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Abstract: Cells have evolved balanced systems that ensure an appropriate response to stress.
The systems elicit repair responses in temporary or moderate stress but eliminate irreparable cells via
apoptosis in detrimental conditions of prolonged or severe stress. The tumor suppressor p53 is a central
player in these stress response systems. When activated under DNA damage stress, p53 regulates
hundreds of genes that are involved in DNA repair, cell cycle, and apoptosis. Recently, increasing
studies have demonstrated additional regulatory roles of p53 in metabolism and mitochondrial
physiology. Due to the inherent complexity of feedback loops between p53 and its target genes,
the application of mathematical modeling has emerged as a novel approach to better understand
the multifaceted functions and dynamics of p53. In this review, we discuss several mathematical
modeling approaches in exploring the p53 pathways.
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1. Introduction

Mutations in the tumor suppressor p53 gene have been frequently linked to human cancers [1].
p53 induces the transcription of genes involved in cell cycle control and apoptosis in response to
cellular stresses, such as DNA damage [2]. p53 also regulates additional biological processes including
autophagy, metabolism, and mitochondrial physiology [3–8]. These multifaceted functions of p53 are
tuned by its simultaneous interaction with various target genes. An excellent recent review provided
a comprehensive list of hundreds of p53 target genes from not only individual gene studies but also
high throughput analyses [9]. Here, we highlight a few p53 target genes involved in different biological
processes (Table 1), which were identified as high-confidence p53 genes by gene ontology enrichment
analysis in [9]. For example, in the cell cycle arrest process, p53 activates cyclin dependent kinase
inhibitor 1A (CDKN1A/p21) that inhibits cyclin dependent kinases and proliferating cell nuclear antigen
(PCNA) [10]. The p53 target genes involving cell apoptosis include B-cell lymphoma 2 (BCL-2) family
members such as Bcl2-associated X protein (BAX) [11] and p53 upregulated modulator of apoptosis [12],
which control cytochrome c release from the mitochondria. p53 also regulates cellular metabolism.
It inhibits glycolysis via inducing TP53 inducible glycolysis and apoptosis regulator (TIGAR) that reduces
fructose-2-6-bisphosphate [13]. The complexity of the p53 network has made it challenging to gain
comprehensive insights into it, motivating the development and application of various quantitative
approaches for exploring this network.

Mathematical modeling is a valuable tool in effort to understand complex biological phenomena,
especially cancer [14] and cell signaling networks [15,16]. Modeling is an abstract and logical
representation of biological processes, such as the interaction of many molecules in a signaling network.
It is capable of elucidating critical components of the systems under observation and quantifying
their behavior under given conditions. Furthermore, mathematical modeling allows us to test many
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hypothetical scenarios that are impossible to recreate in experiments and generates testable predictions.
Its integration with a detailed understanding of biology can provide new insights into the mechanisms
of biological processes [17]. Mathematical approaches can be applied to understanding p53 functions
as well as dynamical interactions between p53 and other genes in response to various stresses,
such as DNA damage and metabolic stress. To explain time-dependent kinetics of the p53 signaling
network, the ordinary differential equation (ODE) modeling approach was utilized. The ODE describes
the rate of change of variables (e.g., total p53 protein level) with respect to time as a function of other
variables (e.g., the concentration of other proteins). Given model parameter sets, such as production
rate, degradation rate, and binding or dissociation rate, ODE models can accurately predict temporal
profiles of the p53 and explain how p53 dynamics influence cell fate decisions, such as survival
and death. To understand spatial patterns of p53, partial differential equation (PDE) modeling can be
utilized. The PDE method explains the evolution of variables in space and time. All the modeling
approaches discussed so far are deterministic and assume a continuous time scale. Cellular automata
(CA) describes discrete states (e.g., on or off) of an individual agent in a grid point in a discrete time
scale. The modeling approach can explain the spatial dependence of one variable on its neighbors,
since this approach describes the change of a variable as a function of the states of its neighbors
at discrete time points. Other modeling approaches such as Markov process or stochastic random walk
simulation were used to account for stochastic fluctuations of p53.

The goal of this review is to offer a comprehensive view of various mathematical modeling approaches
that have been employed to explore the tumor suppressive roles of p53. We summarize mathematical
modeling approaches focusing on three key biological contexts regulated by p53—DNA damage response,
cellular metabolism and mitochondrial physiology.

Table 1. A few p53 target genes in cell cycle arrest, apoptosis, and DNA repair (a complete list can be
found in [9]).

Biological Process p53 Target Genes

Cell cycle arrest GADD45A, BTG2, SFN, CDKN1A

Apoptosis BAX, APAF1, AEN, FAS, PERP, TRIAP1, BBC3, PMAIP1, SUSD6

DNA repair XPC, PCNA, POLH, RRM2B

Note: Key p53 target genes referred as high confidence genes in [9], where high confidence was defined
as a p53-activated genes identified in at least three high throughput studies. Full gene names are listed in
the Abbreviations section below.

2. p53 Dynamics in DNA Damage Response

2.1. Biological Background for Mathematical Model Development

Cells are continuously exposed to intrinsic (e.g., DNA replication stress) and extrinsic
DNA damaging stressors (e.g., UV, radiation, chemical carcinogens), which cause abnormal chemical
modifications in the DNA structure, leading to genomic abnormality if not correctly repaired [18].
Failure in maintaining genome integrity is closely linked to emergence of hallmarks of cancer. p53 has
been described as “the guardian of the genome” due to its critical roles in DNA damage response.

In normal and unstressed conditions, low physiological levels of p53 are maintained by a p53
negative regulator, E3 ubiquitin-protein ligase Mouse double minute 2 homolog (Mdm2), that promotes
rapid p53 degradation [19,20]. Mdm2 production is also controlled by p53 [21]. DNA damage,
however, disturbs this balance between p53 and Mdm2, leading to elevation of p53 and upregulation
of p53 target genes involved in the cell cycle, DNA repair, or apoptosis [9,22]. Interestingly, various
temporal profiles of p53 have been observed. For example, oscillatory p53 protein level change has
been observed in both in vitro [23,24] and in vivo [25]. DNA breaks caused by ionizing radiation
generates a series of pulse responses of p53 [26] while ultraviolet (UV) radiation induces a single p53
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pulse [27]. Sustained p53 levels at a peak level was generated after addition of small molecule Mdm2
inhibitor under DNA damage condition [26].

2.2. Mathematical Models of p53 in the DNA Damage Response

A number of ODE models have been used to describe the complex feedback among the large
number of molecules involved in the p53 network [28,29]. Some mathematical modeling efforts have
predicted distinct temporal behaviors of p53 as damped and undamped regular response. Initial models
focused on the core negative feedbacks between p53 and Mdm2. The cellular concentration of p53
and Mdm2 was modeled using kinetic equations. For example, Lev Bar-Or and colleagues developed
the following system of ODEs (Figure 1) [24]. In the model, p53 protein level was governed by an ODE
dP53(t)

dt = Sp53 − α(t)P53(t)M(t) − δp53 P53(t), which described the change of the concentration of p53
as a function of p53 production (source: Sp53), degradation by Mdm2 (M(t)) and its natural decay

(rate: δp53). The degradation of p53 by Mdm2 was explained by another time-dependent function

α(t) (α(t) = αbasal − [κ× E(t) − κ0(t)],κ0(t) = threshold), where αbasal represented a degradation rate

controlling the basal level of p53, E(t) indicated stress signal, and κ indicated inhibition of degradation
by stress signal. The threshold (κ0(t)) was introduced to explain a damping effect on this inhibition

( dκ0(t)
dt = −βκ0(t)E(0), κ0(0) = βE(0)). The Mdm2 protein dynamics was modeled by another

ODE equation dM(t)
dt = SM + pmaxI(t)n/

(
K + I(t)n

)
− δMM(t), where SM represented p53-independent

translation and transcription and δM is a natural decay rate of Mdm2. The second term in this equation
described p53-dependent Mdm2 translation and transcription. This ODE model predicted a series of
damped oscillatory dynamics of p53 in response to γ irradiation, which was confirmed by subsequent
experiments [24]. In addition to the p53-Mdm2 feedback loop, several other proteins were included in
other ODE models. Sun et al. included ataxia telangiectasia mutated (ATM), wild-type p53-induced
phosphatase 1 (Wip1), and p21 in addition to the p53-Mdm2 core feedback loop [30]. Specifically,
they included ATM activation of p53 and Mdm2. p53 can activate p21 and Wip1, a negative regulator
of both ATM and p53. A system of ODE equations was developed to model these interactions.
The model predicted that basal DNA double strand breeaks during normal cell cycle progression
triggers spontaneous pulses of p53 not sufficient for p21 induction. Only extensive DNA damage
generage synchornous p53 pulses that induces high level of p21.
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Figure 1. An ODE model developed by Lev Bar-Or et al [24]. Figure and equation adapted with
permission from [24]. Copyright 2000 National Academy of Sciences of the United States of America.
Left: model diagram, right: a representative model equation that describes p53 protein changes with
respect to time as a function of source, degradation by Mdm2 (M(t)), and natural decay. Green line:
activation or production, red line: inhibition or degradation.

More efforts were made to describe p53 dynamics during DNA damage response [26,31–34].
In particular, Purvis et al. utilized an integrated approach of experiments and mathematical modeling
to develop a method that can switch pulsed p53 dynamics to a sustained p53 at a peak level in
DNA damage response [26]. The mathematical model explained the feedback loop of stress signal
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involving inactive p53, active p53, Mdm2, and Wip1 by delayed differential equations incorporating
time delayed induction of Mdm2 and Wip1 by p53. The model assumed that inactive p53 was
produced by a constant source in a cell, degraded by Mdm2 following a Hill-type relation, decayed
at some natural decay rate. DNA damage signal converted inactive p53 into active p53 at some
rate, dependent on the magnitude of the damage signal. The active p53 was degraded by Mdm2.
In the model, Mdm2 was produced by active p53, reduced by DNA stress signal, and decayed
at some natural decay rate. The dynamics of Wip1 was modeled as a function of active p53 induction
and natural decay. Finally, DNA stress signal was modeled using a time-dependent DNA damage
source, natural decay, and threshold inhibition. Using this model, they identified a treatment sequence
of a small molecule Mdm2 inhibitor, which could change p53 dynamics from pulsed to a sustained
level. The study demonstrated that the change of p53 dynamics led to different sets of target gene
activation as well as distinct cell fates, such as DNA repair or senescence [26]. p53 targets associated
with cell cycle control and DNA repair such as CDKN1A, growth arrest and DNA-damage inducible
protein (GADD45A), Mdm2 and protein phosphatase 1D (PPM1D) displayed an oscillatory response
like p53 protein. When p53 dynamics was switched to a sustained level, some targets such as Mdm2
and CDKN1A increased to a sustained level. Interestingly, p53-targets associated with apoptosis
and senescence such as apoptotic protease activating factor 1 (APAF1), BAX, promyelocytic leukemia
(PML) and yippee-like 3 (YPEL3) were not activated by p53 pulse. The genes were only induced by
a sustained p53 level. The study also investigated the impact of p53 dynamics on cell fate decisions
and demonstrated that pulsing p53 dynamics led to recovery from DNA damage, whereas cells with
sustained p53 levels frequently underwent senescence [26].

p53-dependent cell fate decision was further investigated by different groups. By incorporating
apoptosis-related genes into the core feedback loops in p53 network, some models predicted p53
as a driver of cell fate transition from cell cycle arrest to apoptosis [35–37]. Mathematical models
that integrated ODE models for cell cycle and DNA damage network predicted the role of p53 in
determining immediate or sustained cell cycle types [38,39]. In particular, the Tyson group developed
a comprehensive mathematical framework describing principles of kinetics in cell apoptosis that
captures the following three key dynamical features: signal threshold for cell death, a time delay
between the signal and response, and irreversible commitment to cellular breakdown for apoptosis [35].
Using this framework, they proposed a process of p53 responses to DNA damage by first eliciting
cell cycle arrest, followed by damage repair and cell death. The model predicted the order of protein
expressions and posttranslational modifications during the cell cycle process, which were in good
agreement with previously reported experimental observations.

Lahav and collogues reported heterogeneous p53 dynamics at a single cell level [23].
Geva-Zatorsky et al. also observed variability of p53 dynamics in isogenic cells under similar
conditions following DNA damaging γ radiation [40]. They found differential amplitude and period
of the p53 pulses at a single cell level. Further, they developed several models of p53-Mdm2 feedback
loops and identified the source of this single cell variability in the oscillations, with the noise in protein
production rates contributing the most. On the contrary, Batchelor and colleagues demonstrated that
different stressors induced different p53 feedback loops, thereby triggering different temporal profiles
of p53 in single cells [27]. They observed that UV irradiation induced a single graded pulse of p53
while γ irradiation caused excitable p53 dynamics. Using a mathematical model integrated with single
cell experimental data, they identified mechanisms for the difference. p53-Mdm2 feedback loop by
ATR was responsible for the graded profile, while feedback from Wip1 to ATM induced excitable
behavior. In addition, other mathematical models proposed to understand the heterogeneity in this
network. Moore and colleagues integrated p53-Mdm2 core feedback loops with miRNA-mediated
positive feedback loops, such as those involving miR-192, miR-34a, and miR-29a [41]. They reproduced
single cell level variability of p53 dynamics and predicted that miRNA repression changes p53
dynamics significantly.
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The spatial or structural variation between individual cells was investigated by PDE models [42].
Elias and colleagues developed a PDE model describing p53 network in the nucleus and the cytoplasm.
Specifically, the feedback loops between p53, Mdm2, ATM, and Wip1 in the nucleus and the cytoplasm
were described by a system of partial differential equations (Figure 2) [42,43]. For example,

the dynamics of p53 in the nucleus (p53n)was explained by ∂p53n
∂t = Dn∆p53n +

αWip1np53p
K+p53p

−
βMdm2np53n
(K+p53n)

−

γATMnp53n/(K + p53n), where the subscript n indicates the nucleus, Dn indicates a diffusion rate of

p53n and p53p represents phosphorylated p53. In the above equation, the second term represents
an increase of p53 level in the nucleus by phosphorylated p53 and Wip1, and the third term represents
decay of p53n by Mdm2 located in the nucleus. The last term explains an increase of p53 in
the nucleus by ATM. Similarly, the dynamics of p53 in the cytoplasm (p53c) was described by
∂p53c
∂t = Dc∆p53c + S − εMdm2cp53c

K+p53c
− δp53c, where Dc indicates a diffusion rate of p53c, S represents

a source term, and δ represents a natural decay rate of p53c. The second term explains the degradation

of p53c by Mdm2 in the cytoplasm. They explained the dynamics of Mdm2, ATM, Wip1 by applying
a similar modeling approach. The PDE model successfully simulated the observed p53 oscillation due
to various stresses and concluded the structural variation between individual cells could be another
potential source for the variability of p53 in single cells.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW  5 of 12 

5 

 
Figure 2. A PDE model developed by Elias et al. [42] Figure and equations adapted with permission 
from [42] Copyright 2014 Physical Biology. The model diagram explains p53, Mdm2, Wip1 dynamics 
both in the nucleus and the cytoplasm. Representative partial differential equations that described 
change of p53 with respect to time in the nucleus as well as in the cytoplasm. 

The spatial or structural variation between individual cells was investigated by PDE models [42]. 
Elias and colleagues developed a PDE model describing p53 network in the nucleus and the 
cytoplasm. Specifically, the feedback loops between p53, Mdm2, ATM, and Wip1 in the nucleus and 
the cytoplasm were described by a system of partial differential equations (Figure 2) [42,43]. For 
example, the dynamics of p53 in the nucleus ( 𝑝53௡)  was explained by ப௣ହଷ೙

ப୲
= 𝐷௡ο𝑝53௡ +

ఈௐ௜௣ଵ೙௣ହଷ೛

௄ା௣ହ ೛
−
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Figure 2. A PDE model developed by Elias et al. [42] Figure and equations adapted with permission
from [42] Copyright 2014 Physical Biology. The model diagram explains p53, Mdm2, Wip1 dynamics
both in the nucleus and the cytoplasm. Representative partial differential equations that described
change of p53 with respect to time in the nucleus as well as in the cytoplasm.

2.3. Mathematical Modeling of p53 Interaction with Other Tumor Suppressors

In addition to undamped regular oscillations of p53 in the context of DNA damage response,
mathematical models describing interactions between the core p53 feedback model and other tumor
suppressor proteins were also developed. ODE models involving ATM-Mdm2-p53-PTEN-AKT
feedback was developed to describe the two-phase dynamics of p53 [31,44]. In addition to the core
ATM-Mdm2-p53 feedback loop, these models assumed that p53 could activate phosphatase and tensin
homolog (PTEN), which inhibits protein kinase B (AKT), as an Mdm2 activator. These models
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demonstrated that the concentration of PTEN would be critical for transitioning to the second phase
activation of p53, which is sufficient for inducing cell death [31,44].

A tumor-suppressive network model for mitogenic and oncogenic signals composed of three
different modules, such as p53 induction, proliferation, and apoptosis, explained how cells make cell fate
decisions, such as those for growth, death, and cell cycle arrest [45]. The study by Hat et al. simulated
a stochastic process (Markov process) as well as deterministic ODEs composed of three different
modules including the core p53 feedback, cell cycle control, and apoptosis modules [46]. The core
module included interactions between ATM, Mdm2, p53, Wip1, AKT, and PTEN. The cell cycle module
contains interaction between p53, p21, Cyclin E, retinoblastoma protein (Rb1), and transcription factor
(E2F1), while apoptosis module was controlled by feedback between p53, Bax, Bcl-2, AKT, and Caspase.
It is worth to note that this study described a detailed description of p53 network by including
site-specific phosphorylation of each molecule. For example, they described the phosphorylation of p53
by ATM at Ser15 for cell cycle arrest in response to DNA damage (p53a) and the phosphorylation of p53
at Ser46 for apoptosis (p53b). This study demonstrated the ratio of Wip1 to PTEN being responsible for
diverse p53 dynamics, an oscillation of p53a, and a fast transition to a peak level of p53b in cancer cells.

3. p53 and Metabolism

3.1. Experimental Findings Regarding the Roles of p53 in Metabolism

In addition to its role in the DNA damage response, p53 is involved in cellular metabolism [4,6–8].
Metabolism is the process through which the nutrients taken up by cells are metabolized to produce
building blocks for biosynthesis and generate energy. Changes in metabolic activity are typically observed
in the tumor initiation and progression stages, which lead to the rapid expansion and survival of cancer cells
under abnormal tumor microenvironmental conditions. Many experimental studies demonstrated that
p53 mediates the regulation of metabolic activity through multiple mechanisms (molecular mechanisms
reviewed in [5,6]). A well-known role of p53 includes regulation of autophagy-related genes such as 5'
AMP-activated protein kinase (AMPK) and tuberous sclerosis complex 2 (TSC2) under nutrient deprived
conditions, as well as modulation of the expression of several glycolysis related genes such as Hexokinase
2 (HK2) [47] and TP53 inducible glycolysis and apoptosis regulator (TIGAR) [13]. More recent findings
demonstrate the role of p53 in modulating glucose uptake by balancing intracellular glucose level. A study
utilizing multiple cell lines showed that p53 might reduce expression of glucose transporters (e.g., GLUT-1
and GLUT-4) to prevent further glucose uptake in case of high intracellular glucose levels [48]. The p53
family member, TAp63, appeared to promote glucose uptake when the cellular glucose level is low [49],
although intermediate molecular mechanisms are yet to be identified. In addition, the Flores group
showed that TAp63 played important roles in regulating energy metabolism. They observed that TAp63 -/-
mice develop obesity, glucose intolerance, and insulin resistance. Mitochondrial dysfunction and defects
in fatty acid oxidation were also observed in this mouse model [49].

3.2. Mathematical Models of Cancer Metabolism

Despite ample evidence suggesting the interaction of p53 with key molecules involved in
metabolism, not many mathematical models have directly addressed its role, possibly due to
the lack of temporal dynamics data from experimental model systems. A few mathematical models
were developed to describe the p53 network in metabolism, especially under nutrient-deprived
conditions. The model predicted the temporal behavior of autophagy-related genes as well as their
interaction with p53 [45,50,51]. In particular, a comprehensive model developed by Liu et al. included
a detailed interaction network model of autophagy and predicted that p53 might regulate cell fate
transition from autophagy to apoptosis [45,50,51]. Yu et al. developed a systems biology framework
explaining the regulatory principles of glycolysis and oxidative phosphorylation [51]. Their regulatory
network model showed that cancer cells have a hybrid state including both oxidative and glycolytic
states, due to high reactive oxygen species production and oncogene activation. These hybrid
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phenotypes of cancer cells appear to promote metabolic plasticity to confer cancer cells adaptability to
various microenvironments.

Various mathematical models were developed to describe other aspects of cancer metabolism.
These models explained not only intracellular metabolic changes in the tumor, but also their effect on tumor
invasion and drug resistance. Extensive efforts were made to establish metabolic flux balance models
that describe the steady-state rate of metabolic biochemical reactions in cancer cells [52]. The inclusion
of reaction rates and corresponding parameters provided improved predictions of glycolysis in cancer
progression [53,54]. To explain spatial-temporal variations of the metabolites, a reaction-diffusion
PDE model was also developed [55]. Other PDE models were applied to understanding the effect
of the tumor microenvironment on tumor metabolic changes [56,57]. A different modeling approach,
hybrid cellular automata (HCA) predicted the impact of intercellular metabolic variability on tumor
progression and drug resistance [58]. HCA modeling approach combines a PDE model and a cellular
automata model. A PDE model describes the diffusion of a chemical such as nutrient, oxygen and acid,
while a cellular automaton model (CA) explains individual cell behavior (phenotype) on a grid point.
Cell phenotypes typically include cell death, migration, and proliferation, which is determined by
microenvironmental factors as well as cell intrinsic machineries such as signaling pathways or metabolic
pathways. Robertson-Tessi et al. developed an HCA model of cancer cell metabolism which described
a detailed description of ATP production in each cell [58], where cell fate was determined by the metabolic
state of each cell.

4. Mathematical Models of Mitochondrial Physiology

4.1. Biological Background

Mitochondria are dynamic populations within the cell undergoing continuous merging (fusion)
and division (fission) and act as the powerhouse of the cell by regulating various processes,
such as oxidative phosphorylation, biogenesis, thermogenesis, production of lipids and amino
acids, and induction of apoptosis. Aberrant mitochondrial function is linked to several hallmarks
of cancer conferring a survival advantage [59]. For example, mitochondrial DNA mutations are
often observed in cancer, leading to abnormal energy metabolism and increase in reactive oxygen
species. The increase of mitochondrial DNA mutations appears to be associated with the loss of p53.
Several studies have demonstrated that p53 contributes to mitochondrial genome stability [60,61]
and enhances the accuracy of DNA synthesis [62,63]. The Hwang group demonstrated that p53 protein
maintains the mitochondrial genome in response to both intrinsic and extrinsic factors such as reactive
oxygen species. In response to stress, p53 translocates to mitochondria and physically interacts with
both the DNA and mitochondria polymerase γ. Subsequent studies have reported additional roles
of p53 in mitochondrial DNA regulation, leading to the emerging paradigm of p53 as a guardian of
the mitochondrial genome [62,63]. p53 is also involved in mitochondrial length control and cycling
of fusion and fission [64], which is essential for normal mitochondrial function and mutation-free
mitochondrial DNA synthesis. In this session, we describe several mathematical modeling approaches
describing mitochondrial DNA maintenance, as well as dynamical process of mitochondrial fusion
and fission.

4.2. Mathematical Models of Mitochondrial Physiology

Several mathematical models have described mitochondrial physiology, although the multifaceted
roles of p53 in regulating mitochondrial physiology have not been fully incorporated yet. A quantitative
analysis of the mitochondrial network clusters within cells was developed to identify structural parameters
defining the mitochondrial network [65]. In this study, Zamponi et al. analyzed mitochondrial networks
using confocal microscopy images, determined the underlying structural parameters based on these images,
and then calculated mitochondrial cluster mass and degree (number of nearest neighbors), which were
used to define the mitochondrial network configuration. ODE models described mitochondrial quality
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control such as mitochondrial DNA synthesis and deletion [66,67], and predicted consequences of this
DNA deletion. The model showed that shorter size of DNA has a selection advantage in promoting
additional deletion mutations. The biogenesis of mitochondria into a large-scale stable organization
within the cell was simulated by using both a mean field ODE model and the agent-based modeling
approach [68]. Stochastic simulation was applied to model the dynamic mitochondrial fusion and fission
process. Patel et al. developed a stochastic spatiotemporal model of fusion-fission [64,69]. They described
local interactions between neighboring mitochondria and their reorganization. To define mitochondrial
population health, they utilized the asymmetry of electrochemical potential across the inner membrane.
Using the model, they showed that mitochondrial density did not affect mitochondrial population health,
as long as a minimum basal rate of fusion was maintained. The fusion rate was predicted to be enhanced
by actively regulating mitochondrial motility. Another stochastic simulation was applied to explain
other roles of fusion-fission cycles in mitochondrial DNA maintenance [70]. Here, Tam et al. developed
a stochastic model (random walk model) to simulate the distribution of both wild type and mutant
DNA sequences in mitochondria. The DNA turnover such as replication, degradation, and DNA mixing
through mitochondrial fusion and fission was modeled as a random event with a probability proportional
to a pre-defined time step size as well as a propensity function. To describe mitochondria spatial
distribution in a cell, a cell in the model was compartmentalized into several regions based on single
mitochondrial traveling distance. The Gillespie algorithm was used to simulate the stochastic events of
both mitochondrial DNA turn over and movement [71]. The model simulations with various fusion-fission
rates demonstrated that a slower fusion-fission rate leads to increased stochasticity in the mitochondrial
DNA mutation burden in a tissue.

5. Future Perspectives

Several important questions remain despite remarkable progress in mathematical modeling
of the p53 pathway. For example, quantitative approaches that help to explain p53 in regulating
metabolism and mitochondrial physiology are still lacking. The lack of mathematical modeling in these
aspects is, in part, due to a lack of detailed temporal data of p53 in these areas. Obtaining experimental
data is necessary to develop mathematical models that can accurately predict p53 network dynamics
since the ability of a mathematical to predict a system’s behavior depends on mathematical model
parameterization. It also remains unclear how p53 dynamics is changing upon p53 mutations. It is
known that newly established interactions of mutant p53 with other cellular proteins can deprive cells
of tumor-suppressive response and promote cancer development [72]. The detailed p53 dynamics
in these newly established networks, however, are still unknown. Mathematical models of these
newly interactions have the potential to bridge gaps in our efforts to comprehensively characterize p53
dynamics in both normal and cancer development conditions. In addition, the development of open
resource tools for mathematical models of p53 network like p53 biological resource (https://p53.fr for
p53 biological resource) will further assist p53 modeling community.

6. Conclusions

The p53 pathway has captivated the attention of both experimental and mathematical modeling
research communities and is one of the most well-studied pathways. In addition to its classic role
as a genome guardian under genotoxic stress, increasing evidence indicates p53 is associated with
other cellular processes such as regulation of metabolism and mitochondrial physiology. In this
review, we discussed various mathematical modeling approaches simulating p53 networks, focusing
on three areas – classical p53-medated DNA damage response, roles of p53 in cellular metabolism
and mitochondrial dynamics. These mathematical models have provided useful insights to better
understand the multifaceted role of p53. To develop mathematical models, biological knowledge about
p53 network or new experimental measurements were first considered. These data typically served
to derive mathematical model assumptions. Then, appropriate mathematical modeling approaches
that can represent both observed experimental measurements and main questions were selected.

https://p53.fr
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Mathematical model simulations generated novel hypotheses, which were tested and confirmed
in subsequent experiments. Further studies of integrating mathematical models with systematic
measurements will be useful for unveiling new p53 mechanisms.
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Abbreviations

GADD45A Growth arrest and DNA damage inducible alpha
BTG2 B-cell translocation gene 2
SFN Stratifin
CDKN1A Cyclin dependent kinase inhibitor 1A
BAX Bcl2 associated protein X
APAF1 Apoptotic protease activating factor 1
AEN Apoptosis enhancing nuclease
FAS Fas cell surface death receptor
PERP p53 apoptosis effector related to PMP-22
TRIAP1 TP53 regulated inhibitor of apoptosis 1
BBC3 Bcl-2 binding component 3
PMAIP1 Phorbol 12 Myristate 13 acetate induced protein 1
SUSD6 Sushi domain containing 6
XPC Xeroderma pigmentosum
PCNA Proliferating cell nuclear antigen
POLH DNA polymerase eta
RRM2B Ribonucleotide reductase regulatory TP53 inducible subunit M2B.
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