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We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT).
The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an
algorithmic improvement that uses Broyden approach for updating the Jacobianmatrix and thereby updating the parameter matrix
and (2) themultinodemultithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different
GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU
CUDAandCULA routines (CGPU), (2)MATLABprogram supported byMATLABparallel computing toolkit forGPU (MATLAB
GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations.
The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514
tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52
seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86
seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

1. Introduction

Diffuse optical tomography using low energy near infrared
light (NIR) is relatively inexpensive modality for in vivo and
noninvasive functional imaging of soft tissue up to depths
of several centimeters. DOT provides valuable functional
information through the recovery of spectral variation of the
optical absorption [𝜇

𝑎
; 𝜆] and scattering coefficient [𝜇

𝑠
; 𝜆]

[1–6]. The concentration of hemoglobin, lipids, and water
[7] is very valuable information from the diagnostic point
of view. The DOT also has unique functional brain imaging
capabilities [8–10]. The advantages include functional near-
infrared spectroscopy (fNIRS), portability, and comprehen-
sive hemodynamic measurement [8–10]. Since breast is a soft
tissue, early breast cancer detection has been the primary
application of DOT [6, 11]. The DOT system uses NIR light
source (laser diode or LED) to illuminate different position of
the tissue surface and light detectors measure the transmitted
light at specific surface positions. The parameter recovery

known as inverse problem in highly scattering biological
tissues is a nonlinear and ill-posed problem and is generally
solved through iterative methods. The iterative algorithm
uses a forward model to arrive at a flux density (computed
flux density based on the initial absorption and scattering
coefficients) at the tissue boundary. The forward model
uses light transport models such as stochastic Monte Carlo
simulation [12] or deterministic methods such as radiative
transfer equation (RTE) [13] or a simplified version of RTE,
namely, the diffusion equation (DE) [14].The RTE is themost
appropriate forward model for light transport through an
inhomogeneous material [3, 4, 15–17]. The RTE has many
advantages which include the possibility of modelling the
light transport through an irregular tissuemedium.The exact
solutions for the RTE exist only for simple cases such as
isotropic scattering in simple geometries [18]. Therefore one
needs tomake further approximations or compute numerical
solutions. By expanding the RTE in spherical harmonics,
one can derive a hierarchy of equations [19, 20], of which
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the simplest, the so-called P1 approximation, is the diffusion
equation. The diffusion equation is generally used for com-
puter implementations using finite element based discrete
models. Gauss-Newton method [2] is used for solving the
DOT problem. The diffusion equation is valid under the
condition that absorption coefficient [𝜇

𝑎
; 𝜆] is much smaller

than scattering coefficient [𝜇
𝑠
; 𝜆]. The numerical methods

used for discretizing the diffusion equation are the finite
difference method (FDM) [1], boundary element method
(BEM) [21, 22], and the finite element method (FEM) [2].
The FEM, which considers that the solution region com-
prises many small interconnected tiny subregions, gives a
piecewise approximation to the governing equation; that is,
the complex partial differential equation is reduced to a
set of linear or nonlinear simultaneous equations. Thus the
reconstruction problem is a nonlinear optimization problem
where the objective function defined as the norm of the
difference between the model predicted flux and the actual
measurement data for a given set of optical parameters is
minimized. One method of overcoming the ill-posedness
is to incorporate a regularization parameter. Regularization
methods replace the original ill-posed problem to a better
conditioned but related one in order to diminish the effects
of noise in data and produce a regularized solution to the
original problem.

In the Broyden based approach, with an initial uniformly
distributed optical parameter (𝜇0 = 𝜇

guess) Jacobian is cal-
culated only once and thereafter, in each iteration, Jacobian is
updated using rank-1 update.The forwardmodel is solved for
model predicted flux [𝑀𝐶 = 𝐹(𝜇𝑖)]. The difference between
predicted measurement and the experimental measurement
[Δ𝑀 = 𝑀

𝐸

− 𝑀
𝐶] is used for updating the Jacobian [𝐽

𝑖+1
=

𝐽
𝑖
+ Δ𝐽
𝑖
] [23]. In a conventional approach, the computation

time for Jacobian estimation takes a good portion of the
reconstruction time.With the adaptation of Broydenmethod,
the computation time for Jacobian update has been brought
down by an order of magnitude. However, the computing
time for a 3D reconstruction is still an impediment for func-
tional imaging. The number of frames per second achievable
is still very low. To overcome this challenge, the tremendous
computational power of multithreaded GPU is employed to
perform parallel computation. GPU is adopted for scientific
simulation over other alternative parallel processors such as
cluster of workstations due to its affordability, portability,
and computation power in terms of Giga-floating point
operations per second (GFLOPS) and user friendly parallel
programming platform CUDA [24]. Of late, the availability
of parallel programming support for GPUs provided by
MATLAB [25] provides amuch simpler interface for utilizing
the enormous computing power of GPUs.

Researchers have started using GPU and CUDA technol-
ogy in recent time for solving a large number of applications.
These include problems associated with tomography such
as iterative algebraic reconstruction (ART), a 3D convolu-
tion back-projection algorithm for X-ray tomography [26],
multiscale image fusion algorithm [27], and the solution of
many engineering and scientific problems by Jacobi’s iterative

approach [28]. A fast Monte Carlo simulation of ultrasound-
modulated light using aGPUhas been reported by Leung and
Powell [29]. The GPU-based parallel Monte Carlo algorithm
has been developed by Alerstam et al. [30]. Prakash et al.
[31] used a CUDA enabled GPU for the implementation
of 3D DOT reconstruction algorithm. They evaluated the
performance of CULA (CULA is a set of GPU-accelerated
linear algebra libraries utilizing the CUDA parallel comput-
ing architecture) [32] based algorithms for DOT. Schweiger
[33] studied a GPU-accelerated finite element method for
modelling light transport in diffuse optical tomography. A
significant performance improvement (5 to 30) was obtained
when they parallelized the DOT program based on TOAST
[34] using GPUs. Freiberger et al. [35] developed a scheme to
implement fluorescence tomography on GPU hardware and
a performance improvement of 15 was reported.

In this study, we have developed a GPU-based high-
speed (at least 2 frames per second reconstruction) fully
3D tomographic system for diffuse optical tomography. One
of the most computationally expensive components of the
iterative DOT algorithm, the reevaluation of the Jacobian in
each of the iterations, is avoided by using the Broyden update
formula that provides a rank-1 update to the Jacobian. The
second factor that aids in bringing down the execution time
is the availability of multinode (2496 nodes) multithreaded
(with limit being 65536 threads) GPUs having a large number
of cores and CUDA software architecture. The focus is on
development of a GPU implementation of a direct 3D DOT
reconstruction algorithm to boost the computation speed.
The basic requirement for a medical diagnostic equipment
is that a physician should be able to view the reconstructed
images as the patient is undergoing scan. The functional
imaging calls for at least 5–10 frames per second reconstruc-
tion. The reconstruction time for a 3D image normally takes
more time (few hours) and so reconstructions are mostly car-
ried out as offline operations. In our implementation, the for-
ward computation uses finite element method (FEM) and the
problem domain is discretized into 14610, 30823, and 66514
tetrahedral elements, respectively, for a cylindrical object of
60mmdiameter and 70mmheight.The reconstruction time,
so achieved for one iteration of the DOT reconstruction
for 14610 elements, is 0.78 seconds for a C GPU system for
3 planes measurements. The corresponding GPU-MATLAB
program took 1.29 seconds. For a 2-plane measurement
system, the corresponding reconstruction times are 0.52 and
0.86 seconds for C-CUDA and GPU-MATLAB, respectively.
The maximum number of reconstructed frames so achieved
is 2 frames per second.

Two different GPU implementations of DOT programs
are developed in this study: (1) one uses conventional C
language programaugmented byCULA-basedGPUroutines.
(2)The second one is based on MATLAB development tools
supported by MATLAB parallel computing tools for GPU.
The computation times of the algorithm on host CPU and
GPU configurations are presented for C, C-CUDA/CULA,
andMATLAB implementations. An analysis of the execution
profile gives the time utilization of the host CPU and GPU
while running various tasks of the reconstruction algorithm,
which allows us to identify the tasks that need a closer
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watch for optimization. The DOT algorithm is an inverse
problem that requires an iterative solution and uses a forward
model based measurement data estimator and an inverse
computation path that updates the absorption and scattering
coefficient map. The algorithms are evaluated by making use
of the mean square error, both for simulated and experimen-
tal data. The mean square error of 𝜇estimated

𝑎
− 𝜇

actual
𝑎

is also
plotted for simulation results.

2. Methodology

2.1. Newton-Based MoBIIR (Model Based Iterative Image
Reconstruction) Approach. The time independent diffusion
equation (DE) for the light transport 𝐹(𝜇

𝑎
, 𝜅) is given as [1–6]

−∇ ⋅ 𝜅 (𝑟) ∇Φ (𝑟, 𝑡) + 𝜇
𝑎
(𝑟)Φ (𝑟, 𝑡) = 𝑞

0
(𝑟, 𝑡) , (1)

where photon density Φ(𝑟, 𝑡) = ∫
4𝜋

𝐼(𝑟, 𝑡, 𝑒
𝑠
)𝑑
2

𝑒
𝑠
, energy

radiance is 𝐼(𝑟, 𝑡, 𝑒
𝑠
) at position 𝑟 into direction 𝑒

𝑠
, diffusion

coefficient 𝜅(𝑟) = 1/3[𝜇
𝑎
(𝑟) + 𝜇



𝑠
(𝑟)], and 𝜇

𝑎
and 𝜇

𝑠
are

absorption coefficient and reduced scattering coefficient,
respectively. The diffusion equation is valid only when 𝜇

𝑠
≫

𝜇
𝑎
, which is true for most of the biological tissues in the

near-infrared region. The input photon is from a source of
constant intensity (𝐴

𝑑𝑐
), modulated by a sinusoidal current

of amplitude 𝐴
𝑎c and frequency 𝜔

0
located at 𝑟 = 𝑟

0
.

The transmitted output optical signal is of the form 𝐴
𝑑𝑐
+

𝐴
𝑎𝑐
cos(𝜔

0
𝑡 + 𝜙) and we measure amplitude and phase by

lock-in detection method.
The boundary condition (Robin boundary condition) is

given by

2𝐴𝑘 (𝑟)
𝜕Φ (𝑟)

𝜕𝑛
+ 𝜙 (𝑟) = 0 ∀𝑟 ∈ Ω, (2)

where the term A is Fresnel reflection coefficient at the
boundary.

The DOT problem is represented by a nonlinear operator
given by 𝐹(𝜇

𝑎
, 𝜅). 𝑀 is the measurement vector obtained

fromΦ
|𝛿Ω

:

𝐹 (𝜇
𝑎
(𝑟) , 𝜅 (𝑟)) = 𝑀. (3)

The forward model is solved [3] over the domain (V) to
estimate the flux density (Φpredicted

= M[Φ]) on the surface
boundary (Ω). Due to spatial (𝑟 ∈ 𝑉,Ω) variation of optical
parameter (Δ𝜇𝑖(𝑟)), the perturbation equation in terms of
optical parameter can be written in Taylor series expansion,
retaining only first derivative as

Δ𝑀
𝑖

= Φ
cal
measured − Φ

predicted(𝑖)
= 𝐹


(𝜇
𝑖

) [Δ𝜇
𝑖

] ,

𝜇
𝑖+1

(𝑟) = 𝜇
𝑖

(𝑟) + Δ𝜇
𝑖

(𝑟) ,

(4)

where (𝐹) is Jacobian matrix [4, 6] of forward operator 𝐹.
The image reconstruction problem seeks to find a solution

(𝜇
𝑎
, 𝜅(𝑟)) such that the difference between the model pre-

dicted 𝐹(𝜇
𝑎
, 𝜅) and the experimental measurement (𝑀𝐸) is

minimum. Tominimize the error, the cost functional𝜒(𝜇
𝑎
, 𝜅)

is minimized and the cost functional is defined as [4]
𝜒 (𝜇
𝑎
, 𝑘) = arg {min

𝜇
𝑎
,𝑘


[𝑀
𝐸

− 𝐹 (𝜇
𝑎
, 𝑘)]


} , (5)

where ‖ ⋅ ‖ is 𝐿
2

norm. Through Gauss-Newton and
Levenberg-Marquardt [36, 37] algorithms, the minimized
form of the above equation for the optical parameter update
can be written as

Δ𝜇 = [𝐽
𝑇

𝐽 + 𝜆𝐼]
−1

𝐽
𝑇

Δ𝑀. (6)

The unknown parameter vectors are recovered from
partial andnoisy boundary data.This calls for a regularization
to yield meaningful results.

2.2. Broyden Based MoBIIR. Newton’s method is the most
popular approach amongst DOT researchers [1, 3–5, 14].
However, because of the repeated evaluation of Jacobian, the
high computational complexity of the Newton method has
been a major constraint [38–40]. It has been found that the
evaluation of Jacobian takes almost 60% of the computation
time. Biswas et al. [23, 41] have proposed an algorithm
based on Broyden’s approach [38] that is found to reduce
the computation cost of Jacobian update by an order of
magnitude.

Broydenmethod uses the current estimate of the Jacobian
𝐽
𝑖−1

and improves it by taking the solution of the secant
equation that is a minimal modification to 𝐽

𝑖−1
(minimal in

the sense of minimizing the Frobenius norm ‖𝐽
𝑖
− 𝐽
𝑖−1
‖Frob).

The update is a rank-one update.
The Broyden Jacobian update equation is given as [23]

𝐽
𝑖+1
= 𝐽
𝑖
+
[Δ𝑀
𝑖

− 𝐽
𝑖
Δ𝜇
𝑖

] Δ𝜇
𝑖𝑇

[Δ𝜇𝑖 ⋅ Δ𝜇𝑖]

𝐽
𝑖+1
= 𝐽
𝑖
+ Δ𝐽
𝑖

where Δ𝐽
𝑖
=
[Δ𝑀
𝑖

− 𝐽
𝑖
Δ𝜇
𝑖

] Δ𝜇
𝑖𝑇

[Δ𝜇𝑖 ⋅ Δ𝜇𝑖]
.

(7)

Equation (2.2) is referred to as Broyden’s update equation.
The initial value of the Jacobian [𝐽(𝜇0)] is computed through
analytical method. Since Broyden’s method avoids direct
computation of Jacobian, this approach provides a computa-
tionally simple algorithm [23, 41].

3. Discretization of the Diffusion Equation
Using Finite Element Method (FEM)

In the forward equation (1), one seeks an approximate solu-
tion of the photon density distribution 𝜙(𝑟, 𝑡). The forward
light transport equation DE is discretized using FEM. One
of the simplest approximations of 𝜙(𝑟, 𝑡) is a continuous
piecewise linear function𝜙(𝑟, 𝑡)which is a linear combination
of finite number of piecewise linear basis functions 𝑏

𝑖
(𝑟); that

is, 𝜙(𝑟, 𝑡) = ∑
𝑁

𝑖=1
𝜙
𝑖
(𝑡)𝑏
𝑖
(𝑟). The domain 𝑉 over which the

function 𝜙(𝑟, 𝑡) is defined is divided into a finite set of disjoint
elements.The basis functions 𝑏

𝑖
(𝑟) have only limited support,

limited to a particular element, and are in turn made up of
shape functions which are piecewise linear.
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Figure 1: (a) The reference phantom with two inhomogeneities (𝜇
𝑎
= 0.02mm−1 and 𝜇

𝑎
= 0.03mm−1), (b) planes along the 𝑍-direction, and

(c) experimental phantom with two inhomogeneities.

In the so-called Galerkin method [2, 4, 5, 17], a weak
solution of the DE is sought by requiring that the inner
product of the sum of the residuals 𝑅

𝑙
over all nodal points

with the same basis functions vanishes over 𝑉. Here the
residual is

∑
𝑖

∑
𝑗

∫
𝑉

[
1

𝑐

𝜕

𝜕𝑡
− ∇ ⋅ 𝑘 (𝑟) ∇ + 𝜇

𝑎
(𝑟)] 𝜙

𝑖
(𝑡) 𝑏
𝑖
(𝑟)

− 𝑞
0
(𝑟, 𝑡) 𝑏

𝑗
(𝑟) 𝑑𝑉 = 0.

(8)

In other words, we require

∑
𝑖

∑
𝑗

∫
𝑉

𝑅
𝑙
(𝑟, 𝑡) 𝑏

𝑗
(𝑟) 𝑑𝑉 = 0. (9)

Since the basis functions have only local support limited
to individual elements the integrals appearing in the above
equation can be split element-wise and evaluated [2]. The
amount of data required to establish the computational
domain and boundary conditions becomes significantly
greater in three-dimensional than two-dimensional prob-
lems. We discretized the 3D cylindrical object of 60mm
diameter and 70mm height (Figure 1) into 66514 tetrahedral
elements and 15031 nodes.

To find the properties of the overall system, we must
combine the matrix equations of each tetrahedral element in
such a way that the resulting matrix represents the behavior
of the entire solution region of the problem. The boundary
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Figure 2: System setup.

conditions must be incorporated after the assemblage of the
individual element contributions.

The discretized, weak form of (1) is evaluated:

[𝐾 (𝑘) + 𝐶 (𝜇
𝑎
) + 𝐹] = 𝑄. (10)

Here 𝐾, 𝐶, and 𝐹 are sparse matrices whose elements are
given by (8). 𝐾 is the global stiffness matrix, which is the
assemblage of the individual contribution from diffusion
coefficient 𝜅(𝑟) and absorption coefficient 𝜇

𝑎
(𝑟). 𝐾 has a

dimension 𝑁
𝑛
× 𝑁
𝑛
, where 𝑁

𝑛
is the number of nodes and

is highly sparse, generally with a banded structure. 𝑄 is the
forcing term.

In this study, we used a 3D cylindrical phantom of height
70mm and diameter 60mm for our simulation studies and
a tissue mimicking phantom having size and parameters
matching that of the simulation phantom for experimental
validation of the algorithms.The reference phantom is shown
in Figure 1(a). 3D cylindrical meshes consisting of 14610,
30823, and 66514 tetrahedral elements have been used for
modelling. The background absorption and scattering coef-
ficients are 𝜇

𝑎
= 0.01mm−1 and 𝜇

𝑠
= 1.0mm−1, respectively.

Two absorbing inhomogeneities of different geometries and
contrasts were embedded inside the homogeneous phantom
(Figures 1(a) and 1(b)). One inhomogeneity is spherical and
has a diameter of 7.9mm, centered at (0, −16, −10) and
the other is cylinder of diameter 7.9mm, height 70mm and
parallel to 𝑧-axis. The absorption coefficients of the two
inhomogeneities are 0.02mm−1 and 0.03mm−1, respectively.
In the experimental phantom, we embedded two cylindrical
inhomogeneities of sizes 10 and 12mm running the whole
length of the phantom.The absorption coefficients were 0.02
and 0.035mm−1, respectively.

4. Experimental System

For validating our simulation results using GPU with exper-
imental measurement data, we designed and developed a
fully 3D DOT system based on frequency domain approach
(Figure 2).The source is an intensitymodulated led (Thorlabs

Mounted LED 850L2 driven by Thorlabs current driver
LEDD 1B) emitting light at 850 nm. The led is modulated
by 5KHz sinusoidal current of 20mA superimposed onto a
100mA DC current. The output from the led is split using
10 : 1 beam-splitter. The smaller component is connected to
an avalanche photodiode (APD) and this forms the reference
signal for the lock-in amplifier. The intense part of the light
from the beam splitter is coupled to a multimode fibre
which delivers light to the cylindrical phantom. A lens which
is transparent at the NIR region at the end of the fibre
renders the output beam parallel at the phantom surface.
The modulated light propagates through the phantom and
exits from the boundary. The exiting light is collected at
the opposite side by a fibre bundle (diameter 5mm), which
carries light to a photodetector (DET36A from Thorlabs),
output of which is connected to a lock-in amplifier. The
lock-in amplifier gives the modulation depth and phase shift
of photon flux. The schematic diagram of the experimental
setup is shown in Figure 2. In order to make a simple and
fast system, we used only one source and 14/21 detectors
which spans two/three measurement planes. The source and
the detector are moved around the phantom using stepper
motors. The measurements are taken for 12 source positions
and 7 detector positions for each plane. We have carried out
the measurements for 2 and 3 planes.

5. GPU-Accelerated DOT on CUDA Platform

5.1. Assemble the System Matrix. First we assemble the
elemental stiffness matrix which comprises 4 nodes of a
tetrahedron.The 4×4 𝑘 elemental matrix so formed for each
element has to be merged into the global system matrix 𝐾
based on global node numbers. For 𝑛th element, the equation
will be𝐾

𝑛
𝑢
𝑛
= 𝑓
𝑛
.The entire set of assembled FEM equations

is the global stiffness matrix𝐾 for the system.
The global systemmatrix𝐾 is formed from66514 elemen-

tal 𝑘 matrices. The elemental 𝑘 matrix is estimated using the
following approach:
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d
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Figure 3: Data flow between the host CPU and GPU device.

(1) coordinates of the 4 nodes of the tetrahedron element
𝑛 to form 4 × 4 coordinate matrix,

(2) compute the determinant to arrive at the volume of
element 𝑛,

(3) estimate elemental 𝑘 matrix using coordinates of
nodes of the element,

(4) place the elemental matrix at appropriate place in
global𝐾matrix.

The data flow between host and GPU for the solution of
the DOT problem is shown in Figure 3. The setting up of
global𝐾matrix from constituent 66514 tetrahedral elements
and the source term𝑄 in (10) are carried out in host CPU and
then transferred to the GPUmemory.TheGPU computes the
following.

(1) It computes 𝜙
𝑠
and 𝜙

𝑑
to estimate Jacobian 𝐽 using

conventional approach (𝐽 = 𝜙
𝑠
⋅ 𝜙
𝑑
). 𝜙
𝑠
is solved using

𝜙
𝑠
= 𝐾
−1

⋅ 𝑄.

(2) The equation (𝐽𝑇 ⋅ 𝐽 + 𝜆 ⋅ 𝐼)Δ𝜇 = 𝐽𝑇 ⋅ Δ𝑀 is assembled
and solved for Δ𝜇.

(3) 𝜇
𝑖+1

is updated with 𝜇
𝑖
+ Δ𝜇
𝑖
.

The solution 𝜇 is copied back to host memory and host
computes termination conditions. If iterations have to be
continued, GPU carries it out, because all the data required
are already in the GPU. Final results are copied to the host.

5.2. GPU C Implementation. The host CPU and GPU specifi-
cations of the system we used for evaluating the performance
of the algorithms are listed in Table 1. In CUDA architecture,
host CPU is the host processor and GPU is the coprocessor.
We implement heterogeneous computing concept to offload
compute-intensive tasks from the host CPU to the GPU. The
single source code comprises standardChost code and device
code written using ANSI C extended with keywords for data-
parallel functions, called kernels, and their associated data
structures. Execution of a CUDA kernel invokes multiple
threads which is the basic execution unit organized into
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Table 1: Test systems.

Processing unit Number of cores Memory (GB) Stream multiprocessor (SM)
CPU AMD 8150 @ 3.6GHz 8 16
NVIDIA Tesla K20C @ 0.7GHz 2496 5 13
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Figure 4: Reconstructed 3D images using CGPUC code (a) for simulation phantom.The phantom has two inhomogeneities, one cylindrical
and the other spherical having 𝜇

𝑎
of 0.03 and 0.02mm−1, respectively, and (b) experimental phantom with two cylindrical inhomogeneities

having diameters of 10 and 12mm and absorption coefficients of 0.02 and 0.035mm−1, respectively.The background absorption and scattering
coefficients are 0.005mm−1and 0.8mm−1. The inhomogeneities run through the length of the phantom.

thread blocks on a grid. CUDA is capable of running thou-
sands of such inexpensive threads concurrently. The CULA
library is GPU-accelerated LAPACK routines which takes
advantages of massively parallel NVIDIA CUDA computing
architecture to speed up linear algebra.

5.3. GPU-Accelerated MATLAB Implementation. MATLAB
[25] is a high performance numerical computing environ-
ment that uses highly efficient libraries such as ATLAS,
LAPACK, and BLAS for numerical linear algebra algorithms.
Employing GPU as a coprocessor for these algorithms can
accelerate code execution tremendously. MATLAB’s Parallel
Computing Toolbox provides GPU programming support to
take advantage of GPUs fromwithin high-level programming
environments. Instead of writing, optimizing, and tuning
C or Fortran code for GPUs we can execute preexisting
MATLAB code on GPU with minor modifications in the
code. MATLAB Parallel Computing Toolbox is providing
special array type GPUArray and more than 100 built-in
functions that can be directly executed in GPU. We transfer
data from the host MATLAB workspace to GPU global
memory by gpuArray command and run the function on
the data in the GPU. The result can be kept in GPU for

further operations or can be retrieved from GPU to the
host MATLAB workspace as a regular MATLAB variable by
using the gather command. We first developed MATLAB
code for the 3D DOT image reconstruction. The profiling
tool presents the execution time of each of the functions.
This allows us to identify the tasks that need optimization
or GPU execution for speedup. The data movement across
the host and GPU is time-consuming. We avoided repeated
data exchange between the host CPU and GPU by executing
as much computation as possible on GPU using the data
transferred to GPU.

We developed 4 types of codes for Broyden based DOT
reconstruction algorithm.They are

(1) C serial code to execute in host CPU (C CPU),

(2) C CUDA code to utilize GPU (C GPU),

(3) MATLAB serial code to execute in host CPU (MAT-
LAB CPU),

(4) MATLAB single/double precession GPU code (MAT-
LAB GPU).
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Figure 5: For simulation phantom, (a) cross-sectional line through the center of inhomogeneities 1 and 2, (b) MSE between computed
measurements and the experimental measurement data as iteration proceeds (𝑀𝐶 and𝑀𝐸), and (c) MSE between 𝜇actual and 𝜇

𝑖.

6. Results and Discussion

We reconstructed 3D images of the simulation and exper-
imental phantoms (Figure 1) using both C and MAT-
LAB approaches. The reconstructed images using these
approaches for highest value of the mesh size for the phan-
toms are shown in Figure 4. Figure 4(a) shows the recon-
structed image for the simulation phantom, and Figure 4(b)
is the result for experimental phantom. The reconstruction
quality and contrast are evaluated by using (a) the line plot of
the cross-section of the images through the inhomogeneities
and (b) the mean square error (MSE) plot. The square of the
mean difference (MSE) between the predicted measurement

and the actual measurements and the difference between the
actual 𝜇actual

𝑎
and the estimated 𝜇

𝑎
are shown in Figures 5(b)

and 5(c), respectively. The cross-sectional line plot through
the center of two inhomogeneities of the reconstructed ima-
ges of simulation phantom is given in Figure 5(a). The corre-
sponding results for the experimental phantom are given in
Figures 7(a) and 7(b). The cross-sectional plot shows that the
localization, contrasts, and the sizes of the inhomogeneities
in the reconstruction results are good.

In order to verify the stability of the algorithm, we have
reconstructed images from noisy measurement data. White
Gaussian noise (WGN) of 2% was added to the measurement
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Figure 6: (a) Result of reconstruction of 3D images from 2% noisy data for simulation phantom, (b) cross-sectional line through the center
of inhomogeneities 1 and 2, (c) MSE between𝑀𝐶 and𝑀𝐸, and (d) MSE between 𝜇actual and 𝜇

𝑖.

data [42]. The cross-sectional line plots and MSEs of the
reconstruction results are shown in Figures 6(a)–6(c).

Themain focus of the study is to evaluate the performance
of the GPU implementations (both C and MATLAB). The
Jacobian computation time for conventional and Broyden
based methods on C CPU, C GPU, MATLAB CPU, and
MATLAB GPU platforms for mesh sizes (a) 14610, (b) 30823,
and (c) 66514 elements is presented in Figures 8(a)–8(c),
respectively. The breakup of the execution time of various
computational blocks of the algorithm on C CPU, C GPU,
MATLAB CPU, and MATLAB GPU platforms is shown in
Figures 9(a)–9(c), respectively. The plot gives us a picture
of the parallelization efficiency of various computational

blocks of the algorithm. The execution time for an iteration
on C CPU, C GPU, MATLAB CPU, and MATLAB GPU
platforms for different mesh sizes is shown in Figure 10. The
communication overhead (data transfer from host to GPU
and back) of the GPU system is minimized by getting most
of the computational tasks executed on GPU, with minimal
data movement across the processors.

The memory size available on GPU board (5GB) puts
an upper limit on the mesh size that can be implemented.
The current study uses only full matrix computation. For
a higher mesh size, we need to resort to sparse matrix
computations that will ease the memory requirements. A few
studies have been reported using sparse matrix computation
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Figure 8: Execution time for Jacobian calculation by conventional and Broyden method on C CPU, C GPU, MATLAB CPU, and MATLAB
GPU platforms for mesh size (a) 3736, (b) 7465, and (c) 15031.

because of the sheer size of the problem [31, 35]. Freiberger et
al. [35] used an optimized storage approach for sparse matrix
elements. It was based on blocked interleaved compressed
row storage. The interleaving approach allowed efficient
access of the row elements by the GPU threads. The solution
of the diffusion equation heavily depended on sparse matrix
vector products. Prakash et al. [31] used CUSP package that is
capable of dealing with sparse system solver for the real type
allowing matrix vector computations. They have shown that

even with the use of the full (nonsparse) matrices, the GPUs
are capable of giving an acceleration of up to 7 (for completing
a start-to-end single iteration of the diffuse optical image
reconstruction) compared to CPU sparse computations. We
used the conventional sparse matrix storage format CSR
(compressed sparse row) for our implementation.The system
matrix in sparse matrix format was sent to GPU, and GPU
does execute a sparse system solver. However, the current
version of CULA does not support the access of these
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Figure 9: Breakup of the execution time of various computing blocks of the algorithm on C CPU, C GPU, MATLAB CPU, and MATLAB
GPU platforms for mesh size (a) 3736, (b) 7465, and (c) 15031.
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resulting elements in compressed format from the host CPU.
The benefit in terms of compute time is lost during the to-
and-fro transfer. The next version of CULA will have this
option available and that will speed up the execution time still
further.

The development of MATLAB based GPU application
opens up large opportunities. It has many advantages which
include (1) faster development of applications because MAT-
LAB has a rich collection of libraries and functions and
(2) much easier development of application program in
MATLAB compared to that using conventional C based
programming language.

7. Conclusions

We have developed an efficient, GPU-based fully 3D tomo-
graphic system for diffuse optical tomography (DOT). The
3D DOT, a severely ill-posed and ill-conditioned problem,
is solved by making use of the recently proposed Broyden
approach for updating the Jacobian matrix, which has com-
putational complexity orders of magnitude lower compared
to conventional Jacobian update strategy. The GPU accelera-
tion of the algorithm resulted in a reconstruction speed of 2
frames/second.
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method for image reconstruction in diffuse optical tomogra-
phy,” Physics in Medicine and Biology, vol. 50, no. 10, pp. 2365–
2386, 2005.

[15] S. Chandrasekhar, Radiative Transfer, Oxford University Press,
New York, 1960.

[16] M. S. Patterson, S. J. Madsen, J. D. Moulton, and B. C. Wilson,
“Diffusion equation representation of photon migration in tis-
sue,” in Proceedings of the IEEEMTT-S International Microwave
Symposium Digest, pp. 905–908, IEEE, New York, NY, USA,
June 1991.

[17] S. R. Arridge, “Photon-measurement density functions. Part I:
analytical forms,” Applied Optics, vol. 34, no. 31, pp. 7395–7409,
1995.

[18] J. C. Hebden, S. R. Arridge, andD. T. Delpy, “Optical imaging in
medicine: I. Experimental techniques,” Physics in Medicine and
Biology, vol. 42, no. 5, pp. 825–840, 1997.

[19] J.M. Kaltenbach andM.Kaschke, “Frequency and time-domain
modelling of light transport in random media,” in Medical
Imaging: Functional Imaging and Monitoring, vol. 11, pp. 65–86,
SPIE, Bellingham, Wash, USA, 1993.

[20] M. S. Patterson, S. J. Madsen, J. D. Moulton, and B. C. Wilson,
“Diffusion equation representation of photon migration in tis-
sue,” in Proceedings of the IEEEMTT-S International Microwave
Symposium Digest, vol. 2, pp. 905–908, June 1991.

[21] J. Sikora, A. Zacharopoulos, A. Douiri et al., “Diffuse photon
propagation in multilayered geometries,” Physics in Medicine
and Biology, vol. 51, no. 3, pp. 497–516, 2006.

[22] F. Fedele, M. J. Eppstein, J. P. Laible, A. Godavarty, and E. M.
Sevick-Muraca, “Fluorescence photonmigration by the bound-
ary elementmethod,” Journal of Computational Physics, vol. 210,
no. 1, pp. 109–132, 2005.

[23] S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient
based diffuse optical tomographic image reconstruction,”Med-
ical Physics, vol. 38, no. 1, pp. 539–547, 2011.

[24] NVIDIACorporation Inc., Santa Clara, California, USA, http://
www.nvidia.com/.

[25] The MathWorks Inc, 3 Apple Hill Drive Natick, Massachusetts
01760 USA.

[26] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast
GPU-based CT reconstruction using the Common Unified
Device Architecture (CUDA),” in Proceedings of the IEEE
Nuclear Science Symposium and Medical Imaging Conference
(NSS-MIC ’07), vol. 6, pp. 4464–4466, November 2007.

[27] S.-H. Yoo, J.-H. Park, and C.-S. Jeong, “Accelerating multi-scale
image fusion algorithms using CUDA,” in Proceedings of the
International Conference on Soft Computing and Pattern Recog-
nition (SoCPaR ’09), pp. 278–282, December 2009.

[28] Z. Zhang,Q.Miao, andY.Wang, “CUDA-based Jacobi’s iterative
method,” in Proceedings of the International Forum onComputer
Science-Technology and Applications (IFCSTA ’09), vol. 6, pp.
259–262, December 2009.

[29] T. S. Leung and S. Powell, “Fast Monte Carlo simulations of
ultrasound-modulated light using a graphics processing unit,”
Journal of Biomedical Optics, vol. 15, no. 5, Article ID 055007,
pp. 1–7, 2010.

[30] E. Alerstam, T. Svensson, and S. Andersson-Engels, “Paral-
lel computing with graphics processing units for high-speed
Monte Carlo simulation of photon migration,” Journal of
Biomedical Optics, vol. 13, no. 6, Article ID 060504, pp. 1–3,
2008.

[31] J. Prakash, V. Chandrasekharan, V. Upendra, and P. K. Yalav-
arthy, “Accelerating frequency-domain diffuse optical tomo-
graphic image reconstruction using graphics processing units,”
Journal of Biomedical Optics, vol. 15, no. 6, Article ID 066009,
pp. 1–9, 2010.

[32] E. M. Photonics, Newark, Delaware, USA, http://www.
culatools.com/.

[33] M. Schweiger, “GPU-accelerated finite element method for
modelling light transport in diffuse optical tomography,” Inter-
national Journal of Biomedical Imaging, vol. 2011, Article ID
403892, 11 pages, 2011.

http://www.nvidia.com/
http://www.nvidia.com/
http://www.culatools.com/
http://www.culatools.com/


International Journal of Biomedical Imaging 13

[34] M. Schweiger and S. R. Arridge, “Toast reconstruction package,”
http://toastplusplus.org .

[35] M. Freiberger, H. Egger, M. Liebmann, and H. Scharfetter,
“Highperformance image reconstruction in fluorescence to-
mography on desktop computers and graphics hardware,” Bio-
medical Optics Express, vol. 2, no. 11, pp. 3207–3222, 2011.

[36] D. W. Marquardt, “An algorithm for the least-square estimation
of non-linear parameters,” Journal of the Society for Industrial
and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[37] K. Levenburg, “A method for the solution of certain non-linear
problems in least-squares,” Quarterly of Applied Mathematics,
vol. 2, pp. 164–168, 1944.

[38] C. G. Broyden, “A class of methods for solving nonlinear simul-
taneous equations,” Mathematics of Computation, vol. 19, pp.
577–593, 1965.

[39] R. H. Byrd, H. Khalfan, and R. B. Schnabel, “A theoretical and
experimental study of the symmetric rank one update,” Tech-
nical Report CU-CS-489-90, University of Colorado, Boulder,
Colo, USA, 2002.

[40] J. Branes, “An algorithm for solving nonlinear equations based
on secant method,” Computer Journal, vol. 8, no. 1, pp. 66–72,
1965.

[41] S. K. Biswas, K. Rajan, and R. M. Vasu, “Practical fully 3-D re-
construction algorithm for diffuse optical tomography,” Jour-
nal of the Optical Society of America A, vol. 29, no. 6, pp. 1017–
1026, 2012.

[42] B. Kanmani andR.M.Vasu, “Noise-tolerance analysis for detec-
tion and reconstruction of absorbing inhomogeneities with
diffuse optical tomography using single- and phase-correlated
dual-source schemes,” Physics in Medicine and Biology, vol. 52,
no. 5, pp. 1409–1429, 2007.

http://toastplusplus.org

