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ABSTRACT: Density functional theory within the Kohn−Sham
density functional theory (KS-DFT) ansatz has been implemented
into our bubbles and cube real-space molecular electronic structure
framework, where functions containing steep cusps in the vicinity of the
nuclei are expanded in atom-centered one-dimensional (1D) numerical
grids multiplied with spherical harmonics (bubbles). The remainder,
i.e., the cube, which is the cusp-free and smooth difference between the
atomic one-center contributions and the exact molecular function, is
represented on a three-dimensional (3D) equidistant grid by using a
tractable number of grid points. The implementation of the methods is
demonstrated by performing 3D numerical KS-DFT calculations on
light atoms and small molecules. The accuracy is assessed by comparing
the obtained energies with the best available reference energies.

1. INTRODUCTION

Kohn−Sham density functional theory (KS-DFT) is nowadays
among the most popular quantum mechanical methods
employed in molecular and material science simulations.1

The exchange-correlation functional is the key component of
the DFT theory and searching for approximate and more
accurate functional forms has been going on since the
invention of KS-DFT.2

There are several aspects that need to be considered when
implementing exchange-correlation (XC) functionals for
efficient and accurate calculations. Many different basis-set
options are employed, while Gaussian-type3 basis functions
dominate the quantum chemistry field. These global analytic
atomic-centered basis functions capture the main features of
the orbitals near the nuclei. However, high accuracy is hard to
achieve by systematically increasing the basis set size without
running into linear dependence problems.4−7 Despite using
global basis sets, the XC energy contribution cannot be
obtained analytically but has to be computed numerically,8−15

implying that the quadrature must be fast and accurate.
The bubbles and cube numerical framework is a finite-

element approach developed in our group.16,17 The functions
containing the steep nuclear cusps are expanded using local
functions on atom-centered one-dimensional (1D) numerical
grids multiplied with spherical harmonics (bubbles). The
remainder, which is the cusp-free and smooth difference
between the main atomic contributions and the exact
molecular function, is represented by a tractable amount of
equidistant grid points (cube).
Grid-based fast multiple methods (GBFMM) can be used

for speeding up the computations, and they allow an efficient

and even distribution of the memory and computational load
between the computational nodes.18,19 General-purpose
graphics processing unit (GPGPU), message-passing interface
(MPI) and open multiprocessing (OpenMP) parallelizations
are utilized in our software in order to effectively use the
available computational resources.20 Tensor decomposition
approaches are used for reducing memory requirements.21,22

The aim of this work is to implement the KS-DFT method
into the above framework. The implementation of the XC
functional in the double basis (bubbles and cube) involves
novel challenges because of the nonlinear nature of the XC
term. As most of the needed components have already been
implemented, we concentrate here on the missing part, namely
the algorithms and the detailed implementation employed in
the calculation of the exchange-correlation potential and the
corresponding energy.
In the following section, we briefly present the basic KS-

DFT theory. After that, we give the mathematical details of
representing functions using the double bubbles and cube
basis. We discuss the SCF-algorithm at the KS-DFT level in
this framework and calculation of the exchange-correlation
terms. We apply the methods on a few molecules and present
energies obtained in KS-DFT calculations using the LDA and
GGA functionals. Finally, we compare our results with accurate
energies obtained using multiwavelet calculations.5,23
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2. KOHN−SHAM DENSITY FUNCTIONAL THEORY
The electronic energy in Kohn−Sham density functional
theory (KS-DFT) can be expressed as

E T V J Eext XCρ ρ ρ ρ ρ[ ] = [ ] + [ ] + [ ] + [ ] (1)

where the T[ρ], Vext[ρ], J[ρ], and EXC[ρ] are the kinetic
energy, external potential energy, the energy of the Coulomb
repulsion between electrons, and the exchange-correlation
energy, respectively. The energy contributions are functions of
the total electron density ρ, which is computed using the
occupied molecular orbitals, ψi, as
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where Nocc is the number of occupied molecular orbitals.
EXC has an integral form:

E r r rd ( ) ( )
R

XC 3∫ ε ρ= ⃗ ⃗ ⃗
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where ε(r)⃗ is the exchange-correlation energy per particle.
The orbital energies, ϵi, can be obtained from the Kohn−

Sham eigenvalue equation
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where the Kohn−Sham potential consists of the external
potential, vext, the Coulomb potential, vJ, and the exchange-
correlation potential, vXC:

v v v vKS Jext XC= + + (5)

At the local density approximation (LDA), the exchange-
correlation functional and the corresponding potential depend
only on the electron density

vXC
ε
ρ

= ∂
∂ (6)

Density functionals at the generalized gradient approxima-
tion (GGA) also depend on the gradient of the electron
density ∇ρ. At the restricted GGA level, the vXC can be written
as
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which can also be expressed using the second derivative 2
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3. BUBBLES AND CUBE
In the numerical bubbles and cube framework, the three-
dimensional (3D) functions, f(r)⃗, are represented as a linear
combination of the cube, fΔ(r)⃗, expanded on a 3D equidistant
grid and the bubbles, which are radial functions fAlm(rA)
expanded on a one-dimensional (1D) radial grid multiplied
with real spherical harmonic functions, Ylm(θA,ϕA) centered on
nucleus A. The radial grids of the bubbles are denser closer to
the atom centers. The 1D radial grids of the bubbles and the
grid of the cube overlap and all the grid points of the cube are

independent of the grid points of the bubbles and vice
versa.16,17 A general scalar function f(r)⃗ is expressed in the
double basis of bubbles and cube as

f r f r Y f r( ) ( ) ( , ) ( )
A l m

Alm
A lm A A∑ ∑ ∑ θ ϕ⃗ = + ⃗Δ

(9)

The bubbles functions take care of the cusp behavior of
functions near the nuclei implying that also core electrons can
be considered in the calculations. Thus, there is no need to use
soft pseudo potentials or to refined the grid for representing
the core electrons.4,24−40 The 1D radial functions represent
each function accurately in the vicinity of the nuclei with only a
small fraction of the total computational costs. The remaining
cube part is smooth and a good accuracy is obtained with a
relatively coarse 3D grid.
We divide the range of each Cartesian direction of the cube

and the radial range of the bubbles into a number of cells with
7 grid points. The first and the last grid point of each cell are
shared with the neighboring cell. Each grid point in a cell
corresponds to a Lagrange interpolation polynomial (LIP) and
all the LIPs of a given cell are used when interpolating or
calculating derivatives at any point of interest between grid
points. Having 7 grid points in a cell implies that when
differentiating the functions, the maximum error is in the order
of O(h6), where h is the spacing between two grid points. In
our framework and in this article, the entities consisting of the
cube and the bubbles are called Function3D below.

4. KS-DFT SCF USING BUBBLES AND CUBE
The simplest possible self-consistent field (SCF) orbital
optimization scheme in the numerical framework is an iterative
process with only a few steps namely: calculation of the orbital
energies ϵi and the total energy, E; calculation of the Kohn−
Sham potential, vKS; updating and orthonormalizing the
orbitals. The main advantage of the optimization process of
numerical KS-DFT SCF is that the algorithm scales linearly as
only one bracket element per orbital is needed in order to
calculate the orbital energies.
In the present approach, the orbitals are updated by

integrating the Helmholtz kernel for each orbital
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Integration of the six-dimensional Helmholtz kernel has
been discussed in detail in our previous publications.19,41 At
the end of each Helmholtz integration step the orbitals are
reorthogonalized using the Gram−Schmidt method. Calcu-
lation of electron−electron interaction potentials

J
r r

1 ÷◊̂ =
| ⃗ − ′| (11)

and the corresponding energies have been discussed in our
earlier work.18−20 Calculation of the kinetic energy of the
orbitals has also been discussed before,17

T
1
2i i

2ψ ψ̂ = − ∇
(12)

We have previously developed computational algorithms
needed for computing all terms that are needed for Hartree−
Fock calculations. For KS-DFT calculations, we need accurate
and efficient algorithms for calculating the exchange-
correlation potential, vXC, and the corresponding energy, EXC,

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00456
J. Chem. Theory Comput. 2018, 14, 4237−4245

4238

http://dx.doi.org/10.1021/acs.jctc.8b00456


respectively. Our approach to calculate these entities will be
discussed in the next section.

5. EXCHANGE-CORRELATION TERMS WITH BUBBLES
AND CUBE

Calculating the exchange-correlation energy and the exchange-
correlation potential for a known electron density is
straightforward and can be done with existing libraries such
as LibXC.42 However, in our framework the density is divided
into several parts and the exchange-correlation terms are not
linearly dependent on the density, implying that they cannot
be calculated separately. Thus, some additional steps are
required before and after the library call, as we want to
partition the resulting function and some intermediate ones
into bubbles and cubes. The calculation of the input density
and the gradient also requires some special attention.
We discuss the reconstruction of the output bubbles in

section 5.1 and the calculation of density and its gradient in

section 5.2. In section 5.3, we conclude this part by presenting

the algorithms we use to compute the exchange-correlation

energy and the exchange-correlation potentials for the

functionals of the local density approximation (LDA) and

the generalized gradient approximation (GGA).
5.1. Reconstruction of Bubbles. When a function f(r)⃗

can be calculated in any point in space, a straightforward

method to construct the bubbles is by direct projection.

Following Becke’s fuzzy cells concept,8 a function can be

partitioned into atomic cell contributions

f r f r w r f r( ) ( ) ( ) ( )
A

A
A

A∑ ∑⃗ = ⃗ ⃗ = ⃗

The radial part of the bubbles, fA(r)⃗, is obtained by

projecting the angular part of f(r)⃗ using spherical harmonics

Figure 1. Simple algorithm for calculating the electron density and its gradient at points of interest, p.

Figure 2. More involved algorithm for calculating the electron density and its gradient at points of interest.
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where ω is the solid angle, wA is a Becke partition function, and
w′i is the integration weight of the ith point. The numerical
integration on a sphere uses Lebedev grids. fΔ(r)⃗ is obtained by
subtracting the bubbles from f(r)⃗. In the projection, the 3D
information is compressed into 1D radial grid functions
multiplied with the corresponding spherical harmonics. The
efficiency of the compression can be evaluated by calculating
the norm of the cube, ∫ ( fΔ(r)⃗)2dr.⃗
5.2. Calculation of Electron Density and Its Gradient.

In our DFT implementation, we use two different ways to
calculate the electron density at the points of interest, p. The
advantages and disadvantages of the two approaches are
discussed in this section.
In the first approach, the electron density is calculated by

adding the squared occupied orbitals in the Function3Ds and
storing it in another Function3D object. The electron density
at the points of interest can be obtained by computing the
resulting Function3D electron density using eq 9. The three
gradient components of the electron density of the cube are
evaluated and stored as the cubes of three independent
Function3D objects, whereafter the gradient of the bubbles
contribution to the electron density is calculated and stored as
bubbles to the Function3D objects using the relations derived
in appendix A. After the gradient Function3Ds are formed, the
exact values of gradient at points of interest are calculated
using the same procedure as used for the density. This
algorithm is described as a pseudocode in Figure 1.
The second way to get the electron density and its gradient

is to perform the steps of the first algorithm in reversed order.
The orbital values are calculated in the desired points, p, which

are squared and added with the contributions from the other
orbitals to form the electron density. The gradient is obtained
via the differentiation product rule using orbital gradient values
and the orbital values in the points of interest as described in
Figure 2.
The differences between the two algorithms are in speed and

accuracy. The first algorithm is faster, as there are fewer point-
wise calculations of Function3Ds. However, the latter
algorithm increases the precision of the electron density and
especially of the gradient, because it has fewer multiplications
between Function3D objects prior to the calculation of the
gradient. The smaller part of the differentiated functions in
Function3Ds are stored in cubes prior to the calculation of the
gradient.
In both algorithms, the gradients of the functions are

calculated by first determining the gradients as Function3D
objects instead of calculating the gradients directly from the
electron density or the orbitals, rendering the resulting
gradients slightly less accurate. However, the values near the
nuclei are more stable, resulting in a higher precision for the
optimized electron density.

5.3. The Exchange-Correlation Algorithm. We have
now all algorithms needed for calculation of the exchange-
correlation potential (vXC) and energy (EXC) within the
bubbles and cube framework. The main algorithm for
obtaining vXC and EXC at the restricted LDA and GGA level
is given as pseudocode in Figure 3. We discuss the GGA
algorithm, whereas the LDA algorithm can be obtained by
omitting the steps involving the gradient of the electron
density in the GGA algorithm.
In order to calculate vXC and EXC at the GGA level, the

occupied orbitals, {ψi...ψNocc}, are used as input when

computing ερ, ε
ρ

∂
∂
, 2ρ∇ ε

ρ
∂

∂ | ∇ |
using the best bubble and cube

Figure 3. Calculation of the exchange-correlation potential (vXC) and the corresponding energy (EXC) in the bubbles and cube scheme.
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representation for each term. The individual steps are
described as pseudo code in the Figures 4 and 5.
Calculations of the three exchange-correlation terms begin

by computing the electron density, ρp, and its gradient, ∇ρp, at
the points of interest. In the bubbles case, ρp and ∇ρp are
calculated in the Lebedev integration points for distances from
the nuclei corresponding to 1D-grid points. For the cube, ρp

and ∇ρp are calculated for all grid points of the cube. The
second common step is the call to the LibXC library,42 which

provides the values for the derivatives of the energy,
pε

ρ
∂
∂

,
p

2
ε

ρ
∂

∂ | ∇ |
, and the energy per particle, εp, for the chosen points.

εp is then multiplied with the electron density, ρp, and
p

2
ε

ρ
∂

∂ | ∇ |
is multiplied with ∇ρp followed by an reordering of the data to

cube or bubbles format. For the cube, the data are reshaped
into a 3D grid of the correct dimension size, whereas for the
bubbles one has to employ the procedure described in section
5.1.
The bubbles contributions of the three terms are extracted

from the cubes, leaving only those parts in the cube that
cannot be accurately expanded in bubbles. The exchange-
correlation potential, vXC, is obtained by calculating the

divergence of the Function3D containing 2ρ∇ ε
ρ

∂
∂ | ∇ |

. The

obtained contribution to the potential is multiplied with −2

and added to ε
ρ

∂
∂
. The exchange-correlation energy (EXC) is

obtained by integrating ερ.

Figure 4. Calculation of the exchange-correlation terms ερ, ε
ρ

∂
∂
, and 2ρ∇ ε

ρ
∂

∂ | ∇ |
as bubbles.

Figure 5. Calculation of the exchange-correlation terms ερ, ε
ρ

∂
∂
, and 2ρ∇ ε

ρ
∂

∂ | ∇ |
as cubes.
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6. RESULTS
The accuracy of our approach is demonstrated by calculating
total energies for a few atoms and molecules at the LDA
level43,44 using the VWN5 correlation functional45 as well as at
the GGA level using the PBE exchange-correlation func-
tional.46,47 The total energies and the relative errors are
compared in Tables 1, 2, and 3 with values calculated using the

multiwavelet approach.5,23 For atoms, a cube grid step, h, of
0.05 was used. For molecules, h values of 0.05, 0.07, and 0.10
were used. The maximum angular momentum quantum
number of the bubbles, lMAX, was 3, 4, or 5 depending on
the size of the molecule and the employed exchange-
correlation functional. The 1D radial grid of the bubbles had
9000−14000 grid points within a radius of 14 bohr from the

atom centers. The number of grid points of the bubbles
depends on the charge of the corresponding nucleus. In the
PBE calculations, the dimension of the cube grid was chosen
such that the distance between the outermost nucleus and the
edge of the cube was at least 9−10 bohr in each direction. In
the LDA calculations, the distance between the outermost
nucleus and the cube edge was 7 bohr.
In the LDA calculations, we used the simple method

described in Figure 1 to evaluate the electron density at the
points of interest, whereas in the PBE calculations, we utilized
the more complex method described in Figure 2. The
straightforward approach can without doubt be used in the
LDA-calculations, because the two approaches yield practically
the same accuracy. However, the accuracy of the electron-
density gradient depends on the employed approach. The
accuracy is increased by an order of magnitude when using the
more complex approach in PBE calculations.
The complex approach is computationally more expensive,

because it involves an additional computational step that scales
linearly with respect to the number of occupied molecular
orbitals. However, the complex approach is a more effective
way to increase the accuracy of the calculation than the
alternative of decreasing the grid step of the cube. The
complex approach can be turned on at a later stage of a GGA
calculation when aiming at a higher accuracy.
The results of the atomic calculations are summarized in

Table 1. The calculations demonstrate that a high accuracy can
be obtained using the two exchange-correlation functionals.
The obtained LDA energies for the studied molecules given in
Table 2 are also accurate. The total energies are within the
reported error bars of 3 × 10−6 and 3 × 10−5 au of the
reference values for C2H4 and N2, respectively.23 For the
coarser grids, our calculations have errors in the total energy
that are still smaller than threshold for chemical accuracy of
10−4 au.
The PBE results for molecules are given in Table 3 where

one sees that accuracy of our calculations does not reach the
level of the reference values with any of the used grid steps.
However, the errors are much smaller than the chemical
accuracy of 10−4 au when using the smaller grid steps of 0.05
and 0.07. When the sparse grid with spacings of 0.10 au is
employed, the error is smaller than 10−4 au for all studied
molecules except CH4, whose energy has an error of 1.9 × 10−4

au.
Some of the energies in Tables 1, 2, and 3 lie below the

reference value showing that the numerical calculations are not
completely variational. The nonvariational behavior is caused
by accumulations of numerical errors without any predefined
sign. In this regard, numerical methods differ from analytical
approaches, where the deviations from the exact values are
most likely due to limitations in the employed basis set,
whereas in that case numerical rounding errors are much
smaller.

Table 1. Total Energies and Energy Deviations from Reference Data in Atomic Units (au) Calculated at the LDA Level for
Atoms Using h = 0.05a

ELDA |ΔE| reference EPBE |ΔE| Reference

He −2.83483557 7 × 10−8 −2.83483564 −2.89293478 8 × 10−8 −2.89293486
Be −14.44720932 2 × 10−7 −14.44720953 −14.62994712 8 × 10−7 −14.62994787
Ne −128.23347426 7 × 10−6 −128.23348141 −128.86642698 9 × 10−7 −128.86642789

aThe reference energies are taken from ref 5.

Table 2. Total Energies and Absolute Energy Deviations
from Reference Data (in au) Calculated for Molecules at the
LDA Level Using Three Different h Values and an lMAX
Value of 3a

h E |ΔE| reference

H2 0.10 −1.13737932 1.0 × 10−4

0.07 −1.13746630 1.5 × 10−5

0.05 −1.13748154 5.4 × 10−7 −1.1374810
N2 0.10 −108.699920957 4.5 × 10−5

0.07 −108.69994408 4.5 × 10−5

0.05 −108.69989293 1.7 × 10−5 −108.699876
C2H4 0.10 −77.86313942 4.1 × 10−5

0.07 −77.86310547 7.5 × 10−6

0.05 −77.86310014 2.1 × 10−6 −77.863098
aThe reference energies are taken from ref 23.

Table 3. Total Energies and Absolute Energy Deviations
from Reference Data (in au) Calculated for Molecules at the
PBE Level Using Three Different h Valuesa

lMAX h E |ΔE| Reference

H2 4 0.10 −1.16666517 3.5 × 10−5

0.07 −1.16668483 1.5 × 10−5

0.05 −1.16670022 6.0 × 10−8 −1.16670016
LiH 4 0.10 −8.04731512 3.6 × 10−5

0.07 −8.04740301 5.1 × 10−5

0.05 −8.04734292 9.0 × 10−6 −8.04735195
BH 4 0.10 −25.24162080 9.8 × 10−5

0.07 −25.24150547 2.8 × 10−5

0.05 −25.24149493 2.8 × 10−5 −25.24152300
H2O 4 0.10 −76.38848643 3.5 × 10−5

0.07 −76.38862009 9.9 × 10−5

0.05 −76.38856690 4.5 × 10−5 −76.38852144
CH4 5 0.10 −40.46792421 1.9 × 10−4

0.07 −40.46819020 8.1 × 10−5

0.05 −40.46819293 8.4 × 10−5 −40.46810927
aThe reference energies are taken from ref 5.
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The reason for the somewhat larger inaccuracy of the GGA
approach is the uncertainties introduced when calculating the
gradient. Especially, the gradient of cube is very prone to errors
as even the densest grid is still relatively sparse from the point
of view of numerical differentiation. The effect of the numerical
differentiation error can be reduced by increasing the lMAX, i.e.,
the length of the spherical harmonics expansion of the bubbles.
However, the computational cost of the algorithm also
increases when larger lMAX values are used.
Reducing h even further would increase the accuracy.

However, the use of denser grids is not feasible for the single
node implementation of the software used here due to memory
limitations of the available hardware. Thus, testing the
accuracy limits of our DFT implementation has to be left to
the future, when we have implemented a multinode version of
the approach.

7. CONCLUSIONS
We have developed and implemented a fully numerical method
for molecular electronic structure calculations at the density
functional theory (DFT) level using exchange-correlation
functionals at the local density approximation (LDA) and
the generalized gradient approximation (GGA). The numerical
methods can be extended to hybrid functionals that mix DFT
and Hartree−Fock (HF) exchange potentials, because
methods for GGA and HF calculations have been developed,
whereas implementation of range-separated functionals
requires development of new algorithms.
The numerical algorithms used for calculating the exchange-

correlation potential and energy contributions are presented in
detail. In our bubbles and cube approach, we expand the steep
part of the functions in one-center atom-like contributions and
the remainder is expanded on an equidistant grid. We also
discussed a simple way to calculate gradient for the bubbles
part and real spherical harmonics expansions in general. The
accuracy of our approach was demonstrated by performing
calculations on atoms and small molecules at the LDA level
and at the GGA level using the PBE functional. The obtained
energies were compared with values calculated using multi-
wavelet codes. The accuracy can be improved by using larger
grid sizes, which require more memory and increase the
computational effort. The computational time and memory
requirement increase linearly with the number of grid points.
The LDA and PBE calculations demonstrate that chemical

accuracy can be achieved using our approach. Excellent
accuracy is easily obtained at the LDA level even when
relatively sparse grids are employed. The calculations showed
that it is hard to reach a very high accuracy at the GGA level
due to the uncertainies introduced by numerical differentiation
of the electron density. A few extra computational steps had to
be introduced in order to improve the accuracy of gradient of
the electron density for obtaining sufficiently precise energies.
Presently, we use a single-node implementation without

utilizing the parallelization of the recently developed grid-
based fast multipole method (GBFMM),19,41 which limits the
size of the grids that are currently feasible. Consequently, the
accuracy of the PBE calculations leaves room for improvement.
Although, multinode parallelization of the calculation of the
DFT contributions to energy and the exchange-correlation
potential should be a relatively simple to implement, an
efficient implementation needs some considerations. The
GPGPU parallelization of the DFT part will therefore be
implemented later.

■ APPENDIX A: GRADIENT OF REAL SPHERICAL
HARMONICS EXPANSIONS

The gradient of the real spherical harmonics expansion
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can be calculated using the product rule
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The real spherical harmonics, Yl,m, can be represented as a
product of the solid harmonics, Sl,m, divided by the
corresponding power of the distance from the center of the
expansion, r as

Y r r S( , , ) ( , )l m
l

l m, ,θ φ θ φ= −
(17)

The corresponding gradient can analogously be expressed as

Y S r r r S r( , ) ( , , ) ( , , )l m l m
l l

l m, , ,θ φ θ φ θ φ∇ = ∇ + ∇− −

(18)

Simple recursion relations can be derived for eq 18 by using
Cartesian coordinates. The first four values of the solid
harmonics in Cartesian coordinates are

S S y S z S x1; ; ;0,0 1, 1 1,0 1,1= = = =− (19)

The solid harmonics of higher order can be obtained using
the well-known recursion relations

S r

c xS yS l m

c yS xS l m

a zS b r S m l
( , , )

( ), if

( ), if

, if

0, otherwise

l m

l m l l l l

l m l l l l

l m l m l m l m

,

, 1, 1 1, 1

, 1, 1 1, 1

, 1, ,
2

2,

l

m

oooooooooo

n

oooooooooo

θ φ =

− =

+ = −

− | | <

− − − − +

− − − − +

− −

(20)

where al m
l

l m l m,
2 1

( )( )
= −

+ −
, bl m

l m l m
l m l m,

( 1)( 1)
( )( )

= + − − −
+ −

, and

cl m
l

l,
2 1

2
= − . From eq 20 one sees that differentiation of

solid harmonics with respect to the z direction can be
expressed as

z
S d Sl m l m l m, , 1,

∂
∂

= − (21)

where
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In x and y directions, the corresponding expressions become
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(23)
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The auxiliary functions nl,m, ol,m, and pl,m are defined as
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Combining the above equations shows that the gradient of a
solid harmonics expansion is another solid harmonics

expansion, implying that gradients of the bubbles expansions
can be accurately represented by using bubbles objects.
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(38) Kottmann, J. S.; Höfener, S.; Bischoff, F. A. Numerically
Accurate Linear Response-Properties in the Configuration-Interaction
Singles (CIS) Approximation. Phys. Chem. Chem. Phys. 2015, 17,
31453−31462.
(39) Frediani, L.; Fossgaard, E.; Flå, T.; Ruud, K. Fully Adaptive
Algorithms for Multivariate Integral Equations Using the Non-
Standard Form and Multiwavelets with Applications to the Poisson
and Bound-State Helmholtz Kernels in Three Dimensions. Mol. Phys.
2013, 111, 1143−1160.
(40) Durdek, A.; Jensen, S. R.; Juselius, J.; Wind, P.; Flå, T.;
Frediani, L. Adaptive Order Polynomial Algorithm in a Multiwavelet
Representation Scheme. Appl. Num. Math. 2015, 92, 40−53.
(41) Solala, E.; Losilla, S.; Sundholm, D.; Xu, W.-H.; Parkkinen, P.
Optimization of Numerical Orbitals Using the Helmholtz Kernel. J.
Chem. Phys. 2017, 146, 084102.
(42) Marques, M. A.; Oliveira, M. J.; Burnus, T. Libxc: A Library of
Exchange and Correlation Functionals for Density Functional Theory.
Comput. Phys. Commun. 2012, 183, 2272−2281.
(43) Bloch, F. Bemerkung zur Elektronentheorie des Ferromagne-
tismus und der Elektrischen Leitfaḧigkeit. Eur. Phys. J. A 1929, 57,
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