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Abstract: Selenium (Se) supplement was combined with different LED light qualities to investigate
mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements
in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 µmol L−1 Na2SeO3),
1R1B+Se, 1R2B+Se, 2R1B+Se, 60 µmol m−2 s−1 PPFD, 12 h/12 h (light/dark). Sprouts under
a combination of selenium and LED light quality treatment exhibited no remarkable change fresh
weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially
with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C,
total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically
improved through the combination of Se and LED light quality. Moreover, heat map and principal
component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional
quality and health-promoting compound contents than other treatments. This suggests that the
Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli
sprout production.
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1. Introduction

Broccoli (Brassica oleracea L. var. italica) has received considerable attention for its rich bioactive
composition, especially with respect to glucosinolates (GLs), which can reduce the risk of different
diseases, including cancer, inflammation, cardiovascular and neurodegenerative diseases [1]. In recent
years, the consumption of broccoli sprouts has increased, along with consumer awareness and
appreciation for their diverse flavors, vivid colors, delicate textures and phytonutrients, including GLs.

Selenium is an essential micro-nutrient that plays critical roles in various physiological processes,
such as thyroid hormone metabolism, antioxidant defenses and immune function [2]. Additionally,
it plays multiple roles in growth and function of living cells and has many crucial biological functions
in animals and humans [3]. The development and uses of Se-biofortified agricultural products have
been proposed as a promising functional agricultural strategy to increase selenium supplementation
and dietary nutrient intake for humans [4]. Selenium has a significant impact on growth and quality
of vegetables. Addition of selenium significantly increases Se content in spinach [5], broccoli [6],
cabbages [7], radishes [8], generally without negatively affecting the biomass and quality of plants.
Selenium promotes metabolic activities, particularly antioxidant activities, enhancing plant tolerance
under unfavorable growth conditions [9]. Selenium addition increases glucosinolate production in
radish roots [8], and influences the expression of genes involved in the biosynthesis and degradation of
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glucosinolates in Arabidopsis [10]. Brassica can accumulate high Se concentrations through its metabolic
capacity to convert selenoamino acids into non-proteinogenic amino acids, such as selenomethyl
selenocysteine (SeMSC), c-glutamyl SeMSC and selenocystathionine [11]. Thus, selenium enrichment of
sprouts can enhance the anticancer properties of broccoli sprouts due to the accumulation of two active
anticancer agents: sulforaphane and Se-methylselenocysteine. An amount of 100 µmol L−1 selenate
and selenite treatments have been shown to significantly affect the contents of health-promoting
compounds in broccoli sprouts from different cultivars [12]. Once absorbed by plants, selenite remains
in organic form and becomes a more effective inducer of glutathione peroxidase [13].

Blue (B) and red (R) light-emitting diodes (LEDs) are commonly used for plant growth in view of
their roles as essential energy sources for photosynthetic carbon assimilation [14]. Combined R and B
LEDs are regarded as the optimal light quality to support the growth of most plants. Red plus blue
light is beneficial to cucumber seedlings’ development, and plant height, dry matter quality and Fv/Fm
are notably increased compared with monochromatic R or B light treatment [15]. Bigger leaves and
heavier fresh weight were found in red leaf lettuce when seedlings were grown under mixed R and B
light in comparison to those grown under monochromatic R light [16]. B light supplemented with R
light positively affected plant biomass in nine tomato genotypes and led to the increased concentration
of soluble protein, chlorophyll and carotenoid [17].

Primary and secondary metabolites in specialty vegetable crops will be higher under narrow-band
LED lights, due to plants only receiving B and R wavelengths compared with other wavelengths
found in the spectra emitted from fluorescent/incandescent bulbs. It is possible to reduce possible light
stress that plants are subjected to in the growing environment by using narrow-band wavelengths [18].
Stem elongation, stomatal opening, and anthocyanin accumulation were inhibited under green light
due to plant responses to green light tending to neutralize blue- or red-induced responses [19]. Green (G)
light led to a bigger leaf length and width of ‘Rex’ and ‘Rouxai’ lettuce and ‘Siberian’ kale plants,
as well as shoot fresh weight in ‘Siberian’ kale plants, compared with combined R and B light [20].
Biomass and leaf area could be further increased in lettuce with the addition of G light to R and B
LEDs [21]. It is possible that the combination of Se and LED light quality may be beneficial to the
production of selenium-biofortified high-quality broccoli sprouts. Thus, this study investigates the
combination of selenium and different ratios of B/R/G narrow-band LED light quality on growth,
biomass, physicochemical properties and mineral elements in broccoli sprouts in an artificial light
plant factory.

2. Results

2.1. Growth and Weight

Selenium supplementation combined with different LED light qualitites had a significant impact
on the growth of broccoli sprouts (Table 1). Sprouts under 1R1B1G+Se, 1R1B+Se, 1R2B+Se and
2R1B+Se had significantly shorter hypocotyl lengths than under 1R1B1G. Sprouts’ fresh weight did
not differ among the treatments. Dry weight under all Se-treated sprouts was considerably greater
than under 1R1B1G, and the heaviest sprout dry weight occurred under 1R2B+Se. Moisture content
was dramatically decreased with all Se treatments, but there was no significant difference among them.

2.2. Pigment Content in Broccoli Sprouts

A combination of Se and LED light quality treatment significantly affected broccoli sprouts’
pigment content (Table 2). The content changes of chlorophyll a, chlorophyll b, total chlorophyll were
consistent among all treatments. Chlorophyll content of Se-treated sprouts was significantly reduced
compared with 1R1B1G, but no significant differences were found with 1R2B+Se. The carotenoid
contents under 1R1B1G+Se, 1R1B+Se and 2R1B+Se notably increased, by 15.79%, 21.05% and 21.05%,
respectively, compared to 1R1B1G. Similar to carotenoid contents, total anthocyanin contents were
significantly higher under all combinations of Se and LED light treatment when compared with 1R1B1G.
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The ratios of Chl a/b did not differ among the treatments, while the Chl/Car ratios under 1R1B1G+Se,
1R1B+Se and 2R1B+Se were significantly lower than under 1R1B1G and 1R2B+Se.

Table 1. Growth and fresh and dry weights of broccoli sprouts grown under a combination of selenium
and LED light quality treatments.

Treatments Hypocotyl Length
(cm)

Fresh Weight
(mg/plant)

Dry Weight
(mg/plant)

Moisture Content
(%)

1R1B1G 4.27 ± 0.06 a 51.44 ± 1.17 a 3.43 ± 0.07 b 93.39% ± 0.55 a
1R1B1G+Se 3.76 ± 0.05 b 49.22 ± 1.05 a 3.63 ± 0.09 ab 92.62% ± 0.40 b

1R1B+Se 3.54 ± 0.04 c 49.22 ± 0.80 a 3.61 ± 0.04 ab 92.26% ± 0.61 b
1R2B+Se 3.32 ± 0.06 d 50.78 ± 0.85 a 3.87 ± 0.17 a 92.65% ± 1.12 b
2R1B+Se 3.37 ± 0.06 d 49.22 ± 1.21 a 3.64 ± 0.07 ab 92.52% ± 0.63 b

All values in the table are expressed as mean ± standard error (n = 30). Different letters in the same row indicate
significant differences between treatments by Duncan’s multiple range test (p < 0.05).

Table 2. Pigment contents of broccoli sprouts grown under a combination of selenium and LED light
quality treatments.

Treatments 1R1B1G 1R1B1G+Se 1R1B+Se 1R2B+Se 2R1B+Se

Chl a (mg/g FW) 1.45 ± 0.10 a 1.23 ± 0.03 c 1.24 ± 0.03 c 1.43 ± 0.06 ab 1.26 ± 0.02 bc
Chl b (mg/g FW) 0.53 ± 0.05 a 0.43 ± 0.01 c 0.44 ± 0.02 bc 0.52 ± 0.02 ab 0.44 ± 0.01 bc
Chl (mg/g FW) 2.00 ± 0.14 a 1.68 ± 0.04 c 1.70 ± 0.05 c 1.96 ± 0.08 ab 1.72 ± 0.03 bc
Car (mg/g FW) 0.19 ± 0.01 b 0.22 ± 0.00 a 0.23 ± 0.00 a 0.20 ± 0.01 b 0.23 ± 0.00 a
TA (µg/g FW) 7.29 ± 0.17 b 9.23 ± 0.39 a 9.13 ± 0.24 a 9.85 ± 0.90 a 9.88 ± 0.46 a

Chl a/b 2.72 ± 0.07 a 2.87 ± 0.03 a 2.84 ± 0.03 a 2.75 ± 0.03 a 2.84 ± 0.05 a
Chl/Car 10.64 ± 1.39 a 7.47 ± 0.12 b 7.57 ± 0.29 b 9.80 ± 0.71 ab 7.53 ± 0.19 b

Chl a, Chl b, Chl, Car, and TA represent chlorophyll a, chlorophyll b, chlorophyll, carotenoid and total anthocyanin,
respectively. Chl a/b represents the ratio between chlorophyll a and chlorophyll b. Chl/Car represents the ratio
between total chlorophyll and carotenoids. All values in the table are expressed as mean ± standard error (n = 3).
Different letters in the same row indicate significant differences between treatments by Duncan’s multiple range test
(p ≤ 0.05).

2.3. The Content of Soluble Sugars, Soluble Protein in Broccoli Sprouts

As shown in Figure 1, the contents of soluble sugar and soluble protein in broccoli sprouts were
significantly increased by the combination of Se and LED light quality treatment. The highest
soluble sugar content was observed with 1R1B+Se, with an increase of 53.90%, and 1R1B1G
+Se, 1R2B+Se, and 2R1B+Se resulted in an increase of 23.91%, 35.40%, and 38.70%, respectively
(Figure 1A). Compared with 1R1B1G, the soluble protein contents with 1R1B1G+Se, 1R1B+Se, 1R2B+Se,
and 2R1B+Se were significantly higher, by 42.45%, 52.52%, 86.11% and 86.16%, respectively (Figure 1B).
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Figure 1. The contents of soluble sugars (A) and soluble protein (B) of broccoli sprouts grown under Figure 1. The contents of soluble sugars (A) and soluble protein (B) of broccoli sprouts grown under a
combination of selenium and LED light quality treatments. The letters marked in all figures indicate
the significance of the difference (p ≤ 0.05, Duncan’s test).
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2.4. The Contents of Vitamin C (Vc), Total Phenolic Compounds (TPC) and Total Flavoncids (TF)
in Broccoli Sprouts

The contents of Vc, TPC, and TF in broccoli sprouts were affected by the combination of Se and
LED light quality treatment (Figure 2). Compared with 1R1B1G, the Vc content of broccoli sprouts was
not affected by 1R1B1G+Se, while those with 1R1B+Se, 1R2B+Se and 2R1B+Se were significantly higher
than 1R1B1G, by 9.77%, 14.29% and 11.28%, respectively (Figure 2A). The TPC contents with 1R1B+Se,
1R2B+Se and 2R1B+Se were higher than with 1R1B1G, by 10.07%, 25.9%, and 15.11%, respectively,
but no significant differences were found between 1R1B1G +Se and 1R1B1G (Figure 2B). Similar to
TPC content, higher TF contents were observed with 1R1B+Se, 1R2B+Se and 2R1B+Se, and these were
significantly higher than 1R1B1G, by 53.28%, 83.61% and 61.48%, respectively (Figure 2C).
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2.5. The Mineral Element Content in Broccoli Sprouts

Selenium supplementation combined with different LED light quality treatments significantly
affected the contents of organic Se, K, Ca, Mg, S and Zn in broccoli sprouts (Table 3). The highest
organic Se contents of sprouts were found with 1R1B+Se and 1R2B+Se, followed by 2R1B+Se and
1R1B1G+Se. The S content in 1R1B1G+Se was higher than 1R1B1G, and the highest S content was
found in 1R1B+Se. However, the contents of K, Ca and Zn in broccoli sprouts were significantly lower
under all Se treatments in comparison to 1R1B1G. The contents of N, P, Fe were not significantly
affected by the combination of Se and LED light quality treatments.

Table 3. The content of mineral elements of broccoli sprouts grown under a combination of selenium
and LED light quality treatments.

Treatment 1R1B1G 1R1B1G+Se 1R1B+Se 1R2B+Se 2R1B+Se

Macro-nutrients (g/kg DW)
N 63.81 ± 0.32 a 62.42 ± 0.85 a 62.98 ± 0.90 a 63.17 ± 0.96 a 61.83 ± 0.95 a
P 9.55 ± 0.05 a 9.34 ± 0.21 a 9.08 ± 0.20 a 9.05 ± 0.16 a 9.05 ± 0.12 a
K 8.22 ± 0.09 a 7.38 ± 0.31 b 7.33 ± 0.06 b 7.98 ± 0.04 a 6.94 ± 0.14 b
Ca 11.70 ± 0.45 a 10.39 ± 0.06 b 10.32 ± 0.24 b 10.08 ± 0.26 b 9.8 ± 0.07 b
Mg 3.54 ± 0.07 a 3.30 ± 0.05 b 3.35 ± 0.10 ab 3.31 ± 0.06 b 3.16 ± 0.01 b
S 21.84 ± 0.58 bc 22.98 ± 0.41 ab 23.62 ± 0.23 a 21.30 ± 0.16 c 22.20 ± 0.17 bc

Micro-nutrients (mg/kg DW)
Zn 130.09 ± 0.46 a 86.15 ± 1.70 b 86.85 ± 0.75 b 85.90 ± 1.29 b 84.04 ± 1.39 b
Fe 107.94 ± 4.96 a 108.30 ± 7.12 a 109.88 ± 5.53 a 113.38 ± 3.60 a 114.34 ± 4.68 a

Organic Se 4.48 ± 0.69 c 88.82 ± 0.30 b 107.10 ± 5.48 a 110.33 ± 4.40 a 95.86 ± 0.72 b

All values in the table are expressed as mean ± standard error (n = 3). Different letters in the same row indicate
significant differences between treatments by Duncan’s multiple range test (p ≤ 0.05).

2.6. The Glucosinolate (GL) Contents in Broccoli Sprouts

Nine GLs were identified by HPLC in broccoli sprouts (Figure 3), which comprised five
aliphatic GLs (progoitrin (PRO), glucoraphanin (GRA), sinigrin (SIN), glucobrassicanapin (GBN) and
glucoerucin (GRE)), and four indole GLs (4-hydroxy-glucobrassicin (4-HGBS), glucobrassicin (GBS),
4-methoxy-glucobrassicin (4-MGBS) and neoglucobrassicin (NGBS)). Aliphatic GL content accounted



Molecules 2020, 25, 4788 5 of 15

for approximately 70% of the total GL content in broccoli sprouts in this study. With a noticeable
decrease in the content of PRO, GER, 4HGBS and GBS, the contents of total aliphatic GLs and total GLs in
broccoli sprouts decreased with 1R1B1G+Se treatment compared to with 1R1B1G. The increase in total
GL content was mainly due to the increase of aliphatic GL contents, which increased by 18.95%, 22.31%
and 21.25% in 1R1B+Se, 1R2B+Se and 2R1B+Se, respectively, but there was no significant difference
among these treatments. GRA and GER, as two major aliphatic GLs were not affected by 1R1B1G+Se,
while they were significantly increased by 1R1B+Se, 1R2B+Se and 2R1B+Se. 4-HGBS content decreased
under a combination of Se and LED light quality treatment, while 4-MGBS and NGBS contents
increased under these treatments.
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Figure 3. High-Performance Liquid Chromatography of identified glucosinoaltes from broccoli sprouts
(A) the total glucosinolate contents (B) and the individual glucosinolate contents (C) in broccoli sprouts.
The letters marked in all figures indicate the significance of the difference (p ≤ 0.05, Duncan’s test).

2.7. Heat Map Analysis

A heat map was used to analyze the response among the investigated parameters and showed
a broad view of the effects of the combination of selenium and LED light quality on broccoli sprouts
(Figure 4). The 1R1B+Se, 1R2B+Se and 2R1B+Se clusters, which are marked close to each other in
the heat map, indicate the similarity of their impacts, while they are equidistant from the 1R1B1G
and 1R1B1G+Se clusters. 1R1B1G was characterized by a higher fresh weight, hypocotyl length,
content of chlorophyll and N, P, K, Ca, Mg in the broccoli sprouts, which contributed to separating the
1R1B1G cluster from the others; 1R1B+Se, 1R2B+Se, and 2R1B+Se treatments had higher contents of
antioxidants, glucosinolates and organic Se content.

2.8. Principal Component Analysis

The most significant overall effects of the combination of selenium and LED light quality on
growth, phytochemical composition and mineral element of broccoli sprouts were assessed by principal
component analysis (PCA) (Figure 5). The computed model captured 62.71% of the total observed
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variance with the first two principal components (PCs). Score and loading plots on PC2 vs. PC1 are
shown in Figure 5. Combination of selenium and LED light quality had distinct impacts on growth,
primary and secondary metabolites, and mineral elements in broccoli sprouts. PCA and heat mapping
showed similar results: there were significant differences between 1R1B1G, 1R1B1G+Se, 1R1B+Se
and 1R2B+Se, according to the PCA scatter plot (Figure 5). The PCA correlation circle (Figure 5)
indicates that fresh weight and chlorophyll contents were positively correlated with N, K, Mg contents.
Additionally, glucosinolate contents were strongly correlated with the contents of Vc, TPC and TF in
broccoli sprouts.Molecules 2020, 25, x 6 of 15 
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3. Discussion

3.1. Effects of Combination of Selenium and LED Light Quality on Broccoli Sprout Growth

The combination of selenium and LED light quality had a negative effect on the growth of
broccoli sprouts, resulting in a reduction in hypocotyl elongation and fresh weight, as well as moisture
content (Table 1). Low Se concentrations enhance plant growth, while high Se concentrations are
extremely toxic to organisms. Selenium can replace sulfur in proteins and negatively affect growth and
germination of seeds and reduce yields [22,23]. Different B/R light ratios play virtual roles in plant
growth and pigment accumulation. When cucumber seedlings were cultivated under various R-to-B
light ratios (R:B = 2.5:7.5, 5:5, 7:3, and 9:1) for 17 days, plant height, hypocotyl and epicotyl length,
leaf area, fresh and dry mass decreased as the B light ratio decreased [24]. In this study, although
shorter hypocotyl length was found in Se-treated broccoli sprouts, the combination of selenium and
LED light quality did not affect the fresh weight, and increased the dry weight of broccoli sprouts.
Higher B/R light (1R2B+Se) led to heavier fresh and dry weight than other Se-treated broccoli sprouts
(Table 1). This indicates that an appropriate concentration of Se supplementation under suitable LED
lights could significantly increase the growth and biomass of broccoli sprouts.

3.2. Effects of Combination of Selenium and LED Light Quality on Pigment Content in Broccoli Sprouts

Previous studies have shown that a significant increase in chlorophyll content (chlorophyll a,
chlorophyll b and total chlorophyll) can be observed in lettuce [25] and broccoli [26] under Se treatments.
Selenium applications (60 and 120 mg·L−1) reduced chlorophyll content in basil, leading to higher
contents of carotenoid [27]. In this study, the addition of Se significantly reduced the chlorophyll
content in broccoli sprouts, while remarkably increasing the content of carotenoids and anthocyanin
(Table 2). An increase in the carotenoid contents of Se-treated sprouts may be caused by the mitigation
of photoinhibition on the photosynthetic apparatus, mainly via the xanthophyll cycle [28]. Many plant
species are more sensitive to R light and B light than to other light wavelengths, as chlorophyll a and
b efficiently absorb B and R light [29]. In this study, higher concentrations of pigments responded
to a higher portion of B light in the Se-treated sprouts (1R2B+Se) (Table 2). The enhanced content
of chlorophyll and carotenoid and anthocyanin in broccoli sprouts under higher B/R light treatment
might be due to the cryptochrome action under high B irradiance [30].

3.3. Effects of Combination of Selenium and LED Light Quality on Phytochemical Content in Broccoli Sprouts

Soluble sugars and soluble proteins are important parameters in evaluating the nutritional
quality of vegetables, because they provide essential proteins and energy for the human body.
Selenium treatment plays a pivotal role in increasing quality parameters of tomato fruit, such as soluble
solid content [31], contents of glucose, fructose, and total sugar [32]. This study showed that the
content of soluble sugars and soluble proteins in broccoli sprouts was significantly increased by Se
treatment (Figure 1), especially under 1R1B+Se, 1R2B+Se, and 2R1B+Se. Soluble sugar contents were
higher in tomato seedlings under B light than under other LED light, whereas the highest amount of
soluble proteins was observed under a mixture of R and B LED light [33]. Blue LED light or a mixture
of R and B LED light led to a higher content of soluble proteins in radish seedlings compared with
white or R LED light [34]. Compared to other light wavelengths, R and B light are more effective for
increasing contents of soluble sugar and protein in vegetables, possibly because R and B light are the
two major lights driving photosynthate biosynthesis, and B light facilitates the protein biosynthesis,
while preventing its degeneration [35]. Thus, the combination of Se supplement under the higher B:
R light treatment might be beneficial to improve nutrition quality in broccoli sprouts.

Vitamin C (Vc) provides vital antioxidants in plants, and plays a significant role in plant stress
response and cell wall metabolism and expansion [36]. Vitamin C contents in broccoli sprouts
significantly increased under 1R1B+Se, 1R2B+Se, and 2R1B+Se, whereas no significant difference was
observed between 1R1B1G+Se and 1R1B1G, indicating that Se supplementation had no significant
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effect on Vc contents in broccoli sprouts (Figure 2). Blue LED light and a mixture of R and B LED light
resulted in higher Vc contents in lettuce than R LED light [37]. Irradiation from blue fluorescent lamps
led to higher Vc concentrations in lettuce and komatsuna, partly due to the fact that B light could
increase the plant photosynthesis capacity and increase the synthesis and accumulation of hexose and
D-glucose, which are Vc precursors and can stimulate Vc synthesis via several metabolic pathways [38].
Hence, the combination of Se supplement and a higher B/R light ratios LED lights appears to be more
effectively facilitating Vc biosynthesis and accumulation in broccoli sprouts.

Phytochemicals, including anthocyanins, polyphenols, and flavonoids, play an important role in
the protection of cardiovascular health and prevention of certain cancers [39]. A combination of Se
supplementation under 1R1B1G light did not cause higher content of TPC and TF in broccoli sprouts,
but anthocyanin content in broccoli sprouts was significantly increased by the combination of Se
supplementation and LED light quality. In basil, Se did not induce changes in phenolic compound
content [40], but it might positively affect the anthocyanin content. The addition of B light to R light
or increased B light intensity increased total phenolic concentration and the antioxidant capacity of
red leaf lettuce [41]. Similarly, the concentration of total phenolic and total flavonoid, and antioxidant
capacity of lettuces grown under high ratios of B LED (such as B:R = 35:65, 47:53 or 59:41) were
significantly higher compared with the treatments of B:R = 0:100, 13:87 and 26:74 [42]. In this study,
although 1R1B1G+Se did not cause higher content of TPC and TF in broccoli sprouts, the anthocyanin
content in broccoli sprouts was significantly increased by the combination of Se supplement and LED
light quality. The TPC and TF content of broccoli sprouts significantly increased in 1R1B+Se, 1R2B+Se,
and 2R1B+Se, and the highest content was observed in 1R2B+Se (Figure 3). The concentrations of
phenolics and flavonoids in green and purple basil plants were both decreased by G light radiation [43].
It was postulated that the decreased phytochemical concentration in green light treatments was
caused by the co-actions of decreased R and/or B light proportions and an increasing reversal of B
light-induced effects by G light [43]. On the other hand, B light could activate the expression of PAL
(phenylalanine ammonia-lyase), CHS (chalcone synthesis), and DFR (dihydroflavono l-4-reductase),
which are key elements in the biosynthetic pathways of anthocyanin and flavonoid compounds [44].
Thus, Se supplementation under higher B/R light ratios LED lights might be strategically employed to
enhance many bioactive compounds and consequently the nutrition of vegetables.

3.4. Effects of Combination of Selenium and LED Light Quality on Mineral Element Content
in Broccoli Sprouts

Mineral nutrients play a crucial role in plant physiology and metabolism. Organic selenium is
more bio-available to the human body than inorganic selenium [45]. The content of organic Se in
broccoli sprouts remarkably increased under the combination of Se supplement and LED light, but the
contents of K, Ca and Zn decreased (Table 3). Meanwhile, S content in broccoli sprouts increased under
1R1B1G+Se compared to 1R1B1G, indicating that Se supplementation could promote the accumulation
of S. When spraying high-concentration Se (100 µg·mL−1), more S may be required for appropriate
translocation, and thus broccoli takes up more S to meet this demand [26]. The contents of N, P and K in
broccoli heads were not affected by Se spray at 10, 50, and 100 µg·mL−1 [26]. This might indicate that the
effects of Se on mineral nutrients were dependent on the species and concentration. The concentrations
of Ca, Mg, Mn and Fe were higher in lettuce grown under B or R + B LEDs compared to under other
light [46]. The accumulation of Fe, P, Mg, and N in lettuce tissues was significantly increased by either
R or a mixture of R and B (R:B = 2), while the accumulation of K and Ca increased under B light [47].
However, no differences in N accumulation in lettuce leaves were found among monochromatic B or R
lights or mixtures of R and B at varying ratios (e.g., R:B = 0.5, 1, 3, and 13) [48]. In general, B light
could affect proton pumping, membrane permeability, and ion channel activities in plants [49]. Hence,
Se supplementation under higher ratios of B and R LED light might be an optimal and efficient method
for the production of organic Se in broccoli sprouts.
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3.5. Effects of Combination of Selenium and LED Light Quality on Glucosinolates Contents in Broccoli Sprouts

Glucosinolates, which contain nitrogen and sulfur in their structures, are the major class of
secondary metabolites found in Brassica crops, and play important roles in human body nutrition
and health [50]. Selenium biofortification and light quality can affect GL production in Brassica.
1R1B1G+Se significantly reduced the content of total aliphatic GLs and total GLs, but significantly
increased the content of 4-MGBS in broccoli sprouts (Figure 4). Selenium application reduced total GL
content in radish leaves, causing a 35% increase in radish roots [8]. Selenium application could alter
GL contents in broccoli due to the fact that Se treatment significantly down-regulated D-glyceric acid,
succinic acid and citric acid, serine O-acetyltransferase [51]. Meanwhile, Se treatment could influence
β-alanine metabolism, glutathione metabolism, and biosynthesis of plant secondary metabolites in
broccoli sprouts [51]. The repression of genes expression, such as BCAT4, MAM1, CYP79B2 and FMO2,
were the cause of inhibition of glucosinolate accumulation in the Se-treated broccoli [52]. In addition,
MYB28 and MYB34, which play crucial roles in regulating aliphatic- and indole-glucosinolate
biosynthesis, respectively, were significantly down-regulated by selenate in the young leaves and
florets of broccoli [52]. Interestingly, total aliphatic GLs and total GL content in broccoli sprouts were
substantially increased when the Se supplement under 1R1B+Se, 1R2B+Se, and 2R1B+Se (Figure 4).
The light environment could affect GLs in brassica species. Higher percentages of blue wavelengths
led to a pronounced enhancement of glucosinolate contents in pakchoi [53]. The accumulation of
glucosinolates in Chinese kale sprouts shoots significantly inhibited by 30 µmol m−2 s−1 B LED (470 nm)
compared with the darkness control, white LED light and R LED light treatments, while there was no
obvious effect on those of the roots [54]. The canola sprouts grown under B, R, and white LEDs showed
higher GL contents compared with those under B + R LEDs [55]. Therefore, Se supplementation under
1R2B LED light might be the optimal and efficient method for the production of glucosinolates.

4. Materials and Methods

4.1. Plant Materials and Cultivation Conditions

The study was carried out in an artificial light plant factory at South China Agricultural University.
Seeds of broccoli (Brassica oleracea var. italica cv. lvhua) were obtained from SANHERB Company
(Chengdu, China). Surface-sterilized seeds were soaked in 5% sodium hypochlorite for 15 min,
drained and soaked with distilled water at 30 ◦C for 5 h, germinated and grown in plastic trays
(32.5 × 24 × 4.5 cm) in the growth chamber for 4 days in dark at 25 ◦C with 75% relative humidity.
The broccoli sprouts were transferred into a growth chamber equipped with blue (B)/red (R)/green
(G) LED light. One liter of 100 µmol L−1 sodium selenite solution or deionized water was added
to the containers, and then 10 mL of 100 µmol L−1 sodium selenite solution was sprayed twice per
day; the control sprouts were sprayed with deionized water. There were five treatments: CK:1R1B1G
LED (red 660 ± 10 nm:blue 460 ± 10 nm:green 520 ± 10 nm = 1:1:1), 1R1B1G+Se (100 µmol L−1

Na2SeO3), 1R1B+Se (red:blue = 1:1), 1R2B+Se (red:blue = 1:2), 2R1B+Se (red:blue = 2:1) (Figure 6
and Supplementary Table S1). The environmental conditions in this experiment were as follows:
60 µmol m−2 s−1 PPFD, 12 h/12 h (light/dark), 25 ± 1 ◦C, and relative humidity (RH) of 70 ± 10%,
500 ± 100 µmol·mol−1 CO2. On the seventh day, the sprouts were sampled. The sampled sprouts were
frozen in liquid nitrogen, freeze-dried, milled, and stored at −40 ◦C for further analysis. For each
treatment, three replicates were taken for analysis.

4.2. Biometric Measurements

Broccoli sprouts’ hypocotyl length (HL) was measured using a ruler. Fresh sprouts were weighed to
obtain the fresh weight (FW), then dried at 75 ◦C for 72 h to obtain the dry weight (DW). Thirty broccoli
sprouts were used as a sample group for each measurement.
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4.3. Pigment Content Determination

Fresh broccoli sprouts samples (0.2 g) were dipped in 8 mL acetone ethanol mixture
(acetone:ethanol = 1:1, v:v) until they turned white at ambient temperature for 24 h in darkness.
The absorbance of the extract solution was measured by UV-spectrophotometer (Shimadzu UV-16A,
Shimadzu, Corporation, Kyoto, Japan) at 645 nm (A645), 663 nm (A663) and 440 nm (A440).
Chlorophyll and carotenoid concentrations were calculated as follows [56]:

Chlorophyll a (mg·L−1) = 12.7 ×A663 − 2.69 × A645

Chlorophyll b (mg·L−1) = 22.9 × A645 − 4.86 × A663

Total Chlorophyll (mg·L−1) = 8.02 × A663 + 20.20 × A645

Carotenoids (mg·L−1) = 4.7 × A440 − 0.27 × Total Chlorophyll
Photosynthetic pigment (mg·g−1) = Photosynthetic pigment (mg·L−1) × 8 mL × 10−3/0.2 g

Total anthocyanin content (TA) was measured according to the method described by Xu [57].
A ground broccoli sprout sample (1.0 g) extracted using 20 mL 60% ethanol was heated in a boiling
water bath for 2 h. The homogenate was filtered into a volumetric flask. The extract solution was
determined by UV-spectrophotometer at 535 nm.

4.4. Phytochemical Determination

Soluble sugar (SS) content was performed using the anthronesulfuric acid colorimetry method [58].
0.5 g fresh sprouts samples were heated in a boiling water bath with 10 mL distilled water for 30 min.
0.1 mL supernatant was mixed with 1.9 mL distilled water, 0.5 mL anthrone ethyl acetate and 5 mL
sulfuric acid. After shaking, the soluble sugar was detected by UV-spectrophotometer at 630 nm.

Total soluble protein (SP) contents in broccoli sprouts were determined according to the Coomassie
brilliant blue G-250 dye method [59]. 0.5 g fresh samples were homogenized in 8 mL of distilled water.
The homogenate was centrifuged at 3000× g for 10 min at 4 ◦C, and 0.2 mL supernatant was combined
with 0.8 mL distilled water and 5 mL Coomassie brilliant blue G-250 solution (0.1 g·L−1). After 5 min,
the soluble protein content was detected at 595 nm by UV-spectrophotometer.

Vitamin C (Vc) was assayed by the molybdenum blue spectrophotometry [60]. 0.5 g fresh samples
ground into pulp with 25 mL 1% oxalic acid EDTA solution (w/v). 10 mL extracted solution was mixed
with 1 mL phosphate-acetic acid, 2 mL 5% vitriol and 4 mL ammonium molybdate. After 15 min,
the mixed solution was determined at 705 nm by UV-spectrophotometer.
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Total phenolic compound content (TPC) was determined by the method of Vernon [61] with
minor modifications. After being extracted with 8 mL straight ethanol, the homogenates centrifuged
at 3000× g for 10 min at 4 ◦C. 1 mL supernatant were mixed with 0.5 mL foline-phenol and 11.5 mL
26.7% sodium carbonate for 2 h in darkness. Total phenolic content was determined by reading the
absorbance at 765 nm.

The samples for total flavonoid contents (TF) assay were extracted as the method for total phenolics.
The total flavonoid contents were determined by the aluminum nitrate method [62]. 1 mL extract
solution was added to 11.5 mL 30% ethanol and 0.7 mL 5% NaNO2. After 5 min, the reaction solution
was mixed with 0.7 mL 10% Al(NO3)3, and 6 min later, the mixture was added to 5 mL 5% NaOH.
10 min later, absorbance was read at 760 nm by UV-spectrophotometer.

Glucosinolates (GLs) were extracted and analyzed as previously described with slight
modifications [54]. The freeze-dried samples (0.3 g) were extracted with 4 mL 70% methanol for 20 min
in a 75 ◦C bath, which was shaken every 10 min using a vortex stirrer. 2 mL of 0.4 mol L−1 barium
acetate was then added, and the mixture was centrifuged at 4000× g for 10 min (ambient temperature).
The extraction was repeated twice more. Then, the supernates were combined and loaded onto a mini
column containing 500 µL of DEAE-Sephadex A-25 that had been conditioned with 2 mol L−1 acetic
acid and washed with 6 mol L−1 imidazole formate. After loading, the column was washed with
0.02 M sodium acetate buffer. 500 µL of a sulfatase solution (Sigma-Aldrich, Steinheim, Germany) was
added, and the preparation was incubated overnight. The latter was dissolved in 2 mL of distilled
water and filtered through a 0.22 µm membrane filter. HPLC analysis of desulphoglucosinolates was
carried out by a Waters e2695 liquid chromatograph (Waters Crop, Milliford, MA, USA) equipped
with a model 2489 UV/Vis detector and controlled by Waters Empower3 software. Samples (20 µL)
were separated at 30 ◦C on a reversed-phase C18 column (5 µm, 250 mm × 4.6 mm; Waters SunFire
C18, Waters, Milford, MA, USA). The mobile phase consisted of acetonitrile (A) and distilled water (B)
and flow rate was 1.0 mL·min−1. Chromatograms were recorded at 229 nm. The glucosinolates were
identified by their retention times and spectral data as compared by standards.

Dried broccoli sprouts were weighed and ground to powder. The content of nitrogen (N) in
sprouts was determined by Ojeda [63]. Phosphorus (P) was analyzed by a vanadate–molybdate
method using a spectrophotometer [64], and potassium (K) was analyzed using a flame photometer
after sample digestion [65], while the content of calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn)
and iron (Fe) in sprouts was determined using the atomic absorption spectrophotometry method [66].
Organic Se content was assayed using Sun’s method [67].

4.5. Statistics

Data were analyzed by a one-way analysis of variance (ANOVA), using SPSS 22.0 software (SPSS Inc.,
Chicago, IL, USA). Means comparison was performed using Duncan’s test at p < 0.05. Multivariate
principal component analysis (PCA) was performed by and XLStat 2019 software (Addinsoft, New York,
NY, USA). A heat map was generated using TBtools (http://cj-chen.github.io/TBtools/).

5. Conclusions

The combination of selenium and different ratios of blue/red/green narrow-band LED light quality
was able to significantly increase the nutritional quality and health-promoting compounds of broccoli
sprouts, including carotenoids, soluble sugars, soluble proteins, Vc, TA, TPC, TF, GLs and organic Se,
in general without negatively affecting the fresh weight of sprouts. Moreover, PCA and cluster heat
map showed that broccoli sprouts with 1R2B+Se treatment had higher nutritional quality and content
of health-promoting compounds than other treatments. The combination of Se and 1R2B (1R2B+Se)
might be beneficial to the production of selenium-biofortified high-quality broccoli sprouts.

Supplementary Materials: The following are available online, Supplementary Table S1 Details of treatments.
Supplementary Figure S1 The phenotype of broccoli sprouts under combination of selenium and LED light
quality treatments.
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