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Head-Fixed Behavior
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Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia

The cortex is crucial for many behaviors, ranging from sensory-based behaviors to
working memory and social behaviors. To gain an in-depth understanding of the
contribution to these behaviors, cellular and sub-cellular recordings from both individual
and populations of cortical neurons are vital. However, techniques allowing such
recordings, such as two-photon imaging and whole-cell electrophysiology, require
absolute stability of the head, a requirement not often fulfilled in freely moving animals.
Here, we review and compare behavioral paradigms that have been developed and
adapted for the head-fixed preparation, which together offer the needed stability for
live recordings of neural activity in behaving animals. We also review how the head-fixed
preparation has been used to explore the function of primary sensory cortices, posterior
parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral
tasks, while also discussing the considerations of performing such recordings. Overall,
this review highlights the head-fixed preparation as allowing in-depth investigation into
the neural activity underlying behaviors by providing highly controllable settings for
precise stimuli presentation which can be combined with behavioral paradigms ranging
from simple sensory detection tasks to complex, cross-modal, memory-guided decision-
making tasks.

Keywords: cortex, head-fixed, sensory-based behavior, primary sensory cortices, posterior parietal cortex,
anterior lateral motor cortex, Go/NoGo, 2AFC

INTRODUCTION

Our behavior, the way one acts or conducts oneself, is key to survival. Animals must behave in
an appropriate manner to successfully navigate and interact with their surroundings. This involves
billions of neurons working together to formulate a cohesive motor output. Therefore, due simply
to the sheer numbers involved, understanding the neural basis of behavior is complicated. It is
further confounded by the diversity of behaviors, ranging from perception to social interactions to
navigation, which involve different classes of neurons, neural interactions as well as brain regions.
The activity of individual neurons within the cortex are often highlighted as being crucial for many
behaviors, such as sensory-based (Xu et al., 2012; Takahashi et al., 2016) and social behaviors (Rao
et al., 2014; Lenschow and Brecht, 2015), as well as anticipation (Erlich et al., 2011; Guo et al.,
2014b) and decision making (Harvey et al., 2012). However, it is difficult to clearly state the overall
role of the cortex, or a class of cortical neurons, during behavior as the underlying neural activity
is dependent on many factors, such as changes in feedforward and feedback information, as well as
overall brain state (Poulet and Petersen, 2008).
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To understand the contribution of individual neurons during
behavior, recordings must be performed from an individual or
population of identified neurons, during an active behavioral
task. Recording action potential firing in a population of
neurons in freely-behaving rodents can be achieved using
extracellular probes with a high density of recording sites
(Buzsáki, 2004). However, extracellular recordings are fraught
with analysis considerations (Buzsáki et al., 2012; Higley, 2012)
and cannot typically measure sub-threshold and sub-cellular
activity (although see Suzuki and Larkum, 2017). The mere
act of behaving makes recording the activity of individual
neurons challenging, as most techniques used to measure the
activity of individual neurons, such as calcium imaging and
patch-clamp electrophysiology, requires absolute stability of the
recording preparation. Although miniaturized equipment can
record sub-cellular calcium (Helmchen et al., 2001; Ghosh et al.,
2011; Cai et al., 2016) and voltage (Burgalossi et al., 2011;
Tang et al., 2014) activity from single neurons in animals as
they physically move through an environment, these are highly
specialized and difficult to implement. Therefore, most studies
delving into the sub-cellular neural activity associated with
behavior are performed in the head-fixed condition. Unlike the
freely moving animal models, the head-fixed preparation allows
for highly controllable settings, such as stimulus presentation and
motor output. Whether it requires precise stimuli for studying
perception, discrimination, decision making or other cognitive
tasks, the head-fixed preparation provides the opportunity to
precisely control the stimulus delivered to the animal. Head-fixed
behavioral models also typically provide high repeatability and
employment of standardized techniques (Guo et al., 2014a).
This review article brings together studies investigating the
neural activity during various behaviors developed for head-fixed
preparation. Here, we focus primarily on the role of the cortex
in sensory-based behaviors. Historically, research into the role
of the cortex during sensory perception and decision making
was typically performed in primates (for review see Parker and
Newsome, 1998), however, due to recent advances in molecular
and optical techniques, rodents are now a crucial animal model
and will be the focus of this review.

BEHAVIORAL PARADIGMS

Since there is no one-fits-all behavioral model or task that
will highlight the role of all brain regions, it is crucial to
consider which model or task will be the most appropriate to
engage a particular brain region and how to pair this with an
appropriate recording technique. In the head-fixed preparation,
the stimulus typically needs to be brought to the animal, as
opposed to the animal moving to the stimulus in the freely
moving scenario. Therefore, various behavioral tasks have been
specifically developed for the head-fixed preparation. These tasks
range in complexity, from presenting specific sensory stimuli to
the animals to reconstructing an entire sensory environment.

Go/NoGo
Perhaps the easiest way to explore perception and decision
making is by presenting one stimulus associated with a single

response. This is the basis of the Go/NoGo task (Figure 1A),
where an animal is presented with a stimulus and trained to
report the perception of the stimulus, by either responding or
withholding an action. This creates a Hit/Miss scenario for Go
trials and a Correct Rejection/False Alarm scenario for NoGo
trials. The Go/NoGo task can be used to address simple questions
such as sensory perception andmodulation (Petreanu et al., 2012;
Xu et al., 2012; Takahashi et al., 2016; Micallef et al., 2017).
In general, this paradigm takes only a few days to implement
(1–3 days; Guo et al., 2014a; Micallef et al., 2017), however,
a common weakness of the task, is a potential deviation in
motivation leading to erroneous reporting. To overcome the
decreased motivation towards obtaining a reward, the Go/NoGo
task can be further advanced by applying the signal detection
theory, as reviewed by Carandini and Churchland (2013). By
introducing a stimulus-based NoGo signal that is of same
stimulus type but of different character (rather than the absence
of a stimulus as a NoGo signal, commonly referred to as ‘‘Catch
trials’’), the animal has to discriminate between two stimuli,
reporting only one of them, instead of simply reporting whenever
the stimulus is detected. Tasks using this paradigm are often
referred to as discrimination tasks (Figure 1B; Gilad et al.,
2018; Helmchen et al., 2018) and in general take longer to
learn than the simple Go/NoGo task (1–3 weeks; Guo et al.,
2014a; Gilad et al., 2018; Helmchen et al., 2018). When water-
deprived, animals are typically highly motivated to perform
the task (Guo et al., 2014a). Since the instinctive reaction
is to lick as soon as the stimuli has been detected, a short
delay can be incorporated between stimulus and response
period to temporally separate the different epochs (Guo et al.,
2014a), however implementing a delay requires further training
(Helmchen et al., 2018).

Two Alternative Forced Choice
Similar to the Go/NoGo task, the two-alternative forced-choice
(2AFC) task (Figure 1C) can be used to explore perceptual
decision making. Here, an animal is presented with two stimuli
however, instead of withholding a response to one of the stimuli
(as in the Go/NoGo task), the animal now must report in
both cases. This can be accomplished by either having the
animal lick left or right (O’Connor et al., 2010a,b; Guo et al.,
2014b; Peron et al., 2015; Zhong et al., 2019), turn a steering
wheel (Burgess et al., 2017) or push a joystick (Estebanez
et al., 2017; Morandell and Huber, 2017). The 2AFC task
adds another level of clarity to behavioral outcomes, as the
task design eliminates uncertainty behind NoGo responses,
which may not be due to an inability to perform the task,
but instead due to lack of motivation/engagement. The 2AFC
task is however not completely immune to behavioral response
misinterpretations, as animals can be biased toward one side of
reporting (Guo et al., 2014a). As with all behaviors, the time
it takes an animal to learn the 2AFC task depends on several
factors such as sensory modality, type of stimulus, training
methods and number of trials per session. However, due to
its increased complexity compared to the simple discrimination
tasks, learning the 2AFC task, in general, takes longer, ranging
between 1 and 6 weeks (Mayrhofer et al., 2013; Guo et al.,
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2014a,b). Although it potentially can be considered a more
robust behavior than the Go/NoGo tasks, the increased learning
time can be a consideration for various chronic recording
techniques. The 2AFC task is adaptable and can be changed
according to particular experiments/questions, such as the two
alternative unforced choices (2AUC) task which combines the
2AFC task with a ‘‘NoGo’’ signal, rewarding the animal for not
responding (Burgess et al., 2017). The adaptability of the 2AFC
task has led to many sensory systems being probed using this
two-response behavior, including the vibrissal (Mayrhofer et al.,
2013; Li et al., 2015; Peron et al., 2015), olfactory (Zariwala
et al., 2013), visual (Busse et al., 2011; Burgess et al., 2017) and
auditory (Znamenskiy and Zador, 2013; Wei et al., 2019) to
name a few.

Working Memory Models
To probe the neural basis of higher cognitive functions such
as working memory in the head-fixed preparation, behaviors
have been developed that are based on the simpler behavioral
tasks, such as the Go/NoGo and 2AFC. Working memory has
been addressed using a delay-task in both monkeys (Quintana
et al., 1988; Yajeya et al., 1988; Fuster, 2001) and rodents (Gilad
et al., 2018; Inagaki et al., 2019). Here, animals are presented
with a stimulus followed by a delay during which the animal
needs to retain their decision until they are able to report their
decision, often indicated by a response cue (Figure 1D). Of
greater complexity are the comparison-based working memory
tasks such as (but not limited to) Delayed Nonmatch to Sample
(Figure 1E; Dudchenko, 2004), which engages working memory
by having two sensory stimuli separated by an inter-stimulus
delay, forcing the animal to retain a memory trace of the first
stimulus to compare to the second stimulus. For the Nonmatch
to Sample working memory task the animal has to compare the
stimuli and report if the second stimulus is different (mismatch)
to the sample or withhold its response if the two are identical
(match). This working memory task builds on the principles
of the Go/NoGo task and has for example been used for
odor samples (Liu et al., 2014). The comparison-based working
memory tasks can also build upon the principles of the 2AFC
paradigm, as is the case for the pioneering Flutter Discrimination
task developed for primates (Mountcastle et al., 1990; Hernández
et al., 1997). This task has been successfully adapted to freely
moving rats (Fassihi et al., 2014), but to our knowledge, it
has not yet been successfully adapted to head-fixed rodents.
For a review on other working memory tasks in rodents, see
Dudchenko (2004).

Locomotion and Exploration
Many, if not all, behaviors require the integration of feedforward
and feedback information from multiple senses. Take for
example spatial exploration. Here, the visual system relies
on the coordination of visual input with motor output to
successfully explore and navigate through an environment
(Randel et al., 2014; Heindorf et al., 2018). Probing sub-cellular
neural activity during locomotion requires a behavioral platform
that enables movement and associated stimuli in a head-fixed
preparation. This can be achieved with a spherical (Dombeck

et al., 2007; Harvey et al., 2012; Schmidt-Hieber and Häusser,
2013; Heindorf et al., 2018), circular (Hawrylycz et al., 2016;
Schneider et al., 2018) or linear (Domnisoru et al., 2013; Lovett-
Barron et al., 2014; Cichon and Gan, 2015; Bittner et al., 2017)
track which allows precise location to be measured during
locomotion in small laboratory animals. These platforms can be
paired with a virtual reality-based environment. Combined with
various sensory stimuli, platforms that enable locomotion during
head-fixation are used to address various questions, including
the neural activity underlying spatial navigation (Harvey et al.,
2009; Dombeck et al., 2010; Domnisoru et al., 2013; Sheffield
et al., 2017; Thurley and Ayaz, 2017), sensory processing (Niell
and Stryker, 2010; Saleem et al., 2013; Makino and Komiyama,
2015; Sofroniew et al., 2015; Radvansky and Dombeck, 2018),
arousal (Niell and Stryker, 2010; Polack et al., 2013; McGinley
et al., 2015; Vinck et al., 2015; Shimaoka et al., 2018) and learning
and memory (Lovett-Barron et al., 2014; Cichon and Gan,
2015). Behavioral platforms have also been developed that enable
head-fixed mice to navigate through a physical environment
(Kislin et al., 2014; Nashaat et al., 2016), as opposed to a
virtual reality-based environment. Termed the air-track system
(Nashaat et al., 2016), this is a lightweight maze floating on
air, much like the spherical ball used in virtual reality set-ups,
where the animal is head-fixed and uses its paws to navigate
the maze. The air-track system offers both the stability required
for most single-cell recording techniques as well as activation
of different sensory modalities coupled to motor output in a
‘‘real-world’’ fashion.

EXPLORING CORTICAL FUNCTIONS
USING HEAD-FIXED BEHAVIORAL
MODELS

The neocortex is enigmatic. It is a diverse structure with
various regions dedicated to specific aspects of behaviors such as
encoding sensory information and integrating this information
with other sensory inputs. With the classical view of the
role of the cortex during simple sensory-based behavior and
encoding recently being challenged (Hong et al., 2018; Beltramo
and Scanziani, 2019), deeper insight into the neural networks
contributing to sensory perception and cognition is required.
Below are summaries of the neural encoding of behavior in
selected cortical regions that aim to disentangle their role in
sensory-based behaviors (Figure 2).

Primary Sensory Cortices
The role of the primary sensory cortex is to encode sensory
information. To investigate the neural basis of sensory encoding
at the cellular or sub-cellular level, various head-fixed behavioral
paradigms have been developed. Combining the clearly defined
cortical-microstructure with the prominent and easily assessable
location of whiskers, the barrel cortex provides an ideal primary
sense to probe during sensory-based behavior in the head-fixed
preparation. Therefore, numerous studies have probed the neural
activity contributing to vibrissae–based behavior. For example,
the neural activity underlying perception of whisker deflection,
induced by magnetic stimulation of identified whiskers coated
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FIGURE 1 | Head-fixed behavioral paradigms. (A) Schematic of the Go/NoGo task often referred to as a detection task. The animal should only respond upon
detecting the stimulus. (B) Schematic of the Go/NoGo task involving discrimination of two stimuli. The animal should only respond to the Go-stimulus. This task is
often referred to as a discrimination task. (C) Schematic of the two-alternative forced-choice (2AFC) task. Similar to (B), this task requires the discrimination between
two different stimuli however, to eliminate pseudo responses, the animal must respond to both stimuli, for example by either licking left or licking right. (D) Schematic
of the Go/NoGo discrimination task with delay. This task differs from (B) by having a delay separating the stimulus and the response. (E) Schematic of the Nonmatch
to Sample Working memory task, based on the Go/NoGo discrimination paradigm. In this task, the animal is presented with two consecutive stimuli, separated by a
delay. The animal must compare the two stimuli and respond accordingly.

with metallic particles has been probed using two-photon
calcium imaging (Takahashi et al., 2016) and whole-cell patch-
clamp (Sachidhanandam et al., 2013). Using a simple Go/NoGo
behavioral task, these studies reveal that the perception of
highly controlled whisker deflection requires calcium spikes
in apical dendrites of layer 5 pyramidal neurons (Takahashi
et al., 2016) and generates a reliable excitatory response in the
somatic membrane potential which depends on cortical state
(Sachidhanandam et al., 2013). Similarly, several studies have
contributed to the understanding of whisker-mediated object
localization, using variations of the Go/NoGo paradigm. For
instance, active touch, which is the combination of whisking
and touch, generates a strong activation of the apical tuft
dendrites of layer 5 pyramidal neurons in the barrel cortex,
driven by projections from the primary motor cortex (Xu
et al., 2012). Axonal projections from the primary motor

cortex to S1 were found to relay signals related to many
task-related features, which, combined with ongoing sensory
input, allows S1 neurons to combine and compute object
localization (Petreanu et al., 2012). Moreover, S1 projections
are recruited differently depending on task conditions. Chen
et al. (2013) reported higher activity in neurons projecting to
the primary motor cortex during the object localization task,
while more neurons which project to secondary somatosensory
cortex were active during texture discrimination. Despite these
differences, both primarymotor cortex-projecting and secondary
somatosensory cortex-projecting S1 neurons could discriminate
between Go and NoGo trials. Neural encoding of trial type
during whisker-based object localization has also been shown
to be both cell-type (Yu et al., 2019) and layer-specific, with
a greater proportion of discriminating neurons located within
layer 4 and 5 of the barrel cortex (O’Connor et al., 2010b). Taken
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FIGURE 2 | Cortical activity during a delay 2AFC task. (A) Schematic of a whisker-mediated object localization 2AFC task. Modified from O’Connor et al. (2010a,b),
Guo et al. (2014b) and Chen et al. (2017). (B) The primary somatosensory cortex (S1) has maximal influence during stimulus presentation (Guo et al., 2014b). (C)
Anterior lateral motor cortex (ALM) ramps activity during the delay epoch and reaches a maximum during the response epoch (Guo et al., 2014b; Li et al., 2015;
Inagaki et al., 2018). (D) The posterior parietal cortex (PPC) is active throughout the 2AFC task, especially the stimulus and response epochs (Harvey et al., 2012;
Goard et al., 2016).

together, the simple Go/NoGo behavioral task adopted in various
laboratories has helped unravel the complex microcircuitry
underlying touch perception and object localization.

Another sensory cortical region that has been the focus of
much research is the primary visual cortex (V1). Here, the
head-fixed preparation is advantageous as the animal can be
oriented towards the visual stimulus (although this does not
ensure stereotyped pupil location, see Wallace et al., 2013). By
combining the head-fixed preparation with a spherical treadmill
(Niell and Stryker, 2010) illustrated that the V1 response is
strongly modulated by behavioral state, i.e., moving, stationary,
sleeping, etc. Surprisingly, even in the absence of visual input,
V1 neurons typically respond to a combination of running
speed and visual speed (Polack et al., 2013; Saleem et al.,
2013). Other studies have focused on the involvement of
V1 in perceptual decision-making tasks. Here, V1 neurons
were found to respond mainly during stimulus presentation,
and inhibition of V1 impaired performance of the task (Goard
et al., 2016). The head-fixed preparation also enables precise
control over the direction and intensity of sound delivery for
investigating sensory encoding and functional connectivity in
the primary auditory cortex (A1; Francis et al., 2018). Using a
sound-guided detection task (Kato et al., 2015) found that task
engagement results in an increase in the fraction of responsive
excitatory neurons, whereas responsive somatostatin expressing
interneurons were reduced. Similar results were obtained in
another study using two behavioral tasks of different complexity.
Here, A1 can be bypassed when discriminating between simple
sounds but is necessary when the discrimination involves more
complex sounds with frequency overlap (Ceballo et al., 2019).

Posterior Parietal Cortex
The posterior parietal cortex (PPC) is a classical association
cortical area which is involved in various behaviors, such as
decision making (Raposo et al., 2014; Goard et al., 2016; Runyan
et al., 2017), evidence accumulation (Morcos and Harvey, 2016),
navigation (Krumin et al., 2018) and sensory representation
(Song et al., 2017; Akrami et al., 2018; Mohan et al., 2018).
Often described as an integrative hub for multiple senses (Song
et al., 2017; Mohan et al., 2018; Lyamzin and Benucci, 2019),
the PPC receives input from various sensory cortices (Wilber
et al., 2015; Zhuang et al., 2017), the thalamus (Reep et al.,
1994) as well as neuromodulatory input from the basal forebrain
(Broussard, 2012).

Using a memory-guided navigation task in a virtual reality
setup (Harvey et al., 2012) explored the neural dynamics of
L2/3 pyramidal neurons within PPC using two-photon calcium
imaging. Here, neurons exhibited choice-specific sequences that
could be categorized according to their activity pattern during
different task epochs (epoch-specific activity). This encoding of
memory-guided decisions was mostly stable on single days but
was reorganized over weeks (Driscoll et al., 2017). Although
overall PPC activity reaches a set point to perform the memory-
guided navigation task, individual neurons shift their activity
over days, some being more inconsistent than others. Learned
task features may have less consistency over time, as the
neurons with the least consistent relationship between activity
and behavior received greater information about task features,
such as trial type and maze position (Driscoll et al., 2017).
Since the PPC encodes posture (Mimica et al., 2018), it is
important to note that similar involvement of the PPC during
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memory-guided decisions was also recorded in head-fixed
visual discrimination tasks that did not involve navigation
(Goard et al., 2016).

Anterior Lateral Motor Cortex
Due to the known involvement in motor planning and
movement, the role of the anterior lateral motor cortex
(ALM) has been extensively investigated during behavior.
Building on previous work (Guo et al., 2014b) demonstrated
the importance of the ALM in a 2AFC whisker-mediated
delay task. Here, the ALM showed choice-specific preparatory
activity as well as movement-related activity, with unilateral
inhibition of the ALM during the delay epoch biasing the
choice to the ipsilateral direction. Confirming and expanding
on these findings (Li et al., 2015) demonstrated that ALM
neurons have lateralized preference for contralateral movements.
This lateralization was found to be driven by pyramidal
tract neurons and not intratelencephallic neurons, although
both were activated during preparatory activity. Within the
ALM, the preparatory activity in intratelencephallic neurons
was converted to motor output in pyramidal tract neurons,
affecting the upcoming motor output. Interestingly, despite
encoding sensory information (Chen et al., 2017), the ALM
is required for motor planning independent of sensory
modality (Inagaki et al., 2018). Here, tactile- or auditory-
based tasks both displayed diverse but consistent ALM activity
during a delay epoch, with behavioral performance decreasing
during ALM photoinhibition. Combined with recordings during
free-behavior (Erlich et al., 2011), these studies highlight the
important role of the ALM in the planning and execution of
motor output.

IMPORTANT CONSIDERATIONS WHEN
EXPLORING CORTICAL ACTIVITY USING
HEAD-FIXED PARADIGMS

While head-fixation is crucial for exploring the cellular and
sub-cellular basis of many behaviors, the head-fixed state
can alter overall behavior. For example, head-restrained rats
have far fewer whisking movements compared with freely
moving behavior (Sellien et al., 2005). Likewise (Whishaw
et al., 2017) illustrated that rats used alternative strategies
during exploration and reach-and-grasp movement when in
the head-fixed state locating objects using ‘‘touch-release-grasp’’
rather than sniffing. However, when directly compared, there
was no difference in performance during odor discrimination
in head-fixed and freely moving mice (Abraham et al.,
2012). Although sensory perception may not be dramatically
altered, the head-fixed preparation limits natural aspects of
behavior and the ability to naturally explore and maneuver
the body during a sensory-based task. Therefore, although
the head-fixed preparation is advantageous in the delivery of
precise and reproducible stimuli, it has the disadvantage of a
non-physiological restraint of the animal. Since recordings in
both the head-fixed and freely-moving preparations illustrate
that the head-fixed preparation influences brain state and neural
activity (Lovett-Barron et al., 2014; Chung et al., 2017; Whishaw

et al., 2017), simply freeing the animal’s body to move during
recordings would not mitigate the non-physiological aspect of
the head-fixed preparation. However, it must be noted that when
reviewing neural activity underlying sensory-based cognitive
tasks, limiting feedback from other systems such as the motor
(Vinck et al., 2015; Dadarlat and Stryker, 2017; Ayaz et al.,
2019) and head direction (Peyrache et al., 2015) systems can
be advantageous.

It is important to consider the caveats of behavioral paradigms
when exploring the cortical function and it must be noted
that not all behaviors can be investigated using the head-fixed
preparation, such as complex social behavior that requires
physical interactions. Avoiding the need for head-fixation,
miniaturized head-mounted microscopes and probes (Flusberg
et al., 2008; Ghosh et al., 2011; Cai et al., 2016) allow
the investigation of neural activity during natural behaviors
(Helmchen et al., 2001; Sawinski et al., 2009; Miyamoto and
Murayama, 2016; Chung et al., 2017; Zong et al., 2017; Meyer
et al., 2018; Valero and English, 2019). Further advances
using wireless head-mounted microscopes (Fan et al., 2011;
Pinnell et al., 2015) remove the mechanical disturbances caused
by cables attached to the animal. The use of miniaturized
recording techniques allows freedom of movement, which is
advantageous from an overall behavioral aspect, however freely
moving animals do not allow the same highly controllable
settings the head-fixed preparation allows. Furthermore, not all
recording techniques have been developed for the freely moving
preparation, and some head-mounted probes are not suitable
for mice (due to weight and size requirements). Therefore, the
head-fixed preparation is still typically deemed necessary for the
in-depth investigation of cortical and sub-cortical activity during
many behaviors.

CONCLUSION

The cortex and its role in behavior is enigmatic. To understand
the underlying cortical circuits required for the execution of
behaviors, it is crucial to examine neural activity while an
animal is behaving. This can be achieved using the head-fixed
preparation which provides highly controllable settings, and
thereby precise stimuli presentation while allowing simultaneous
cellular and sub-cellular recordings. The head-fixed preparation
can be combined with behavioral paradigms ranging from simple
sensory detection tasks, to complex, cross-modal, memory-
guided decision-making tasks, allowing in-depth investigation
into the neural activity underlying behaviors. Experiments using
this preparation have provided insight into neural activity in
various brain regions during sensory processing and higher-
order cognitive functions. Although the head-fixed preparation
limits natural behavior due to the head restraint, it provides
valuable information about cognitive behaviors and the cortices
involved. We are only beginning to understand and unravel
the complexity of the neural activity underlying behavior, and
while there is a rapid improvement in tethered and wireless
recording techniques, the head-fixed preparation seems unlikely
to be replaced as improvements to the head-fixed preparation
steadily provides new platforms and setups, as well as new
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behavioral tasks to explore cortical functions during simple and
complex behaviors. As recording techniques continue to push
the boundaries of possibilities, such as functional imaging of
deep brain structures with three-photon imaging (Wang et al.,
2018) and simultaneous extracellular voltage recordings from
hundreds of channels over 10 mm using the neuropixel probes
(Jun et al., 2017), the head-fixed preparation will also continue
to advance. For example, self-initiated head-fixation in the
home cage will allow for the neural activity underlying more
physiological behaviors to be investigated (Murphy et al., 2016).
While there is no one-fits-all behavioral model, the flexibility of
the head-fixed behavioral paradigms, combined with functional
cellular and subcellular recordings and manipulations, provides
insight into the neural dynamics underlying behaviors. Not only

does this offer valuable information about single-cell dynamics,
but it also expands our understanding of the individual cortices,
both their individual and combined contributions to the overall
behavioral output.
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