyping.html) and
others. The five major behavioral software companies that sell
ready-to-use solutions are Clever Sys, Noldus, TSE Systems,
Biobserve, and HVS Image. Commercial software provides
a user-friendly interface with various features including (but
not limited to) analysis of home cage behavior, maze tracking,
social interactions, open field test tracking, as well as an array of
statistical analyses, which are automatically performed to provide
the user with ready-to-use data sets. Unlike open source software,
commercial packages do not require any prior programming
training or knowledge. Although these programs are user
friendly, there is a need for extensive tuning, adjustments,
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and customization of settings which is required to obtain
reliable data. Human assessment of individual video segments
is necessary for calibration of the analytical software and
establishing the degree of accuracy of the analyses. Commercial
software packages very costly, as they are priced separately for
each individual module. Each module has limited technical
specifications, and therefore, can produce only a narrow set of
outputs for which it was designed. Software costs can rise rapidly
since a researcher requires a number of modules to operate in
tandem for any given project. Moreover, additional hardware
that is proposed by the dealers is often advertised to improve the
precision of analysis (i.e., cages, specific cameras, feeders, etc.)
significantly contributes to the overall cost.

Despite prohibitive prices, the last decade saw several
influential papers that focused on discovering novel and exciting
aspects of behavior using these systems. A paper published
in 2009 by Steele et al. used Clever Sys HomeCage software
to improve phenotypic characterization of mouse models of
Huntington’s and prion disease, and has revealed earlier signs of
onset of both diseases in mice. In prion disease, first phenotypic
differences were detected using the software at 3.5 months
post-injections compared to the standard 5.0–5.5 month post-
injection (Steele et al., 2007).

Ferhat et al. used social scan software (Mice ProFiler) together
with ultrasonic recordings to relate body movements to vocal
deficits in mice missing Shank2, a gene associated with autism
spectrum disorder. Using these technologies in synergy, Ferhat
revealed that during male/female interactions, in the specific
position of genital area sniffing, the vocalization of Shank2 mice
was significantly different from control animals (Ferhat et al.,
2016).

Unsupervised Learning
Unsupervised learning approach is used less frequently, possibly
because it is more novel and requires substantial computer
programing skills that are not common among biologists.
Scientific papers describing the first working models of
unsupervised learning behavioral assessments were published
in 2014–2015. As of today, there is no unsupervised learning
software available on the market, neither open source nor
commercial. A Harvard University laboratory with the leading
author Wiltschko has developed an unsupervised learning
software and published their first work characterizing mice
behavior in various paradigms (Wiltschko et al., 2015).

Wiltschko’s paper, published in 2015, shows that mouse
behavior consists of short repeatable sequences (Wiltschko et al.,
2015). They revealed that an actively behaving mouse moves
every 350ms on average; these unique individual movements
are comprised into behavioral modules (or ethograms). The
report defined 65 unique modules in an actively behaving
mouse in a round arena, which, in turn, comprise 99% of
all behavior exhibited by healthy C57Bl/6J male mice. This
study utilized 3D imaging and autoregressive hidden Markov
Model-based algorithm. Their system distinguished individual
movements and deduced unique behavioral patterns based on
the top-view video recordings of mice. Behavioral sequences
were identified solely by the computer software, with the

researcher assigning names to the sequences after the fact. They
demonstrated that unsupervised learning software has a major
benefit over supervised learning: it allows for the discovery
of novel movements and recognition of deviations from usual
movements that are not visible to human eye. It provides an
unbiased reflection of the behaving animal (Wiltschko et al.,
2015).

Another paper published in 2014, from Vogelstein et al.
successfully incorporated unsupervised learning behavioral
assessment analysis with optogenetics in order to trace the link
between neuronal activation and behavior in drosophila larvae
(Vogelstein et al., 2014). They used iterative denoising tree (IDT)
methodology to generate analysis. Drosophila larvae are simpler
creatures compared to mice, however Vogelstein et al. were able
to confirm the previously known ethograms as well as uncover
novel ones using this technology (Vogelstein et al., 2014).

Limitations
The major limitation in the supervised learning is that the
researcher must define movements and ethograms for the
computer software. For example, there are many ways a mouse
can rear-up, each is unique; yet, a researcher is unlikely to
label each rearing variety differently and will simply combine
them. Potentially, this may lead to misleading interpretation
of the results. To address this issue, Clever Sys Inc. in their
HomeCageScan software package separate rear-up movements
into rear-up partially, rear-up full from partial, and direct rear-
up from four paws. Even though this separation provides more
details in the overall analysis of a behaving rodent, it is still not
sensitive enough to point out differences in the actual posture.

Another important limitation in supervised learning stems
from its inability to break down behavior into individual
ethograms, movements, and poses. Usually, the software will
provide the results as a mix of ethograms (grooming, eating)
and movements (rearing, sniffing) (Steele et al., 2007). It is
more appropriate to present results in ethograms; then upon
request, a scientist should have access to the detailed movement
information contained in each ethogram.

Even though supervised learning software can identify
ethograms such as grooming and eating, it is not (yet) able to
detect the beginning and the end of each individual ethogram
cycle. Most of the time, when a mouse grooms it repeats each
complete cycle a number of times. Being able to quantify how
many complete ethogram cycles are performed and whether the
ethograms get interrupted in mid-cycle can lead to uncovering
novel mechanisms that link brain pathology to particular
behavioral circuitry.

Humans are not able to detect full complement of the
ethograms in what often appears to be sporadic rodent behavior.
As such, it is likely that the unsupervised learning software with
the use of well written algorithms will be the leading technology
in breakthrough discoveries in behavioral circuitry.

CONCLUSION

Supervised learning technologies provide a timely aid to the
scientific community to make assessment of behavior more
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accessible across a variety of fields studying animal models of
diseases, immunology, neuroscience, etc. In biomedical sciences,
pathophysiological testing investigates etiology of the diseases on
a molecular level. However, the overall picture of any disease
can be better understood taking into consideration behavioral
changes that accompany any given condition. The ability to
express behavior quantitatively, to study the links between
changes in brain signaling and behavioral output, opens the door
to a more complete understanding of animal models of human
disease, better interpretation of drug testing results, and as such,
improved drug discovery. Today, supervised learning software is
a realistic option for many laboratories as the results are easy to
understand and interpret and implementation of such technology
does not require computer science education or experience.

On the other hand, there is no suitable unsupervised learning
software options available for the scientific community, which
do not require computer science background. The algorithms
have been developed and successfully used in multiple studies,
however implementation of such technology in a laboratory is
beyond the reach of most. Yet, unsupervised learning behavioral
assessment offers a superior option of evaluating behavior in
rodents.

Implementing automated behavioral assessment technologies
is becoming more common place. Yet, there are still many fields
were extensive manual quantitative behavioral measurements are
used to evaluate the connections between neuronal alterations
(inflammation, genetic variations, demyelination, etc.) and the
resulting behavioral output. Many neuroinflammatory diseases
such as Parkinson’s, Alzheimer’s, etc. have corresponding models
in laboratory rodents. However, the thorough collection, analysis,
and interpretation of the behavioral data are lacking. These
models were built based on the molecular-cellular findings,
which are correlated to human diseases. The ability to efficiently
quantify various ethograms and movements is a step toward a

more complete understanding of physiological events and their
effects on an organism.

FUTURE PERSPECTIVES OF BIG
BEHAVIORAL DATA ANALYSIS

Most of the publications in ethology and behavioral sciences
quantify the changes of behavioral parameters as a simple
deviation from the control values. In parallel, the same approach
was used at the dawn of the gene microarrays. Over time,
the analysis tools of gene microarrays have greatly evolved
and instead of two-condition comparison, the change over
multiple experimental conditions over time was introduced
(Slonim and Yanai, 2009). The enormous amounts of gene
microarray data are now interpreted using automatic ontological
analysis tools that are often based on MatLab and R (Khatri
and Draghici, 2005). The same tools must be developed in
behavioral big data which is acquired by the automated video
assessment software. Not only will these powerful tools allow
to seek statistical significance between large arrays of behavioral
data, they will also allow to study behavior as dynamical
information, quantifying transitional probabilities (Wiltschko
et al., 2015) Clever Sys software already provides behavioral
matrix data, which represents behaviors as a sequence in
time.
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