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Abstract

The ortholog conjecture implies that functional similarity between orthologous genes is

higher than between paralogs. It has been supported using levels of expression and Gene

Ontology term analysis, although the evidence was rather weak and there were also conflict-

ing reports. In this study on 12 species we provide strong evidence of high conservation in

tissue-specificity between orthologs, in contrast to low conservation between within-species

paralogs. This allows us to shed a new light on the evolution of gene expression patterns.

While there have been several studies of the correlation of expression between species, lit-

tle is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is

strongly conserved between all tetrapod species, with the lowest Pearson correlation

between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with

divergence time. Paralogs in human show much lower conservation, even for recent Pri-

mate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-

specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific

paralogs are mostly specific to the same tissue. The same patterns are observed using

human or mouse as focal species, and are robust to choices of datasets and of thresholds.

Our results support the following model of evolution: in the absence of duplication, tissue-

specificity evolves slowly, and tissue-specific genes do not change their main tissue of

expression; after small-scale duplication the less expressed paralog loses the ancestral

specificity, leading to an immediate difference between paralogs; over time, both paralogs

become more broadly expressed, but remain poorly correlated. Finally, there is a small num-

ber of paralog pairs which stay tissue-specific with the same main tissue of expression, for

at least 300 million years.

Author Summary

From specific examples, it has been assumed by comparative biologists that the same gene

in different species has the same function, whereas duplication of a gene inside one species

to create several copies allows them to acquire different functions. Yet this model was little
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tested until recently, and then has proven harder than expected to confirm. One of the

problems is defining "function" in a way which can be easily studied. We introduce a new

way of considering function: how specific is the activity ("expression") of a gene? Genes

which are specific to certain tissues have functions related to these tissues, whereas genes

which are broadly active over many or all tissues have more general functions for the

organism. We find that this "tissue-specificity" evolves very slowly in the absence of dupli-

cation, while immediately after duplication the new gene copy differs. This shows that

indeed duplication leads to a strong increase in the evolution of new functions.

Introduction

The ortholog conjecture is widely used to transfer annotation among genes, for example in

newly sequenced genomes. But has been difficult to establish whether and how much orthologs

share more similar functions than paralogs [1,2]. The most widely accepted model is that

orthologs diverge slower, and that the generation of paralogs through duplication leads to

strong divergence and even change of function. It is also expected that in general homologs

diverge functionally with time. The test of these hypotheses poses fundamental questions of

molecular evolution, about the rate of functional evolution and the role of duplications, and is

essential to the use of homologs in genome annotations.

Surprisingly, there are several studies which have reported no difference between orthologs

and paralogs, or even the opposite, that paralogs would be more functionally similar than

orthologs. Tests of the ortholog conjecture using sequence evolution found no difference after

speciation or duplication in positive selection [3], nor in amino acid shifts [4]. The debate was

truly launched by Nehrt et al. [5] who reported in a large scale study, based on expression levels

similarity and Gene Ontology (GO) analysis in human and mouse, that paralogs are better pre-

dictors of function than orthologs. Of note, methodological aspects of the GO analysis of that

study were criticized by several other authors [6,7]. Using a very similar GO analysis but cor-

recting biases in the data, from 13 bacterial and eukaryotic species, Altenhoff et al. [8] found

more functional similarity between orthologs than between paralogs based on GO annotation

analysis, but the differences were very slight.

An early comparison of expression profiles of orthologs in human and mouse reported that

they were very different, close to paralogs and even to random pairs [9]. Further studies, fol-

lowing Nehrt et al. [5], found little or no evidence for the ortholog conjecture in expression

data. Rogozin et al. [10] reported that orthologs are more similar than between species paralogs

but less similar than within-species paralogs based on correlations between RNA-seq expres-

sion profiles in human and mouse. Wu et al. [11] found only a small difference between ortho-

logs and paralogs. Paralogs were significantly more functionally similar than orthologs, but by

classifying in subtypes they reported that one-to-one orthologs are the most functionally simi-

lar. The analysis was done on the level of function by looking at expression network similarities

in human, mouse, fly and worm.

On the other hand, the ortholog conjecture has been supported by several studies of gene

expression. Contra Yanai et al. [9], several studies have reported good correlations between

expression levels of orthologs, between human and mouse [12], or among amniotes [13].

Moreover, some studies have reported changes of expression following duplication, although

without explicitly testing for the ortholog conjecture: duplicated genes are more likely to show

changes in expression profiles than single-copy genes [14,15]. Chung et al. [16] reported

through network analysis in human that duplicated genes diverge rapidly in their expression
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profile. Recently Assis and Bachtrog [17] reported that paralog function diverges rapidly in

mammals. They analysed among other things difference in tissue-specificity between a pair of

paralogs and their single copy ortholog in closely related species. They conclude that divergence

of paralogs results in increased tissue-specificity, and that there are differences between tissues.

Finally, several explicit tests of the ortholog conjecture have also found support using expression

data. Huerta-Cepas et al. [18] reported that paralogs have higher levels of expression divergence

than orthologs of the similar age, using microarray data with calls of expressed/not expressed in

human and mouse. They also claimed that a significant part of this divergence was acquired

shortly after the duplication event. Chen and Zhang [7] re-analysed the RNA-seq dataset of Bra-

wand et al. [13] and reported that expression profiles of orthologs are significantly more similar

than within-species paralogs.

Thus while the balance of evidence appears to weight towards confirmation of the ortholog

conjecture, functional data has failed so far to strongly support or invalidate it. Even results

which support the ortholog conjecture often do so with quite slight differences between ortho-

logs and paralogs [8,10]. Yet expression data especially should have the potential to solve this

issue, since it provides functional evidence for many genes in the same way across species,

without the ascertainment biases of GO annotations or other collections of small scale data.

Part of the problem is that the relation between levels of expression and gene function is not

direct, making it unclear what biological signal is being compared in correlations of these lev-

els. Another problem is that the comparison of different transcriptome datasets between spe-

cies suffers from biases introduced by ubiquitous genes [19] or batch effects [20].

In our analysis we have concentrated on the tissue-specificity of expression. Tissue-specific-

ity indicates in how many tissues a gene is expressed, and whether it has large differences of

expression level between them. It reflects the functionality of the gene: if the gene is expressed

in many tissues then it is "house keeping" and has a function needed in many organs and cell

types; tissue-specific genes have more specific roles, and tissue adjusted functions. Recent

results indicate that tissue-specificity is conserved between human and mouse orthologs, and

that it is functionally informative [21]. Moreover, tissue-specificity can be computed in a com-

parable manner in different animal datasets without notable biases, as long as at least 6 tissues

are represented, including preferably testis, nervous system, and proportionally not too many

parts of the same organ (e.g. not many parts of the brain).

Are there major differences between the evolution of tissue-specificity after duplication

(paralogs) or without duplication (orthologs)? We analyse the conservation of one-to-one

orthologs and within-species paralogs with evolutionary time, using RNA-seq datasets from 12

species.

Results

We compared orthologs between 12 species: human, chimpanzee, gorilla, macaque, mouse,

rat, cow, opossum, platypus, chicken, frog, and fruit fly. Overall 7 different RNA-seq datasets

were used, including 6 to 27 tissues (see Materials and Methods). Three comparisons were per-

formed with the largest sets as focal data: 27 human tissues from Fagerberg et al., 16 human tis-

sues from Bodymap, and 22 tissues from mouse ENCODE [22–24]. For all analyses we used

tissue-specificity of expression as described in Materials and Methods.

The first notable result is that tissue-specificity is strongly correlated between one-to-one

orthologs. The correlations between human and four other species are presented in Fig 1A for

illustration. This confirms and extends our previous observation [21], which was based on one

human and one mouse datasets. Correlation of tissue-specificity varies between 0.74 and 0.89

among tetrapods, and is still 0.43 between human and fly, 0.38 between mouse and fly. The
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latter is despite the very large differences in anatomy and tissue sampling between the species

compared, showing how conserved tissue-specificity can be in evolution.

The correlation between orthologs decreases with divergence time (Fig 2). The decline is

linear. An exponential model is not significantly better: ANOVA was not significantly better

for the model with log10 of time than for untransformed time for any dataset (p> 0.0137,

q> 1%). The trend is not caused by the outlier fly data point: removing it there is still a signifi-

cant decrease of correlation for orthologs (see S1 Fig). Results are also robust to the use of

Spearman instead of Pearson correlation between tissue-specificity values.

The correlation between within-species paralogs is significantly lower than between ortho-

logs (ANOVA p<0.0137, q<1% for all datasets) (Fig 2). Moreover, there is no significant

decline in correlation with evolutionary time (neither linear nor exponential) for paralogs.

This may indicate almost immediate divergence of paralogs upon duplication, although other

scenarios are possible (see Discussion).

The results are consistent using human or mouse as focal species (Fig 2A and 2B). Results

are also consistent using a different human RNA-seq dataset (Fig A in S1 Fig).

This main analysis is based on the correlation of tissue-specificity for orthologs called pair-

wise between species. The number of orthologs used in the analysis is thus variable (available

in Table B in S1 Table). An additional analysis was also performed using the same orthologs

for all tetrapods, 4785 genes (Fig B-D in S1 Fig). Correlations of these "conserved orthologs"

are not significantly different from those observed over all orthologs.

The analysis was also performed on all the datasets with tissue-specificity calculated without

testis (Fig E-G in S1 Fig). The correlation between orthologs becomes significantly lower

(ANOVA p = 0.000178), while between paralogs it does not change significantly (ANOVA

p = 0.846). Even though the correlation between orthologs becomes weaker there is still a

Fig 1. Pearson correlation of tissue-specificity between a) orthologs and b) paralogs. a) Human ortholog vs. one-to-one ortholog in another species; b)

highest expressed paralog vs. lowest expressed paralog in human, for different duplication dates.

doi:10.1371/journal.pcbi.1005274.g001
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significant difference between orthologs and paralogs (ANOVA p = 1.299e-07). The same anal-

ysis was also performed removing 4 other main tissues (brain, heart, kidney and liver) (Fig

H-K in S1 Fig). For the brain the correlation between orthologs becomes significantly lower

(ANOVA p = 0.000289), but stays higher than for paralogs; for other tissues there is no signifi-

cant difference. For paralogs the correlation never changes significantly.

We also performed the analysis removing genes on sex chromosomes (Fig L-N in S1 Fig).

This analysis was done without frog, as sex chromosome information is not available. This

does not change significantly the correlations between either orthologs (ANOVA p = 0.856) or

paralogs (ANOVA p = 0.755).

In general paralogs have lower expression and are more tissue-specific than orthologs (Fig

O in S1 Fig), which is consistent with the dosage-sharing model [25,26]. Young paralogs are

very tissue-specific, and get more ubiquitous with divergence time (Fig 1B and Fig P in S1

Fig); this is true for all datasets, and for τ calculated with or without testis. We also tested for

asymmetry by comparing paralog pairs to the closed possible non duplicated outgroup; e.g.,

we compared each Eutheria specific paralog to the non-duplicated opossum outgroup (one-to-

two ortholog; Fig 3). We observe that the higher expressed paralog has a stronger correlation

with the outgroup, thus appears to keep more the ancestral tissue-specificity, while the lower

expressed paralog has a lower correlation and appears to become more tissue-specific (Fig 3),

which is consistent with a form of neo-functionalization.

When both orthologs of a pair are tissue-specific (τ> 0.8), they are most often expressed in

the same tissue (Fig 4). The same is observed when both paralogs are tissue-specific and are

younger than the divergence of tetrapods. But for Euteleostomi and Vertebrata paralogs, if

both are tissue-specific then they are as likely to be expressed in the different as in same tissues;

most of these are expected to be ohnologs, i.e. due to whole genome duplication. This analysis

was performed on the Brawand et al. (2011) dataset, because it has the most organisms with

the same 6 tissues. This result does not change after removing testis (Fig Q in S1 Fig), nor

changing the τ threshold from 0.8 to 0.3 (Fig R-S in S1 Fig). Also after removing all tissue-spe-

cific genes (τ> 0.8), the difference between orthologs and paralogs is smaller but stay signifi-

cant (ANOVA p = 0.001) (Fig T in S1 Fig).

Discussion

Our results show that most genes have their tissue-specificity conserved between species. This

provides strong new evidence for the evolutionary conservation of expression patterns. Using

tissue-specificity instead of expression values allows easy comparison between species, as bias

of normalisation or use of different datasets has little effect on results [21]. All of our results

were confirmed using three different focus datasets, from human or mouse, and thus appear to

be quite robust.

The conservation of expression tissue-specificity of protein coding genes that we find is

high even for quite distant one-to-one orthologs: the Pearson correlation between τ in human

or mouse and τ in frog is R = 0.74 (respectively R = 0.66) over 361 My of divergence. Even

between fly and mammals it is more than 0.38. Moreover, this tissue-specificity can be easily

compared over large datasets without picking a restricted set of homologous tissues (e.g. in

Fig 2. Pearson correlation of tissue-specificity focusing on a) human and b) mouse. X-axis, divergence time in million years between the

genes compared; Y-axis, Pearson correlation between values of τ over genes. In red, the correlation of orthologs between the focal species and

other species; representative species are noted above the figure; there are several points when there are several datasets for a same species,

e.g. four for mouse (Table 1); the size of red circles is proportional to the number of tissues used for calculation of tissue-specificity. In blue, the

correlation of paralogs in the focal species, according to the date of duplication; representative taxonomic groups for this dating are noted under

the figure; the size of blue circles is proportional to the number of genes in the paralog group.

doi:10.1371/journal.pcbi.1005274.g002
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[7,13]). The correlation between orthologs is strongest for recent speciations, and decreases

linearly with divergence time. This decrease shows that we are able to detect a strong evolu-

tionary signal in tissue-specificity, which has not always been obvious in functional compari-

sons of orthologs (e.g. [5,8]).

Correlation between within-species paralogs is much lower than between orthologs.

Whereas the expression of young paralogs has been recently reported to be highly conserved

[17], we find a large difference between even very young paralogs in tissue-specificity. In Assis

and Bachtrog [17], the measure of tissue-specificity is not clearly defined, but it seems to be

TSI [27], which performed poorly as an evolutionarily relevant measure in our recent bench-

mark [21]; they also treated female and male samples as different "tissues", confounding two

potentially different effects. The low correlation that we observed for young paralogs does not

decrease significantly with divergence time. It is possible that on the one hand paralogs do

Fig 3. Distribution of tissue-specificity in paralogs compared to an outgroup ortholog. For each graph, paralogs of a given phylogenetic age are

compared to the closest outgroup un-duplicated ortholog; thus these paralogs are "in-paralogs" relative to the speciation node, and are both "co-orthologs" to

the outgroup. X-axis, τ of unduplicated ortholog. Y-axis, τ of paralogs. Blue points are values for the paralog with highest maximal expression of the pair of

paralogs, orange points are values for the other.

doi:10.1371/journal.pcbi.1005274.g003
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diverge in tissue-specificity with time, and that on the other hand this trend is compensated by

biased loss of the most divergent paralogs. It is also possible that we lack statistical power to

detect a slight decrease in correlation of paralogs, due to low numbers of paralogs for many

branches of the phylogeny. The most likely interpretation is that for small-scale paralogs

(defined as not from whole genome duplication [28]) there is an asymmetry, with a daughter

gene which lacks regulatory elements of the parent gene upon birth; further independent

changes in tissue-specificity in each paralog would preserve the original lack of correlation. In

any case, we do not find support for a progressive divergence of tissue-specificity for paralogs.

The overall conservation of tissue-specificity could be due to a subset of genes, and most

notably sex-related genes. Indeed, the largest set of tissue-specific genes are testis-specific [21].

To verify the influence of sex-related genes, we performed all analyses without testis expression

data, or without genes mapped to sex chromosomes. After removing testis expression from all

datasets the correlation between paralogs does not change significantly, while between ortho-

logs is gets significantly weaker. The lower correlation of orthologs suggests that testis specific

genes are conserved between species, and as they constitute a high proportion of tissue-specific

genes, they contribute strongly to the correlation. Removing sex chromosome located genes

Fig 4. Difference of tissue-specificity between orthologs and paralogs. Each bar represents the number of gene pairs of a given type for a given

phylogenetic age, for which both genes of the pair are tissue-specific (τ > 0.8). In dark color, the number of gene pairs specific to the same tissue; in light color,

the number of gene pairs specific to different tissues. Orthologs are in red, in the left panel, paralogs are in blue, on the right panel; notice that the scales are

different for orthologs and for paralogs. Orthologs are one-to-one orthologs to human and paralogs are within-species paralogs in human. The overall

proportions of pairs in the same or different tissues are indicated for orthologs and paralogs; in addition, for paralogs the proportion for pairs younger than the

divergence of tetrapods (whole genome duplication) is also indicated.

doi:10.1371/journal.pcbi.1005274.g004
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does not change results significantly. After removing testis expression the differences of con-

servation of tissue-specificity between orthologs and paralogs stay significant. Overall, it

appears that tissue-specificity calculated with testis represents a true biological signal, and

given its large effect it is important to include this tissue in analyses.

In general paralogs are more tissue-specific and have lower expression levels. This could be

explained if ubiquitous genes are less prone to duplication or duplicate retention. Yet we do

not observe any bias in the orthologs of duplicates towards more tissue-specific genes (Fig 3;

see also S1 Fig). With time both paralogs get more broadly expressed (Fig 1 and Fig P in S1

Fig). In the rare case where both paralogs are tissue-specific, small-scale young paralogs are

expressed in the same tissue, while genome-wide old paralogs (ohnologs) are expressed in dif-

ferent tissues (Fig 4). With the data available, we cannot distinguish the effects of paralog age

and of duplication mechanism, since many old paralogs are due to whole genome duplication

in vertebrates, whereas that is not the case for the young paralogs. In many cases the higher

expressed paralog has a similar tissue-specificity to the ancestral state, while the lower

expressed paralog is more tissue-specific (Fig 3).

We have studied gene specificity without taking in account alternative splicing, or the possi-

bility that different transcripts are expressed in different tissues, because it is still difficult to

call transcript level expression reliably [29]. This would probably not change our main obser-

vations, that tissue-specificity is conserved among orthologs, diverges with evolutionary time,

and follows the ortholog conjecture. Of note, recent results have not supported an important

role of alternative splicing for differences in transcription between tissues [30,31].

The overall picture that we obtain for the evolution of tissue-specificity is the following. In

the absence of duplication, tissue-specificity evolves slowly, thus is mostly conserved, and tis-

sue-specific genes do not change their main tissue of expression (Figs 2 and 4). After small-

scale duplication (i.e., not whole genome) paralogs diverge rapidly in tissue-specificity, or

already differ at birth. This difference is mostly due to the less expressed paralog losing the

ancestral specificity, while the most expressed paralog keeps at first closer to the ancestral state,

as estimated from a non-duplicated outgroup ortholog (Fig 3). But over time, even the most

expressed paralog diverges much more strongly than a non-duplicated ortholog. While paralog

divergence is rapid, in the small number of genes which stay tissue-specific for both paralogs

the main tissue of expression is mostly conserved, for several hundred million years (i.e. origin

of tetrapods, Fig 4). With increasing age of the paralogs, they both tend to become more

broadly expressed (Fig 1 and Fig P in S1 Fig) while keeping a low correlation. For whole

genome duplicates we have less information, because of the age of the event in vertebrates and

the lack of good outgroup data. The main difference is that when two genome duplication

paralogs are both tissue-specific, they are often expressed in different tissues (Fig 4).

We have used tissue-specificity to estimate the conservation of function, rather than Gene

Ontology annotations or expression levels. We believe that this metric is less prone to system-

atic errors, whether annotation biases for the Gene Ontology, or proper normalisation

between datasets and choice of few tissues for expression levels. Our results confirm the Ortho-

log Conjecture on data which is genome-wide and functionally relevant: orthologs are more

similar than within-species paralogs. Moreover, orthologs diverge monotonically with time, as

expected. On the contrary, even young paralogs show large differences.

Material and Methods

RNA-seq data from 12 species (human, gorilla, chimpanzee, macaque, mouse, platypus, opos-

sum, chicken, gorilla, cow, frog, rat and fruit fly) were used for the analysis. We recovered all

animal RNA-seq data sets which cover at least 6 adult tissues, and were either pre-processed in
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Bgee [32], or provided pre-processed data from the publication, as of June 2015. For human,

mouse and chicken we used several datasets. All the datasets with the corresponding number

of tissues are summarized in Table 1. The numbers of genes used for the analysis are in

Table A and B in S1 Table.

The orthology and paralogy calls and their phylogenetic dating for paralogs were taken

from Ensembl Compara (Version 75) [33]. Phylogenetic dating was converted to absolute

dates using the TimeTree data base [34].

For the human dataset from Fagerberg et al. [22] and the fly dataset [36], FPKM values

were downloaded from the respective papers Supplementary Materials; the mouse ENCODE

project dataset was processed by an in house script (TopHat and Cufflinks [40]); all other data

were processed by the Bgee pipeline [32]. For all analyses gene models from Ensembl version

75 were used [41]. Only protein-coding genes were used for analysis. For the analysis of para-

logs the youngest couple was taken (Fig U in S1 Fig), and sorted according to the maximal

expression, i.e. the reference paralog (called "gene" in our R scripts) is always the one with the

highest maximal expression. This choice gives the highest correlation compared to a random

sorting (Fig V in S1 Fig).

Analyses were performed in R version 3.2.1 [42] using Lattice [43], plyr [44], gplots [45]

and qvalue [46,47] libraries.

As a measure for tissue-specificity we used τ (Tau) [48]:

t ¼

Pn
i¼1
ð1 � bxiÞ

n � 1
; bxi ¼

xi
max
1�i�n
ðxiÞ

Tau is calculated on the log RNA-seq expression data. The values of τ vary from 0 to 1,

where 0 means ubiquitous expressed genes and 1 specific genes. We have recently shown that

τ is the best choice for calculating tissue specificity among existing methods [21]. For compar-

ing tissue-specific genes, they were called with τ� 0.8, and assigned to the tissue with the high-

est expression.

A special case is testis-specificity, as many more genes are expressed in testis than other tis-

sues. For control analysis, all genes with maximal expression in testis were called "testis spe-

cific", independently of τ value.

Table 1. Datasets used in the paper.

Organisms/ datasets Fagerberg Brawand Bodymap ENCODE Necsulea Merkin Keane

Dataset ID E-MTAB-1733 GSE30352 GSE30611 GSE36025 (mouse) GSE43520 GSE41637 GSE30617

RPKM/FPKM source Supp. mat. Bgee Bgee Supp. mat.; [35] Bgee Bgee Bgee

Human Homo sapiens 27 8 16

Gorilla Gorilla gorilla 6

Chimpanzee Pan troglodytes 6

Macaque Macaca mulatta 6 9

Mouse Mus musculus 6 22 9 6

Rat Rattus norvegicus 9

Bos taurus 9

Opossum Monodelphis domestica 6

Platypus Ornithorhynchus anatinus 6

Chicken Gallus gallus 6 9

Frog Xenopus tropicalis 6

Fly Drosophila melanogaster 6

Citations [22] [13] [23] [24,36] [37] [38] [39]

doi:10.1371/journal.pcbi.1005274.t001
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Over all ANOVA tests performed (112 tests), we used a q-value threshold of 1% of false pos-

itives, corresponding to a p-value threshold of 0.066.

Supplementary Materials

Additional Supplementary files are available on Figshare: https://dx.doi.org/10.6084/m9.

figshare.3493010.v2
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S1 Fig. Additional figures, including alternative versions of Figs 2 and 3 with different
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